## Commensurate-incommensurate transition of solid krypton monolayers on graphite

S. C. Fain, Jr., M. D. Chinn,\* and R. D. Diehl Physics Department, University of Washington, Seattle, Washington 98195 (Received 10 December 1979)

Low-energy electron-diffraction (LEED) data for the commensurate-incommensurate transition in solid krypton monolayers on graphite are reanalyzed and compared to recent x-ray diffraction data. For the temperature range 52 to 89 K, the mean misfit versus chemical potential change for both sets of data can be expressed as a power law with an exponent of about  $\frac{1}{3}$ . The critical pressure at which the transition occurs is consistent with  $P_c(T) = (4.5 \times 10^{+9} \text{ Torr})$  $\exp(-1990K/T)$  for 52 < T < 123 K. Analysis of the LEED photographs at 52 K indicates that the krypton monolayer starts to rotate in an apparently second-order transition when the mean misfit exceeds two percent.

The hexagonal incommensurate krypton monolayer on graphite<sup>1,2</sup> can be characterized by the mean misfit *m*, which is defined in terms of the deviation of the mean nearest-neighbor spacing *d* from the commensurate  $(\sqrt{3} \times \sqrt{3})30^\circ$  spacing  $d_0 = 4.26$  Å by

$$m = (d_0 - d)/d_0 \quad . \tag{1}$$

If no vacancies, interstitials, or second-layer atoms are present, the mean density n for the experimental range of misfits m < 5% is given by

$$n \cong n_0(1+2m) \quad , \tag{2}$$

where  $n_0$  is the density of the commensurate monolayer. Volumetric isotherm measurements of the total adsorbed amount as a function of the Kr vapor pressure provided the first evidence for the commensurate-incommensurate transition.<sup>3</sup> However, the most accurate measurements of misfit are obtained from diffraction measurements<sup>1,2</sup> which do not require the corrections for second-layer adsorption and substrate heterogeneity<sup>4,5</sup> needed for isotherm measurements.

In Ref. 1 we compared our low-energy electron diffraction to the one-dimensional T = 0 Frank-van der Merwe theory.<sup>10</sup> A more detailed analysis of this data and the x-ray data<sup>2</sup> shows that the data are not consistent with this theory at misfits < 2%. Both sets of data are consistent with a power-law function of chemical potential change as proposed by Stephens *et al.*<sup>2</sup>

$$m = a \left( T \ln P - T \ln P_c \right)^{\beta} , \qquad (3)$$

where T is the substrate temperature, P is the Kr vapor pressure, and  $P_c$  is a parameter chosen for best fit at each temperature. We present in Fig. 1 the LEED<sup>1,6</sup> and x-ray<sup>2,7</sup> data in a log-log plot of misfit versus chemical potential change. The straight line



FIG. 1. Comparison of LEED and x-ray data for Kr on graphite with a power law in the mean misfit vs chemical potential change:

$$n = (d_0 - d)/d_0 = a (T \ln P - T \ln P_c)^{\beta}$$

where d is the mean nearest-neighbor spacing,  $d_0 = 4.26$  Å is the d value for the  $(\sqrt{3} \times \sqrt{3})30^\circ$  structure, T is the substrate temperature, P is the Kr vapor pressure,  $P_c$  is a fitting parameter that depends on T, a = 0.8%, and  $\beta = 0.33$ . The x-ray data [(a) and (b)] are from Ref. 2 and the LEED data [(c), (d), and (e)] are from Ref. 1 with a temperature correction applied (Ref. 6).

4170

©1980 The American Physical Society

shown is our fit of the 89-K data to Eq. (3) with a = 0.8% and  $\beta = 0.33$ . (Stephens *et al.* found  $\beta = 0.32 \pm 0.02$  for the 89-K data.<sup>2</sup>) From the quality of the fit in Fig. 1 we conclude that the diffraction data<sup>7</sup> are described by the same power law for 52 < T < 89 K and 0.5% < m < 5.0%.<sup>8</sup> No theory has yet been proposed that explains the power-law behavior of Eq. (3) with exponent  $\beta \approx \frac{1}{3}$ . (Several calculations predict an exponent  $\beta = \frac{1}{2}$  for uniaxial domain walls,<sup>13-15</sup> which are not observed experimentally.<sup>1,2</sup>)

The rounding of the transition at m < 0.5% shown in Refs. 2 and 9 is not described by the power law and may be due to finite-size effects. The x-ray measurements indicate that uniform regions of the commensurate phase for the "ZYX" substrate are about 600 Å in diameter.<sup>2</sup> In using domain walls to describe the incommensurate structure close to the transition, <sup>10-16</sup> this 600- Å length would contain only a few domain walls at 1% misfit and thus finite-size effects can be very important close to the transition. The single-crystal substrate used for the LEED measurements might have had larger uniform regions, but the apparatus resolution did not permit measurements for m < 0.5%.

In Fig. 2 we show the pressure  $P_c(T)$  at which the commensurate-incommensurate transition begins as obtained from volumetric isotherm measurements,<sup>3,9</sup>



FIG. 2. Comparison of pressures  $P_c$  from different measurements with equation  $P_c = P_0 \exp(-q/T)$ , with  $P_0 = 4.5 \times 10^{+9}$  Torr and q = 1990 K. Upright and inverted triangles are from volumetric isotherms (Refs. 3 and 9), squares from x-ray diffraction (Ref. 2), circles from LEED (Ref. 6), pluses from transmission high-energy electron diffraction (Ref. 17), and diamonds from heat-capacity peak correlation with vapor pressure (Ref. 18).

LEED,<sup>6</sup> x-ray<sup>2</sup> and transmission high-energy electron diffraction,<sup>17</sup> and heat-capacity measurements.<sup>18</sup> The solid line shown is a least-squares fit of the data from volumetric isotherm data  $(72 < T < 96 \text{ K})^{3,9}$ 

$$P_c(T) = P_0 \exp(-q/T) \quad , \tag{4}$$

with  $P_0 = (4.5 \pm 0.8) \times 10^{+9}$  Torr and  $q = 1990 \pm 13$  K. This value of q is consistent with that deduced by Thomy et al. (q = 1980 K).<sup>3</sup> The deviation of the xray<sup>2</sup> values from this line could be due to undetected systematic errors. As mentioned in Ref. 4, there is no a priori reason why q should be temperature independent; the high-energy electron diffraction<sup>17</sup> and LEED<sup>6</sup> measurements are not sufficiently accurate to decide if Eq. (4) is precise near 55 K.

Structural modulations cause orientational ordering of incommensurate monolayers.<sup>19,20</sup> In Fig. 3 we present new measurements of the orientation angle of incommensurate Kr monolayers at 52 K. The LEED photographs of the original study<sup>1,21</sup> have been analyzed by comparison to spot profiles that were calculated by assuming two orientational domains<sup>20</sup> with overlapping Gaussian profiles. [A schematic drawing of the observed spots is shown in Fig. 2(e) of Ref. 1.] The results given in Fig. 3 indicate that rotation starts at about 2% mean misfit, and that rotation occurs in an apparently second-order transition. These two conclusions are in good agreement with Shiba's most recent calculation.<sup>13</sup> The



FIG. 3. Relative orientation angle between Kr monolayers at 52 K and the  $(\sqrt{3} \times \sqrt{3})30^\circ$  commensurate structure vs mean misfit  $m = (d_0 - d)/d_0$ , where d is the nearest-neighbor distance and  $d_0 = 4.26$  Å. The elongated Kr spots [Fig. 2(e) of Ref. 1] have been analyzed assuming two orientational domains with overlapping Gaussian spot profiles.

maximum rotation of about 0.5° at 5% mean misfit is smaller by a factor of 2 or more than calculated by Shiba<sup>13</sup> or McTague and Novaco.<sup>22</sup> This difference at large misfits may be due to edge effects or to second-layer adsorption, effects invoked in explaining the deviation of argon rotation data from calculations at large misfit.<sup>20</sup>

We wish to thank E. K. Riedel for helpful discussions, P. W. Stephens for a list of the x-ray misfit data points, H. Shiba for sending Ref. 13 prior to publication, and the NSF for support from Grant No. DMR 77-26931.

- \*Present address: Kistler-Morse Corp., Bellevue, Wash. 98005.
- <sup>1</sup>M. D. Chinn and S. C. Fain, Jr., Phys. Rev. Lett. <u>39</u>, 146 (1977).
- <sup>2</sup>P. W. Stephens, P. Heiney, R. J. Birgeneau, and P. M. Horn, Phys. Rev. Lett. <u>43</u>, 47 (1979).
- <sup>3</sup>A. Thomy, J. Regnier, and X. Duval, in *Thermochimie, Colloques Internationaux du CNRS*, (CNRS, Paris, 1972), p. 511.
- <sup>4</sup>S. C. Fain, Jr. and M. D. Chinn, J. Phys. (Paris) Colloq. 38, C4-99 (1977).
- <sup>5</sup>G. D. Halsey, J. Phys. Chem. <u>81</u>, 2076 (1977)
- <sup>6</sup>Two corrections have been made to the LEED data from Ref. 1. The temperatures have been corrected downward by 2 K to account for a systematic error resulting from the method of mounting the thermocouple; this correction is certain to  $\pm 1$  K [C. G. Shaw, Ph. D. dissertation (University of Washington, 1979) (unpublished)]. The vapor pressures have been corrected downward by the necessary thermomolecular correction (T/295)<sup>1/2</sup> [C. G. Shaw and S. C. Fain, Jr., Surf. Sci. <u>83</u>, 1 (1979)]. The pressure correction has no effect on the plot in Fig. 1; the temperature correction gives a small horizontal shift.
- <sup>7</sup>X-ray data points with  $0.5 \le m \le 1.0\%$  (1 at 89 K and 3 at 80 K) are consistent with the straight-line behavior in Fig. 1, but are not shown; due to the greater uncertainties in these points (see Fig. 3 of Ref. 2) they should not be weighted strongly in a power-law fit. Five x-ray data points (m < 0.5%) and two LEED points (m < 1.0%) are at pressures less than the critical pressures assumed for Fig. 1 and thus cannot be shown in such a plot.
- <sup>8</sup>The misfit range from  $\frac{1}{2}$ % to 5% corresponds at 80 K to a range in "reduced" chemical potential
  - $[T \ln(P/P_c)]/[T \ln(P_c/P_1)]$  from  $6 \times 10^{-4}$  to 0.7. The reference level of chemical potential  $T \ln P_1$  chosen for this calculation was  $P_1 = 1.0 \times 10^3$  Torr, the pressure of

monolayer condensation at 80 K measured by Y. Larher, J. Chem. Soc. Faraday Trans. 1, 70, 320 (1974).

- <sup>9</sup>Y. Larher, J. Chem. Phys. <u>68</u>, 2257 (1978).
- <sup>10</sup>F. C. Frank, and J. H. van der Merwe, Proc. Roy. Soc. A <u>198</u>, 205, 216 (1949), and <u>200</u>, 125 (1949).
- <sup>11</sup>J. A. Venables and P. S. Schabes-Retchkiman, J. Phys. (Paris) Colloq. <u>38</u>, C4-105 (1977), and Surf. Sci. <u>71</u>, 27 (1978).
- <sup>12</sup>P. Bak, D. Mukamel, J. Villain, and K. Wentewska, Phys. Rev. B <u>19</u>, 1610 (1979).
- <sup>13</sup>H. Shiba, J. Phys. Soc. Jpn. <u>46</u>, 1852 (1979) and (unpublished).
- <sup>14</sup>V. L. Pokrovsky and A. L. Talapov, Phys. Rev. Lett. <u>42</u>, 65 (1979) and Zh. Eksp. Theor. Fiz. <u>75</u>, 1157 (1978)
  [Sov. Phys. JETP 48, 579 (1978)].
- <sup>15</sup>A. Luther, J. Timonen, and V. Pokrovsky, in *Phase Tran*sitions in Surface Films. edited by J. G. Dash and J. Ruvalds (Plenum, New York, 1980).
- <sup>16</sup>J. Villain, in Ordering in Strongly Fluctuating Systems, edited by T. Riste (Plenum, New York, 1980), p. 214; M. B. Gordon and J. Villain, J. Phys. C 12, L151 (1979).
- <sup>17</sup>P. S. Schabes-Retchkiman and J. A. Venables (private communication).
- <sup>18</sup>D. M. Butler, Ph.D. thesis (University of Pittsburgh, 1979) (unpublished) and D. M. Butler, J. A. Litzinger, and G. A. Stewart, Phys. Rev. Lett. 44, 466 (1980).
- <sup>19</sup>A. D. Novaco and J. P. McTague, Phys. Rev. Lett. <u>38</u>, 1286 (1977) and J. Phys. (Paris) Colloq. <u>38</u>, C4-116 (1977).
- <sup>20</sup>C. G. Shaw, S. C. Fain, Jr., and M. D. Chinn, Phys. Rev. Lett. <u>41</u>, 955 (1978).
- <sup>21</sup>M. D. Chinn, Ph.D. dissertation (University of Washington, 1977) (unpublished).
- <sup>22</sup>J. P. McTague and A. D. Novaco, Phys. Rev. B <u>19</u>, 5299 (1979).