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A free-energy expression (differing in its symmetry from that of McMillan) is proposed tor
describing charge-density-wave (CDW) states in transition-metal dichalcogenides having

trigonal-prismatically coordinated layers (e.g. , 2H-TaSe2). An analysis of the single CDW state

is given. In disagreement with previous work, we find that, close to the triple point where the

normal, commensurate, and incommensurate phases coexist, the incommensurate-

commensurate transition is first order; the transition becomes second order only beyond a mul-

ticritical point which is located relatively far from the triple point. We obtain analytical solutions
for the order parameter in the single CD state at the triple point.

I. INTRODUCTION

Many layered transition-metal dichalcogenides ex-
hibit phase transitions to charge-density-wave (CDW)
states. " As the temperature is lowered in 2H-TaSe2,
for example, there is an apparently second-order
phase transition to an incommensurate charge-
density-wave phase at TO=122 K followed by a first-
order phase transition to a commensurate CDW state
at T~-90 K'. A Landau theory developed by Monc-
ton, Axe, and DiSalvo' accounts not only for the ex-
istence of the two successive phase transitions, but
also for the experimentally observed, second-
harmonic distortion of the fundamental CDW.

Independently, McMillan ' developed a somewhat
different form of Landau theory. It too allowed for
successive phase transitions from the normal to in-

commensurate and incommensurate to comrnensu-
rate phases. Furthermore, McMillan's expression for
the free energy turns out to be a particularly con-
venient starting point for an analysis of the incom-
mensurate-to-commensurate transition where a large
number of harmonics must be taken into account in
a Fourier-series representation of the incommensu-
rate CDW. The consequences of McMillan's free en-
ergy have been explored in a number of papers, in-
cluding Refs. 4—13.

In this paper, materials having the 2H-TaSe2 struc-
ture are studied. Section II sets forth a free energy
which is appropriate for a description of charge-
density-wave formation in such materials. This free
energy is different from that of McMillan' and takes
account of the fact that a given layer of the 2H-TaSeq
structure does not have a center of symmetry.

In attacking the problem of finding the CDW state
which minimizes the free energy, we restrict our at-
tention to the single charge-density-wave case where
the excess charge density in the CDW is a function
of a single Cartesian coordinate; in this case, our free

energy can be written in a form identical to that of
McMillan (aithough the relation between the order
parameter and the charge density is different). This
problem has been studied by a number of other au-
thors. ' The possible equilibrium states are the
normal state (the absence of a CDW), the commens-
urate CDW state, and the incommensurate CDW
state, and one problem addressed below is that of
finding the phase diagram, i.e., the problem of find-
ing which phase is stable at a given temperature and
for a given set of material parameters. Since the
determination of the phase boundaries defining the
normal-to-commensurate and the normal-to-
incommensurate phase transitions is a relatively sim-
ple matter and well understood, subsequent discus-
sion will focus on the commensurate-to-incommen-
surate transition.

McMillan' and Bak and Emery' found, in an ap-
proximation where only the phase (and not the am-
plitude) of the charge-density wave is allowed to vary
spatially, that the incommensurate phase near the
incommensurate-to-commensurate phase boundary
consists of a sequence of commensurate domains
separated by relatively well-defined domain walls
(called discommensurations by McMillan'). They
also found that, as the transition temperature was ap-
proached, the spacing between the discommensura-
tions tended to infinity, so that the transition was a
continuous (i.e., second-order) one. Sufficiently
close to the triple point (where the three phases
coexist), however, the amplitude variation of the
CDW becomes important. The spatial variation of
the amplitude (as well as the phase) was studied in
Refs, 8, 9, and 12. The conclusion was that the
above qualitative description of the incommensurate
phase, in particular the finding that the transition to
the commensurate phase is continuous, remained
correct.

Our work comes to a different conclusion, namely,
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that the incommensurate-to-commensurate transition
is first order near the triple point and that, as one
proceeds away from the triple point along the line of
equilibrium of the two phases, a multicritical point is
encountered past which the phase transition is second
order.

In Sec. III below, we derive the coupled, nonlinear,
differential equations which the amplitude and phase
of the order parameter must satisfy if they are such
as to make the free energy a minimum. Our method
is to solve these equations and then to calculate the
free energy using the solutions. This differs from the
approach of previous authors '~' who determined
the order parameter variationally using a truncated,
Fourier-series expansion. Section IV presents the
results of numerical solutions of the differential
equations for the amplitude and the phase of the or-
der parameter; near the triple point, both functions
display damped oscillations as one mo~es away from
the center of a discommensuration. In Sec. V, we
derive analytical solutions of the differential equa-
tions for the amplitude and the phase at the triple
point; these new results explain the observation
(made in Refs. 8 and 9) that the free energy at the
triple point is independent of the spacing between the
discommensurations. %'e use the analytical solutions
in Sec. VI to calculate the free energy and the
incommensurate-to-commensurate phase boundary
near the triple point. In Sec. VII, we determine
analytically the asymptotic behavior of the amplitude
and the phase, and verify the damped, oscillatory
behavior found numerically in Sec. IV. The interac-
tion between discommensurations is calculated in
Sec. VIII and the results are used to determine the
order of the transition. %'e show that the damped
oscillations in the amplitude and the phase give rise
to damped oscillations in the free energy as a func-
tion of the spacing between discommensurations,
with the consequence that the incommensurate-to-
commensurate transition is first order near the triple
point. %'e also show why our conclusions differ from
those of previous workers; note that the difference
between McMillan's free energy and ours is not the
source, for the two can be made identical for the sin-

gle CD%' case. Finally, in the Appendix, we show
how we were led to guesses for the two first integrals
of the differential equations; these first integrals were
the basis for the analytical solutions of Sec. V.

$p(k) = (27/) d x e ' "$p(x) (2.1)
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the 3 and 8 sheets are made up of chalcogen ions. ' '
The positions of the ions in the AcA layer (called
layer 1) and BcB layer (called layer 2) are sho~n pro-
jected onto a plane in Figs. 1(a) and 1(b), respective-
ly. Since the layers are bound together only by rela-
tively weak Van der %aals forces, ' it has become cus-
tomary to neglect the interaction between layers as a

first approximation when discussing charge-density-
wave formation. The two-dimensional space-group
symmetry of the layers shown in Figs. 1(a) and 1(b)
is P3m1. The free energy of a layer should be in-

variant with respect to all the operations of the space
group, and to ensure this, it is sufficient to test for
invariance with respect to the generators of the space
group; these are the elements of the translation

group, together with C3 (a rotation of —,m about the z

axis in Fig. 1) and m (a reflection in the xz plane in

Fig. 1).
Let the electronic charge density per unit area in

layer 1 be denoted by p(x) = pa(x) + gp(x), where

po is the charge density of the undistorted lattice and

5p is the additional charge density associated with the
charge-density wave. Electron-diffraction experi-
ments, ' for example, allow the detection of the
Fourier components Sp(k) of the charge density de-
fined by

II. SYMMETRY CONSIDERATIONS AND
THE FREE ENERGY

0
0

~ 0 ~ 0

In layered transition-metal dichalcogenide com-
pounds having the 2H-TaSe2 structure (other exam-
ples are 2H-NbSe~ and 2H-NbS2), hexagonal sheets
of iona are stacked in the sequence ~AcA Bc8~; the c
sheets are formed from transition-metal ions awhile

(b) LAYER 2
FIG. 1. Atomic positions in the two layers of the unit cell

of 2H-TaSe2 projected onto a plane; layers 1 and 2, with

stackings AcA and BcB, respectively, are shown in (a) and (b).
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The wave vectors in the first Brillouin zone charac-
terizing the charge-density wave in 2H-TaSe2 lie close
to the wave vectors +—6J, j -1,2, 3, where the GJ
are three of the six shortest reciprocal-lattice vectors
as shown in Fig. 2.

The order parameters P~(x), j = 1, 2, 3, are defined
by

y, (*)= f d'k' " "Bp(—,C, +k'I (2.2)

For this definition of the order parameter to be use-
ful, it is essential that the only Fourier components
of the charge density lying in the first Brillouin zone
which have an appreciable magnitude are the corn-
ponents Sp(+ —,GJ+k') which have lk'l « l 36~i;
the range of integration over k' in Eq. (2.2) is thus
over all k' such that lk'l & k, where the cutoff
k, « l —,Gzl. Under these circumstances, the order

parameter is a relatively slowly varying function of x
and the free-energy density in a Landau theory can
be expanded in powers of PJ(x) and its spatial
derivatives. The charge density Sp(x) is given in
terms of the order parameter Q~(x) by

(2.3)Sp(x) - X [exp(i—,
'
G, x)P~(x) +c.c.]

J
From Eqs. (2.1) and (2.2), the behavior of the or-

der parameter under the symmetry transformations
associated with the generators of the space group
P3m 1 can be deduced. Under a translation by a
Bravais-lattice translation vector 1,

FIG. 2. Portion of the two-dimensional reciprocal lattice
of a layer; Gi, G2, and G3 are three of the shortest recip-
rocal-lattice vectors.

Under C3

y, (x) -y, +)(C3 ' x)

where $4(x) =P~(x), while under m

ei(».P) -4l(». -J ) .

4i(».y) -43(», —z) .

43(».y) -42(». —
3 ) .

(2.5)

(2.6)

Fi =Fg+ i d x (2.7)

It is customary to express the free energy as an in-

tegral over a local free-energy density and to expand
the free-energy density in powers of the order param-
eter and its spatial derivatives. Thus, for layer 1, the
free energy is

QJ(x) exp( —i3 GJ 1)QJ(x —l ) (2.4) where

|
2 2

5~(x) =~ Xlyjl'+& X ' +S yg +t-" X
' -»)&2~3 D 4~1~2~3

'Qx([J Qxy

—g (~AJ'+~"AJ') + G X I 4&l'+ , If all A, l' +

—X(SAMAJ

4,+t4&+2+Sf 4g '4i+tfj+2) (2.8)

and F~ is the free energy of the normal state. Since
the free energy is real, A, B, C, 6, and K must be
real; 6 may be assumed real. The variables x][J and

x~ are the components of x parallel and perpendicu-
lar to GJ, respectively. The free energy Fi given by
Eqs. (2.7) and (2.8) is invariant with respect to the
symmetry transformations (2.4) —(2.6) associated with
the generators of the space group P3m1, as it must be.

It should be noted that there is no symmetry argu-
ment which requires the parameters D, E, and M to
be purely real, so that in general they must be as-
sumed to be complex numbers. Furthermore, it
should be noted that Eq. (2.7) is not invariant with
respect to an inversion of coordiriates, although if
D, E, and M were real, it would be; this lack of
inversion symmetry is to be expected since a given

I

layer of the 2H-TaSe2 structure does not have a
center of symmetry. [Under an inversion of coordi-
nates Sp(x) Sp( —x) and P&(x) Qz"( —x).]
McMillan's free energy [e.g. , Eq. (3) of Ref. (4)] is
invariant with respect to an inversion of coordinates
and therefore does not fully reflect the symmetry
properties of the 2H-TaSe2 structure. The reason for
this is that the parameters analogous to D, E, and M
in Ref. 4 are real.

Another difference between McMillan's work4 and
ours is the choice of the order parameters of the
problem. In Ref. 4, it is assumed that a part of the
free energy can be written as a functional of the
function a(r) [a(r) =Re[gt(r) +P&(r) +4|3(r) ] in
the notation of Ref. 4[; this appears to us to be un-
necessarily restrictive since cx{r) is only one of
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Sp(x) =2~&[&t
~
cos[ —, (Gx —&t&s)] (2.9)

for layer 1, and

several different independent linear combinations of
the order parameter which one might choose. The
free energy is assumed to be a functional of each of
the Pj's independently in our approach.

Allowing the parameters D, E, and M to be com-
plex is important because this distinguishes between
the two different layers in the unit cell of 2H-TaSe2.
Noting that, under an inversion of coordinates, the
lattice of layer 1 transforms into that of layer 2 (see
Fig. 1), and the order parameter Pj(x) transforms to
&1&&'(

—x), one can show that the free energy of layer 2

is obtained from that for layer 1 [Eqs. {2.7) and
(2.8)] by replacing the parameters D, E, and M by

their complex conjugates.
The significance of allowing the parameter E to be

complex [E= ]E~ exp(i&t&s)] is further illustrated by

considering a single-plane-wave commensurate struc-
ture defined by p2= $3-0, pi =const. The charge
density giving the minimum free energy then has the
form

then F will contain terms of the form

(2.14)
which have a highly nonlocal structure, and cannot
be written in the form of an integral of a local func-
tion of the &[&&'s having the form of Eq. (2.8). This
point is worthy of further discussion, but we do not
attempt such a discussion in this paper. A similar
problem has been considered previously' in connec-
tion with a phenomenological theory of the spin-
density-wave state of chromium, where it is shown
that the conventional form of the theory, in which

the free energy is written as a local functional of the
order parameter only, cannot account for the linear
polarization of the spin-density-wave state.

In this paper, the expansion of the free energy in

powers of the order parameter is terminated at terms
of fourth order, neglecting terms such as the terms in

~ &i&i] raised to the sixth power considered by Jackson
et al. They conclude that such terms can have a sig-
nificant effect on the nature of the phase diagram.

8p{x) = 2
~

&]&t ( cos [ —, ( Gx + d&s ) ] (2.10)

for layer 2. The nonzero value of qb~ clearly repre-
sents the effects of the different locations of the chal-

cogens in the two different layers.
Finally, we note that there appears to be a logical

inconsistency in the assumption that any given ther-
rnodynamic potential can be written as a local func-
tion of the &[&i's having the form of Eq. (2.8). For
example, let us begin by making the assumption that
the thermodynamic grand potential has the form

Q(T V pg Qj) QN(T V pr) +8n(r, V, &,yj)

(2.11)

where 80 may, for example, be assumed to have the
form of F —F~ given by Eqs. (2.7) and (2.8). The
Helmholtz free energy F can be derived if the grand
potential is known by using the formula F = 0+ p.N

and determining the chemical potential from the
solution of the equation N -—(80/{)p,). This gives

F( T, V, N;Pj) = Ft/( T, V, N) + 80 ( T, V, pp', Qj)

III. FREE ENERGY, DIFFERENTIAL EQUATIONS,
AND PHASE DIAGRAM FOR THE SINGLE

CHARGE-DENSITY-WA VE STATE

The single charge-density-wave state is the state
with 1'] ~0, $2=][II3=0, and pi a function of the
coordinate x alone. From Eqs. (2.7) and (2.8), the
free energy of the state is

1

F Fv+Ly A (&]&&( +B i +8
dx

—{Ep& +c.c.) + G ~&]&t~ dx, (3.1)

where L~ is the length of the sample in the y direc-
tion and the integral is over the length L of the sam-
ple in the x direction. To obtain an expression which
is more convenient for analysis, we write E as
)E( exp(i&I&E) and define

1

88n(T, v, I.,yj)
2 9N Qp,

(2.12)

i&=G&&l&(E( &'exp(3i&t&s), v= —A /G( ]
E2

y= ,'Bg'G/(E(', E, =-2L, (E['/{8G') .

correct to fourth order in the pj' s, where p,p is the
chemical potential for 1tlj=0, j =1,2, 3. It is now ap-
parent that if 80 contains a term of the form

Further, we take the unit of length to be 8 '
by re-

placing x by x8 and so obtain the expression

gn=~ XJ]y,~'u'x+ .
j

(2.13)
F = FIt/+ Fp f(x) dx (3.2)
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where the free-energy density f(x) is the dimension-
less function

05

1

f(x) =v(P('+y i—+1 P —Re(p') + —(p)4
dx 2

i

(3.3)

Our result [Eq. (3.2) plus Eq. (3.3)] for the free
energy of the single charge-density-wave state is
identical to that of McMillian; our order parameter P
is related to his @ by P = (—v) ' $ and our parame-
ters y and u to his P and Yby y= (P Y ) ' and
v = —(P Y) 2. We note, however, the presence of
the phase factor exp( —

3 i@~) in the above transforma-
1

tion from ltII~ to p; although the free energies can be
made equivalent, this factor has the consequence that
different charge densities are predicted by the two
theories. In the case of the triple charge-density-
wave state, it is not possible to make the two free en-
ergies equivalent.

The parameters v and y of the model depend on
the material and on the experimental conditions. %'e

make the usual assumptions of a Landau theory: the
coefficient v is proportional to T —To for tempera-
ture T near Tp (the temperature of the transition
between the normal and incommensurate phases)
and the coefficient y is greater than or equal to zero,

In the commensurate phase, the order parameter is
a complex constant g, = a, exp(i/, ); the free energy
ts

-0.5

-I 0

0.5 1,0 0

--50
A/CP

V

E -150
I

FIG. 3. Phase diagram as determined in this work. The
lines are the boundaries between the normal (N), com-
mensurate (C), and incommensurate (I) phases; first-order
transitions are shown as solid lines and second-order transi-
tions as dashed lines. The lines meet at the triple point
(TP). The C-l transition is first order near the triple point
and second order far from it; the changeover occurs at the
multicritical point (MCP).

the importance of including the second harmonic has
been stressed by Moncton, Axe, and DiSalvo. ' To
find the order parameter and the free energy near the
phase boundary, we assume that (u2~ is of order ~u&('

and we keep terms in the free energy only to order
~ u&

~
. The result is

f(x) dx =LS v+y(1 —5') u~

F, =Fg+FpLSf,

f, =( +y)a,' —a,'+ —,'a,' .

The optimal value of the amplitude is

(3.4)

(3.S)
+,[u+ y(1+28')'] iu, i'

—3 Re(ut'u2) + —,
'

(ut)4j (3.10)

a, = —,
' + —,

' [1 —16(v+y ——,')]' '; (3.6)
Minimization of this expression with respect to u~,

u2, and 5' gives, ' in our notation,

the optimal value of the phase is threefold degen-
erate:

3 3 ', (mOd2m )
2 4 (3.7)

Setting f, =0 gives the normal-commensurate phase
boundary as the line

1v+y-- =0
2 (3.8)

I

Q(x) = u~e'~ + u2e (3.9)

The normal state (a =0, qb indeterminate) is favored
1for v+ y ——, & 0 and the commensurate state is

favored for v + y —
2
(0; the transition is first order

and the value of a, at v+y —
2

=0 is a, =l. The1

boundary is shown in Fig. 3.
To examine the transition between the normal and

incommensurate states, we assume that the order
parameter has the form

u )
= [y( Tp —T)/(y ——,

'
) )'",

u2= —,(Tp T)/(y —
—,)—1 1

S'=1 ,
' (T, T)/(y -—,

'—),——
f(x) dx = Lgy(Tp —T)'/(y———,

'
)

(3.11)

where we have written v as T —To. Thus, for

y ) 2, there is a second-order transition at

(3.12)

Note that approximations made here are valid only
for y ) t and for ((Tp —T)/(y —T~)

~
&& 1. For

y & 2, the assumptions that (ut[ is of order (u~(

and that ~u& ~' is small are not valid; in this case, the
transition out of the normal state is first order.

The phase boundaries given by Eqs. (3.8) and
(3.12) intersect at the point y = —,, v =0. In Sec. VI,
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we obtain the previously unknown, analytical expres-
3 1

sion v+ —(y ——) -0 for the commensurate-
2 2

incommensurate phase boundary near this point
(which is a triple point).

To treat the incommensurate phase in the general
case, we write the order parameter as 1II(x)
=a(x)e'a"; the free-energy density f(x) in terms
of the amplitude a and the phase @ is, from Eq.
(3.3),

f(x) =y(a') +ya (@'—1) +ra —a COS3@+
2

a

(3.13)

From the results of the two-harmonic approximation
[Eq. (3.9)], the incommensurate phase just below the
normal-incommensurate boundary has a linear phase
[@(x)=@(0)+x j and a constant amplitude; this
form for p(x) minimizes the contributions to the
free energy from the first two terms in f(x) but also
results in a vanishing contribution from the
—a'cos3$ term. With decreasing temperature, it is

energetically favorable for both the amplitude and the
phase to deform to take advantage of the —a3cos3qh
term in f(x) at the expense of increased contribu-
tions from the first two. ' First, the regions where
cos3@= 1 expand relative to those where cos3@= —1

and second, the amplitude in the former regions is
larger than in the latter. The successive passages of
P(x) through favorable (cos3$ =1)and unfavorable
(cos3$ = —1) regions are the basic characteristic of
the incommensurate state and we use McMillan's
term "discommensuration" for the homogeneity asso-
ciated with a change of —,m in the phase.

In the absence of perturbations due to impurities,
etc. , the discommensurations will form a periodic ar-

ray, and we can focus attention on one discommen-
suration which we take to be centered at x =0; by
this we mean that $(0) = —w (the values w or —a1 5

3 3

could also have been chosen). The discommensura-
tion extends from x = —X1, where p =0, to x = X2,

2
where qb = —3m. In common with all previous work-

ers,"' we assume that the discomrnensuration is
"symmetric" about x =0 and therefore that X1=X2,
we denote the common value by X. More precisely,
we assume that qb(x) ——3m is antisymmetric about

1

x =0; consequently @"(0)=0 and, from Eq. (3.17)
below, a'(0) =0. Conditions at x = +X are obtained
in a similar fashion; in summary, the conditions on a
and $ are taken to be

a'( —X) =0, a'(0) =0, a'(X) =0
(3.14)

In the special case of a single discommensuration

(X = ~), the conditions are

a( —oo) =a„a'(0) =0, a(oo) =a,

@(~)= —, m
2

(3.1S)

—2ya qb" —4yaa'(P' —1) +3a sin3$=0 (3.17)

These equations possess the first integral

—y[(a')'+ (a $')'] + (y+ v) a' —a'cos3$+ —,a' = ta

(3.18)

where g is independent of x, but no further progress
in solving them can be made in the general case.
Apart from the trivial solutions a =0 for the normal
state and a -a„$=0mod( —, m) for the commensu-2

rate state, analytical solutions can be found in only
three cases:

i. In the limit v 0, near the normal-incommensurate

boundary. See the discussion of the two-harmonic
approximation in Sec. II.

ii. In the limit v —~. This is the region of validi-

ty of the phase-only approximation of McMillan, '
Bak and Emery, ' and Ohmi and Yamamoto. " The
amplitude has the constant value a, and the phase sa-
tisfies the sine-Gordon equation

2yqh" = 3a, sin3qb (3.19)

which has analytical solutions in the form of Jacobian
elliptic functions.

iii. At the triple point. The solutions for this case
are new with this work and are given in Sec. V below.
Note that these solutions cannot be obtained from
those of case i because the two-harmonic approxima-
tion breaks down at the triple point.

In general, the equations must be solved numeri-
cally; results of such calculations are given in Sec. IV.

Results for the phase diagram associated with the
free-energy expression of Eqs. (3.2) and (3.3) have
been obtained by Nakanishi and Shiba, by Jackson,
Lee, and Rice and by Yamamoto, Nakayama, and
Ohmi. " Our results, obtained in the following sec-
tions, are shown in Fig. 3. They are in agreement
with previous work ' for the order and location of
the normal-commensurate and normal-incommen-
surate transitions and for the location of the triple

point; also, our result for the location of the

To determine the optimal amplitude and phase, we
demand that the free energy be stationary with
respect to perturbations in these optimal functions
and so obtain the differential equations

—2ya" +2ya($' —1) +2ua —3a cos3$+2a =0

(3.16)
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phenomenon was also noted by Nakanishi and

Shiba —see their Fig. 3.
The amplitude is strongly dependent on position

near the triple point, varying there by a factor of 2

[see Eq. (5.6)], and weakly dependent on position far
from the triple point. On the other hand, $(x) is re-

latively insensitive to the value of y, the slope of @
1

at x =0 is 1.5 at y = —,increases to a maximum of
-1.63 at y =2.2 and then decreases to —2m

1

1 57 at y=~.
Perhaps the most surprising result is that, for a

large range of parameter values, not only the ampli-
tude but also the phase overshoots the asymptotic
value; in fact, for this range of values, a and $ oscil-
late about their asymptotic values. In Fig. 6, we have
plotted qh as a function of x with the scale of the ordi-
nate expanded by roughly a factor of 100 from that
of Fig. 5. The overshooting for y =1 and 2 is obvi-

ous, but the oscillations are revealed only by a fur-
ther expansion of the scale. This behavior was not
pointed out before; perhaps it was obscured by the
use, in all previous calculations, of Fourier series ex-
pansions. Because of numerical errors, it is not pos-
sible to place very good bounds on the range of
parameters for which the solutions are oscillatory. In
Sec. VII, we examine the asymptotic behavior of a
and qh, and find that both functions oscillate for y in

the range —, ( y & 6.155 [provided, of course, that v
1

is chosen so that Eq. (4.1) is satisfied].

For y larger than -6.155, $ increases monotoni-
cally from its value

3
m at the center of the discom-

mensuration to its value —, m at x = ~, but a

overshoots the value a„so that the two functions ap-
proach their limiting values from different sides.

V. ANALYTICAL SOLUTIONS
AT THE TRIFLE POINT

At the triple point (y = —, , v = 0), the differential

Eqs. (3.16) and (3.17) for the amplitude a and the
phase @ possess analytical solutions, as we shall now

show. In the Appendix, the following first integrals
of Eqs. (3.16) and (3.17) at the triple point are ob-
tained:

—= —a sin3@
da
dx

(5.1)

dye =1 —a cos3$
dx

(5.2)

Eliminating x from Eqs. (5.1) and (5.2) and solving
the resulting differential equation, we find the rela-
tion

cos3$ = (3Ca2 —1)/(2Ca') (5.3)

between a and $; C is a constant of integration. Us-
ing Eq. (5.3) to eliminate P from Eq. (5.1), we ob-
tain the following differential equation for y = a':

1 1/2
dP 3 9 2 3 1=2y ——y+ y-
dx 4 2C 4C2

(5.4)

d

(1 —y)(y ——')' '
4

the solution is

a (x}=1—2 3

4 cosh'( —', %3x)

(5.5)

(5.6)

in the region 0 «x ~ X ~here sin3@ is negative.
We investigate first the single discommensuration

characterized by Eqs. (3.15). Since a, =1 at the triple
point, the constant C is seen from Eq. (5.3) to be un-

ity when X=~. Eq. (5.4) becomes

Note that the amplitude varies by a factor of 2 over
the range x =0 to ~; a and $ increase monotonically
from their values

2
and

3
m at the center of the

1 1

discommensuration to the values 1 and 3
m at x =0o.

For a chain of discommensurations, we write Eq.
(5.4) as

dy

dx
(5.7)

z.oso I

2.0 3.0 4.0 5.0

where y1~y2 «y3, the values of these quantities
depend on C (and thereby on A') in a fashion to be
determined. The solutions y =—y1, y =—y2, and y =y3
of Eq. (5.7) are inadmissible, for they lead to
@=const. Solutions with y ~y3 are likewise inad-
missible for they have only one turning point and
hence cannot satisfy both a'(0) =0 and a'(X) =0.
We conclude that the desired solutions are bounded
by y1 and y2, i.e.,

FIG. 6. Curves of Fig. 5 expanded to show the behavior

of @(x) for large x. y2 (5.8)
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The quantities y], y2, and y3 are found as follows.
The condition cos3$ = —1 at x =0 gives y] = a]'
where a] is the only real and positive zero of

(5.9)f, (a) =2a'+3a' —1/C
4

Frora cos3$ =1, y2= a2 and y3 = a3, where a2 and a3
are the two real and positive zeros of

ft(a) =2a' —3a'+1/C (S.io)

yt =1 —2a+ —,a'+O(a')

ys
——1+2'+ —a +O(a )

(s.ii)

note that we must have C «1 for these zeros to be
real. Explicit results can be obtained in the limit

C 1, where

y] = —, ——,e'+ O(~ )
l 2 4

——( cos cos +4 +4 7TX 2 7fx
54 X X

(5.19)

where K(m) = F(—,srIm) is the complete elliptic in-

tegral of the first kind, with "parameter" m. The
solutions for a and $ in the region 0 ~x ~ X are
then given by Eqs. (5.17) and (5.3).

Although the results of the previous paragraph

hold for all X « —3m, they are not very illuminating.
l

To obtain some insight into the nature of the solu-

tions for closely spaced discommensurations, we ex-
amine the case C ~. The calculation can be done
in a number of ways. The direct method is to expand
about the trivial solutions (the atomic displacements

are zero) a =0, $= sr+x of—Eqs. (5.1) and (5.2).
The solutions are given parametrically as

a =(--( cos ——g cos] 2 Kx l 3 2mX

X 36 X

and a = [ —, (C —1)I'r, and also in the limit C

where

y, = z' —
—,
' z'+ —,'q'+ O (q'),

y2 = q2+ —,'q3+ —,
' q4+ O(q'),

y3= —, —2g ——,q +O(q )
9 2 4 4 6

(5.i2)

't

@=—m 1+—+ —/sin +—( sin
] X l ~ 7rx l 2 ~ 27fx

X) ' g 's

] 3 . ~X 4 . 2 Kx 23+—( sin ——sin +—+
27 g 3 y 4

(5.20)

and st-(3C) 'r'

Clearly y] =a (0) and y2=a'(X); xas a function
of y is then given by

2x = y, n . (5.13)~~

d
2.0

——9/4

Following Refs. 15 and 16, we make the substitution
3/2

w = —(y —y, —s)/(y —y, +s), (5.14)

where s =[(ys —yt)(yt —yl)]', which converts this

integral into a standard form of the elliptic integral of
the first kind:

Kx =
»&& &,&t

=F(8~m ), (515)- (1-r')'r'(r'-1+ m)' r'

where

I.O

—a/3

ll1 = 4s/K

sin'8 = (1 —w') /m

~=(» —~])'"+(X2—~])' '
(s.i6)

0.0

t( ) t(0) + 1 —dn(xx m)
1+dn(Kx m)

(5.17)

The inversion of Eq. (5.15) gives a in terms of a

1acobian elliptic function
0.0

1.0
I

2.0
I

3.0

—0.0
0.0

4.0

Equation (5.15) also gives the haIf-period X as

X = K-]Sr(m), (s.is)

FIG. '7. Quantities v], v2, y3, m, K, and X (the half-

period) as functions of the parameter C. The values of the
various quantities at C ~ are given at the right-hand side
of the figure.
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in terms of the quantity ( defined by

X =-,' w[1+-,'&'+O(r')];

g is related to C by

3Cg'=1+ —'„' g2+O(g'} .

(5.21)

(5.22)

other quantities we have

s -—', [1 ——", p'+ O ( p') ]

K =43[1 ——', p'+ O(p')]

m = 1 —"
, —p'+ 0 ( p')

K (m) ——, ln(9/p')

C —1 =3"-27'-2~3 x

(5.23)

These results show how the amplitudes of the lower
harmonics change as the discomrnensurations be-
come more widely separated.

The quantities y), y2, y3, X, K, and mare given as
functions of C by Fig. 7; all vary monotonically as C
increases from 1 to ~. X approaches —3' as C1

that is, there are no solutions of the differential
1

equations when X (—3n. Expressions for y), y2, and

ys in the limit C 1 are given by Eqs. (5.11); for the

VI. FREE ENERGY NEAR THE TRIPLE POINT

The analytical results of Sec. V for the amplitude
and the phase at the triple point allow us to obtain
analytical results for the free energy near the triple
point.

We expand a and $ as

a =ap+a), @=Qp+qb) (6.1)

about the solutions ap and @p at the triple point. The
free energy of a chain of discommensurations is then

X

F=F, +2NFp dx [[3apap +apa~+ap2(pp —1)gt]'+u(ap2 —1)+(y ——)[ap2(gp —1) +(ap) —ll] (6.2)

The expression reduces to

F =F, +2NFp f dx [u+
2 (y —

&
)](ap —1)

(y--)-{C-1)1 1

2 2

C
~ (6.3)

To evaluate the free energy, we use Eq. {5.7) to
write the only nontrivial integral in Eq. (6.3) as

J [(y —yt)(y —yt)(y —ys) ]'"
(6.4)

a direct calculation starting from the result Eq. {5.17)
appears intractable. A tedious evaluation using the
transformations of Refs. 15 and 16 results in

ap dx = —, ( y, +ys) x —
—, ~E(8]m )f 1 1

+-(~-»+»- ~,1 ) d
2 dx

(6.5)

where E(8~ m ) is the elliptic integral of the second

to first order in v, y —2, a)and $)', note that a)and

@) are of first order in v and y —2. The first of the

three terms in the integrand vanishes on integration
because of the conditions ap -0 and $) =0 at both
x =0 and x = X; the third term can be transformed
with the help of Eqs. (5.1) and {5.2) and

ap = ap cos3@p+ 3 (aQaQ )

F = F, +2NFp[u+ —, (y —
z ) ](——,J3) (6.7)

Hence the commensurate phase is favored if
v+ —(y ——, ) & 0 and the incommensurate phase if3 1

3 1v+ —,(y ——, ) & 0, at least for a single discommen-

suration. In the other limit of maximally packed
discommensurations (X = —,m), the free energy is

F = F, —FQL 5[v+ (y ——,
'

) j

Since, to first order in v and (y ——,},1

F, = F, +F,L, 5[u+(y ,
' )], -—

(6.S)

(6.9)

Eq. (6.8) reduces to F = F~, that is, the transition to

kind; the other quantities are defined in Sec. V. The
free energy is therefore

F = F, + 2NFp [[u+ —, (y —, )]—
x [ ( —,y, + —,y, —1)X —, xE ( m) ]—) 1 1

+ (y —
—, ) —,X(C —1)/C], (6.6)

where E(m) = E(
~

rr]m) is the complete elliptic in-

tegral of the second kind, with "parameter" m, as de-
fined in Refs. 15 and 16; again, xX =K(m). We
emphasize that our result Eq. (6.6) is valid only to
first order in u and (y ——,).

Examining first the case of a single discomrnen-
suration, we find
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the normal state takes places when the half-period X
of the discommensuration chain reaches the value

1

3

To describe the free energy for intermediate spac-

ings of the discommensurations, we define

g, = [ —,
' (y, +y3) —1]X—,

'
KE(—m)

g2
———X(C —1)/C

(6.io)

(6.11)

g1 is negative for all C and increases in magnitude
monotonically with C; g2 vanishes at C =1 and in-

creases rnonotonically with C; values are given in

Fig. 8.
These results show that the incommensurate

phase, for any L, is unstable below the line

u+ —(y ——, ) =03 1

2 2
(6.12)

u+g(y ——,) =0,1 (6.i3)

where

g =
2

+g2/g&=3 (6.14)

for, in this case, the first term inside the curly brack-
et in Eq. (6.6) is greater than zero whereas the

1
second is non-negative (because y ~

2
). Equation

(6.12) therefore gives the commensurate-incommen-
surate transition line in the neighborhood of the tri-

ple point. To demonstrate the result (6.12) explicitly,
we set F = F, in Eq (6.6) and thereby obtain the con-

dition

as shown in Fig. 8, g decreases monotonically from —,

at C =1 to 1.0 at C =~, and the lowest line is ob-
tained for a single discornmensuration.

Keeping y and v fixed, we first minimize the free
energy with respect to X This optimal value of X is

found to increase monotonically from
3

m to ~ as v

decreases from 0 to ——,(y —
—, ) with y fixed. Con-3 1

sequently, both the normal-incommensurate and
incommensurate-commensurate transitions are
predicted to be continuous: If y is fixed at some

1

value greater than —, and v is varied, the normal state

is stable for v )0; for v =0—,the discommensura-
tions are maximally packed, but the normal-incom-
mensurate transition is second order because the am-
plitude of the charge-density wave is zero; as v de-
creases further, the discommensurations spread out
in a continuous manner until, at v+ —,(y ——, ) =0+,
there is only one discommensuration; for
u+ —, (y ——, ) (0, the commensurate phase is stable.

3 1

The prediction of Eq. (6.6) is therefore that the
incommensurate-commensurate transition is of
second order near the triple point. This prediction is,
however, incorrect, for we show in Sec. VIII that the
transition is of first order in this region. Equation
(6.6) fails in this respect because it neglects higher-
order terms which, unfortunately, cannot be calculat-
ed with the method of this section but which are cru-
cial for determining the order of the transition; as we
shall see, however, the transition becomes more
nearly second order as the triple point is approached.
These higher-order corrections to Eq. (6.6) will not
change the slope of the phase boundary near the tri-

ple point, however, and Eq, (6.12) is correct.

VII. ASYMPTOTIC BEHAVIOR OF a AND qb

FOR A SINGLE DISCOMMENSURATION

I.O-
/. 0

In this section, we determine the manner in which

a and Q approach their limiting values far from the
center of a single discornmensuration. The results
verify the oscillatory behavior found in the numerical
solutions of the differential Eqs. (3.16) and (3.17),
and are used in Sec. VIII to determine the asymptotic
interaction of discornmensurations.

We take the single discornmensuration to be cen-
tered at x =0 and apply the conditions of Eqs. (3.15).
On defining

0.0
I.O 2.0

I

3.0 4.0 a(x) =a, +a(x)

FIG. 8. Quantities —g1, g2, and g as functions of the

parameter C. The values at C. = ~ are given at the right-

hand side of the figure.
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we find the linearized equations satisfied by a and @:

—2ya —4ya, qb + (2y+2v —6a, +6a, )a =0, (7.2)

where a=o.t+io.2 is the root for Eq. (7.6) with posi-
tive real and imaginary parts. The relative amplitude
and phase are given by Eq. (7.5) and

—2ya, qb +4ya, a +9a,3@=0 (7.3) 6/ttt =
f
8 f/[ tp

f exp( i ttr, —t tits) (7.12)

These equations are valid for both x +~ and
x —ee; because a(x) is symmetric about x =0

1
whereas $(x) —

3
vr is antisymmetric, we need exam-

ine only the former case. Inspection shows that the
decay constants of a and P must be identical; substi-
tution of

a =Qe

$=4e
gives, for the ratio of the amplitudes,

9a,' —2ya, o, '
4yu

(7.4)

(7.5)

The results Eqs. (7.5) and (7.6) are valid for all

values of y and v but are of interest to us only for
those pairs such that the free energy of the state con-
taining a single discommensuration equals the free
energy of the commensurate state (and is less than
the free energy of the normal state). Near the triple

I
point (y = —, ), the discriminant Q of the above equa-

tion (viewed as a quadratic equation in yo. ') is nega-
tive; to lowest order,

a =3+2i(—6v)' (7.7)

and, for the mutual decay constant o., the quartic
equation

( ya ) + (6y + 2 U —6a, ) ( yo. )

+ —a, ( —4y —4v+3a, ) =0 . (7.6)
9

the absolute amplitudes and phases can be deter-
mined only from the numerical solutions of the dif-
ferential equations.

In the case y ( y, both values of n are real and,
as must be the case, both are found to be positive;
the desired decay constant is the positive root of the
smaller value of o. . The ratio of the amplitudes, as
determined from Eq. (7.5), is negative for all y & y,
in agreement with the numerical result that a and @
approach their limiting values from opposite sides.

The real and imaginary parts of the decay constant
are given as functions of y in Fig. 9. The absolute

I
value of the imaginary part is zero for y = —,, in-

creases to a maximum of —1.0 at y —2 and then de-
creases to zero at y —6.155; the "half-period" of the
osciilations, 7r/~)ma~, is found to be in good agree-
ment with that estimated from the numerical solu-
tions of Sec. IV —for y =2, the values are 3.142 and
3.125 +0.031, respectively. For y & 6.155, the ima-

ginary part is zero and there are two, real decay
constants. The smaller decay constant gradually de-

3
creases to the value

4
m of the phase-only discom-

mensuration as y ~. The larger decay constant in-

creases without limit as y ~, but no significance
can be attached to this result, for the correction to
the leading term is proportional to the square of the
leading term as soon as the larger decay constant is
more than twice the smaller. There is no suggestion
of a rapidly varying term in the numerical solutions
of the differential equations (see Figs. 4 and 5).

The discriminant remains negative until y = y
=6.155+0.005, at which point it vanishes; it is posi-
tive for y ) y.' I 0-

&&0, —, &y&y,1

X) &0, y&y

(7.8)

(7.9)

Note that, in agreement with the results of Sec. V,
the decay is purely exponential at the triple point.

In the case —, ( y & y, both values of a' are com-

plex and hence a and $ display damped oscillations
as they approach their limiting values, in agreement
with the numerical results. The asymptotic behavior
1S

a = —,'ge +c.c.= ~g~ exp( —a,x) cos(a,x —ter, )

(7.10)

y = —,
' ee "+c.c.= ~e~ exp( —a,x) cos(a,x —tit~)

(7.11)

E
0.5-

6.0
.-6/

/ao /o05'
i r s I s a s I

2.0 P.0 6/6 4.0
Re a

8 7 9
5.0

FIG. 9. Real and imaginary parts of the decay constants

as functions of y. For
2

& y & 6.155, there are two com-

plex decay constants given by ttea +i ~trna(; for v P 6.155,
there are two real decay constants.
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VIII. ASYMPTOTIC INTERACTION
OF DISCOMMENSURATIONS

The calculation of the asymptotic interaction of
discommensurations proceeds along lines familiar
from the theory of superconductivity" ' (where one
calculates the interaction of vortices). One first
determines pairs of parameters (y, v) such that

F„„,],(y, v), the free energy of the state containing a
single discommensuration, is equal to F,(y, v), the
free energy of the commensurate state. For a given
pair of parameter values, one then calculates
F,h„„(y, v) —F,(y, v), the free energy of the state
containing a chain of discommensurations relative to
the free energy of the commensurate state; to obtain
analytical results, it is necessary to assume that the
discommensurations are widely separated. If the
difference is negative, the chain of discommensura-
tions has a lower free energy than a single discom-
mensuration, and the transition from the commensu-
rate state to the incommensurate state is discontinu-
ous (i.e, , of first order); the interaction is called at-
tractive. If it is positive, the transition is of second
order and the interaction is called repulsive. One can
view this procedure as a calculation of the interaction
energy F;„,(y, v) defined by

F,h, ;„(y, v) = F, (y, v) +%[F,;„p~,(y, v) —F,(y, v)]

+F,„,(y, v),
for the second term on the right-hand side vanishes.

The free energy of the chain of discommensura-
tions is

X

Fchain = Fc + NFp [f(x;y, v) fc(y, v) ] dx

(8.1)

where f and f, are given by Eqs. (3.13) and (3.5), N

is the number of discommensurations in the sample
and 2X is the length of each; we have focused atten-
tion on one discommensuration —the conditions of
Eqs. (3.14) apply.

By assumption, the discommensurations of the
chain are widely separated (i.e., X )& 1) so that,
within each, the functions a and @ (the latter

2
mod —,m) are very nearly equal to the corresponding
functions ap and Pp for a single discommensuration,
centered at x =0, for which the conditions (3.15) ap-
ply. We therefore write

a (x) = ap(x) + a] (x)

d (x) = y (x) + y, (x)
(8.2)

.f(x) =.fp(x) +.f)(x) +.f2(x) + (8.3)

where the subscripts denote the orders of the terms;
fp(x) is f (x) with a and Q replaced by ap and $p.

Now, in the general case, we have no analytical
results for even the zero-order functions ap and @p,
much less the perturbations a] and @]. We therefore
go through a sequence of manipulations whose pur-
pose is to express the integral in Eq. (8.1) as a quan-
tity evaluated at the ends (x =+X) of the discom-
mensuration, so that both sets of functions are re-
quired only in a region far from the center of all

discommensurations; only in such a region can
analytical results be obtained.

The first-order term f~(x) is easily transformed to

f)(x) =2y[apa&+ap (&jhow 1)@]]' (8.4)

with the help of the differential Eqs. (3.16) and
(3.1'7) satisfied by ap and Pp. To transform the
second-order term f2(x), the linearized equations for
a~ and $~

and expand f(x) in the perturbations a
~ and $] ~ For

a reason to become clear later, it is necessary to go to
second order:

—2ya~" +[2y(gp —1) +2v —6apcos3gp+6ap ]a]+4yap(gp 1)$]+(9ap sin3$p)$) =0 (8.5)

—2yap PI' —4yapap@~+(9ap cos3@p)pt —4yap(gp —1)a~' + [—4y[ap(gp —1)]'+9ap sin3$p]a~ =0, (8.6)

are sufficient, for the corrections to Eqs. (8.5) and
(8.6) contribute only to f3 and higher-order terms.
Multiplying the left-hand sides of Eqs. (8.5) and

1 1(8.6) by ——,a~ and ——,@] respectively, and adding

the results to our expression for f2, we obtain an ex-
pression of the desired form

f2(x) = y[a(a~' +ap tjb]@& +2ap(gp 1)a]@]]'

It remains to transform the integral

(8.8)

The functions ap and $p are therefore required only
in the asymptotic regions x & —X and x & X. We

N ow, by assumption, y and v are such that

[ fp(x) —f, ] dx =0,
and hence

fX -X
[ fp(x) —f, ) dx = — [ fp(x) —f, ] dx

—I [ J'p(x) —f, ] dx

(s.9)
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substitute aa(x) = a, + a (x) in both integrals,

$p(x) =$(x) in the first, and $p(x) = —,m+P(x) in

the second; in this calculation as well, it is necessary
to retain second-order terms. The zero-order term
cancels against the term f„and the first-order term
reduces to —2ya,2$' because of the differential equa-
tion satisfied by ap. For the reduction of the
second-order term, it is sufficient to use the linear-
ized Eqs. (7.2) and (7.3) for a and P. Multiplying

the left-hand sides of Eqs. (7.2) and (7.3) by —
2

a
]

and —2@, respectively, and adding the results to our

expression for the second-order term, we find the
following expression for fp(x) —f, in the asymptotic
regions:

fp(x) —f, = y( —2a, P+ aa '+ a, @qb' —2a, a @)'

(8.10)

a (x) = ap(x) + ap(x —2X}+8,

$(x) = $p(x) + qbp(x —2X ) + B&

(8.14)

(8.15)

The requirement that qb(X) =
3

m gives B~=0, since
2

Qa(X) +pa( —X) = —,w. To obtain 8, we note that,=2
in the region of validity of Eqs. (8.14) and (8.15),
Eqs. (8.5) and (8.6) become

higher-order terms; this is the reason that it was
necessary to carry out the calculations to second or-
der.

To obtain the perturbations, we note that, to lowest
order [which is all that is needed in Eq. {8.13)], a
and qb must be constants plus linear superpositions
(with unit coefficients) of the solutions for the two
single discommensurations on either side; that is, for
Ix —XI «X,

On combining our results and using

a(+~) =0, $(+~) =0,
we arrive at an expression of the desired form

F~h~in Fi = y NFo[2aoa ~
+ 2ao {Qo 1 }$i

(8.11)

—2ya]" —4ya, g) + (2y + 2m —6a, +6a,2) a] =0

—2ya, '(tl~'+4ya, a~' +9a, @~ =0
(8.16)

(8.17)

which are identical to Eqs. (7.2) and (7.3) for a and

$. Hence B, = —a, and the perturbations are

+ a ~a ~' + ap @~/] + 2ap(fp —1)a ~ P]

—2a, Q+aa'+a, '$$' —2a, ag]«x

(8.12)

a~(x) =aa(x —2X}—a,

d, (x}= yo(x —2X)

These results are nothing but the obvious

(8.18)

(8.19)

to second order in a~, $~, a, and $. This cumber-
some expression can be reduced by (i) noting that
P(+X) = —&~{+X),(ii) replacing aa by a, +a, and
(iii) using the fact that ap, a~, Pp, and $~ are even
functions of x whereas ap, a~', and $~ are odd; to
second order in small quantities,

F h;n F = 2yNFp((a + a~) a'+ (a'+ a~' )a~
—2a, (a + a ])@) + a,'(@'+@))y)]

(8.13)

where all quantities are evaluated at x = X. Note that
the two first-order terms have combined to yield

a (x) —a, = [ap(x} —a, ] + (ap(x —2X) —a, ]

y(x) —, rr = [$9—(x)——, w] + [ya(x —2X) —0]

Our result Eq. (8.13) then reduces to, since
F, = F„ng]„

Fchain Fsing]e = 4y NFp(a 'a —ac 4 4 + 2aca 4 )

(8.20)

In the case —, ( y ( y, where a and $ display

damped oscillations, the free energy of the chain is
obtain by substitution of Eqs. (7.10) and (7.11) into
Eq. (8.20):

= (—eQ + aa,'4'+2a, 84}e +c.c.
yNFp

an alternate form is
1

Fchaiq Fsingle
exp( —2o.~X) —a —+a, a +2a, —cos(2o.2X + p)Q, 2 8

2,~F, IC I'

(8.21a)

(8.21b)

where a~ =Rea, aq = IfmuI, and P is an undetermined phase. The free-energy difference is an exponentially
damped, oscillatory function of X, the interaction is attractive (because F,h„n is less than F„n,], for some finite
values of X) and the incommensurate-commensurate transition is of first order.

It is of interest to examine the above results in the vicinity of the triple point where simple results can be ob-
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tained. To the order given,

J3, ( 2)i
8/4 = J3 —2i( —2u)'i',
—a(Q/4) +g a+2u~8/4=6i( —2v)t t

(8.22)

-7.0- 7= 125/81

- -7.0 (NS)

From the analytical solutions of Eqs. (5.3) and (5.6),
we obtain for a single discomrnensuration (C =1) at
the triple point the result

--8.0 (NS)

(8.23)

which verifies that at = J3 and gives, to a sufficient

approximation, 4 = ——,J3. From Eq. (8.21a), we

obtain

-9.0
I.o

S.55

I

0.5
l

3 X

--9.0 (Ns)

0.0

F,t,„„—F„„sJ,=
&

9NFa( —2v)'i e
1

x sin[2( —2v)' 'X] (8.24)

FIG. 10. Free energy relative to the normal state vs
1 125—n. /X for y =—and three values of v. The ordinates at
3 81

the right-hand side of the graph are those of Ref. 8.

On the other hand, the analytical result Eq. (6.6)
reduces to the limit X && 1 to

~chain Fsinlie 1 8 &+Fo+e—2JÃX (8.25)

on the line v+ —2(y ——,) =0 where F„n,I, = F, to first3 1

order. The results Eqs. (8.24) and (8.25) are identi-

cal to leading order; comparison of them provides in-

sight into the nature of the expansion in Sec. VI and

shows why the method used there failed to reveal the
first-order transition.

To illustrate our results, we have plotted, in Figs.
10—12, the free energy [calculated from Eqs. (3.2)
and (3.13) using the solutions of Eqs. (3.16) and

(3.1.7) with the boundary conditions (3.14)l as a

function of the half-period X of the discommensura-
tion chain. Because our results differ from those of
previous workers, we have chosen to make a direct
comparison with some published curves. In Fig. 10,
we have plotted the free energy (relative to the nor-

mal state) versus —, m/X (this quantity is identical to

the quantity 5 of Ref. 8) for y =
8, and for three
125

values of v, the parameters were chosen so that Fig.
10 is directly comparable (apart from a one-part-in-80

change in the scale of the ordinate) with Fig. 1 of
Ref. 8. There is no evidence for oscillations in the
free energy. By plotting the free energy relative to
the commensurate state (rather than the normal
state), one can achieve a 20-fold change in the scale
of ordinate for the same values of v, on this scale,
there is evidence for fine structure in the curves. To
provide convincing evidence for the structure, we

have plotted in Fig. 11 the free energy versus —,m/X

for three different values of v., the scale of the ordi-
nate differs by a factor of 200 from that of Fig. 10.
Although the oscillations are not visible, there is

clearly a local minimum in the curve for v- —3.48.

0.008

7 = l25/SI

0.004-

dO

L
0

I

U

-0.004-

-0.008
1.0

l

0.5 0

FIG. 11. Free energy relative to the commensurate state
1 125

versus —m/X for y =—and three values of v more closed
3 81

space than those of Fig. 10.
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Finally, in Fig. 12 we have plotted the free energy for
even more closely spaced values of v, the scale of the
ordinate differs from that of Fig. 10 by a factor of
10'. It is clear that the incommensurate-commensu-

125
rate transition for y» takes place not at

v- —3.47069, for which value the free energy
of the state containing a single discommensuration
equals that of the commensurate state, but rather at
e = —3.471 86 + 0.00003.

We have made calculations similar to those
described in the previous paragraph for the additional
cases y-0.55, 1.0, 2.0, 4.0, and 6.0. Again only
small differences between the two critical values of v
were found; the relative difference had a maximum
value of five parts in 10 and decreased toward both
the triple point and the multicritical point.

The attractive interaction clearly has a negligible
consequence with respect to the location of the
incommensurate-to-commensurate phase boundary
and one might incorrectly conclude that the transi-
tion, though of first order, is "weakly" so. In fact, for
y =2, the half-period X at the transition is only twice
its minimum value of —,m. Another indication that

the transition should not be viewed as weakly first-
order (except near the triple point and near the mul-
ticritical point) is that the change in the slope of the
free energy at the transition is not small: For y=2,

8 F-Fc
8 F L

-124

which is to be compared with

F, —Fg

9v FpL8

that is, the discontinuity in the entropy at the transi-
tion is not small compared to the entropy in the com-
mensurate state (relative to the normal state) just

0.001-

F —Fchain single 24gy 8 + 2
4yWF, [d i'

t

+ac e8

(8.26)

We find, on evaluating the square bracket in Eq.
(8.26) for (y, v) values such that F„„~i,= F„ that it is

positive for all y & y (though it approaches zero for

y y). Hence F,h„„&F„„gi„the interaction is

repulsive and the incommensurate-commensurate
transition is second order.

These conclusions apply, of course, only to widely

separated discommensurations and there is the possi-
bility that the free-energy difference, while positive
for large separations, might vanish for small separa-
tions. Check calculations made for y =6.16 and
100.0 show no such behavior, however, and we con-
clude that the transition is second order for all y & y.

below the transition.
The additional calculations referred to above pro-

vide some confirmation for one's expectation that the
half-period X at the transition increases to infinity as
both the triple point and the multicritical point are
approached, so that the transition becomes more
nearly second order in these limits. For y =0.55,
1.0, —„,2.0, 4.0, and 6.0, the values of L are 4.59,
2.24, 2.05, 2.04, 2.46, and 5.4, respectively.

We should point out that the attractive interaction
found here comes about in a way quite different from
that found in the theory of superconductivity (where
the interaction is attractive at T = T, for type-I ma-
terials and, for T & T„ for some type-II materials as
well' ). In the latter case, the free-energy expression
involves two terms, a positive term involving the su-
perfluid velocity and a negative term involving the
order parameter. Near the transition temperature,
both terms decay in a purely exponential manner but
with different decay lengths; the sign of the free en-
ergy therefore depends on relative magnitudes of the
decay lengths. In contrast, the attractive interaction
found here is due entirely to the oscillatory behavior
of the amplitude and the phase.

In the other case y & y, the decay length o. is real
and Eq. (8.20) becomes

a 0-
~a

~47

ta.

-0.OOI—
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FIG. 12. Free energy relative to the commensurate state
125

~s X for y- —and 8) close to —3.47.
81

The procedure used to obtain the first integrals
Eqs. (5.1) and (5.2) of Eqs. (3.16) and (3.17) may be
applicable to other problems and so we provide an
outline of it.



4148 A. E. JACOBS AND M. B. WALKER

%'e assume that the following statements hold at
the triple point, whatever the separation between the
discommensurations'. (i} there exist first integrals of
the form

a' —U(a, qb} =0

y'- V(a, y) =0, (A2)

—a'cos3d + —,
' a'] dx (A3)

(ii) the free-energy difference vanishes, (iii) the
free-energy difference can be written in a form such
that the integrand vanishes for all x, and (iv) in the
latter form, the integrand is a function times the
left-hand side of one of Eqs. (A1) and (A2).

At the triple point, the free-energy expression Eqs.
(3.2) and (3.13), the dif'ferential Eqs. (3.16) and
(3.17) and the first integral Eq. (3.18) reduce to

X

F —F, = WF, [-'(a') 2+ -a2(@'-1}'

the boundary condition a '(+X ) =0. %e thus obtain

F —F, = NFa [—rua (@'—1) ——, (Scu —1)a cos3$-X 2

+ —(3' —l)a' —rug] dx
2

As a trial expression for @', we therefore take

(A8)

g'= I ——, (5 —cu ')a cos3$+ —, (3 —cu ')a' —g/a'

(A9)

To determine a trial expression for a', we can sub-
stitute Eq. (A9) into the first integral [Eq. (A6)];
another method is to sub'stitute Eq. (A9} into Eq,
(AS). So that the two expressions have the same

1

form, it is necessary to choose ~ =
3 and to assume

that g =0. We are thus led to the trial expressions
given by Eqs. (5.1) and (5.2).

Substitution of Eqs. (5.1) and (S.2) into Eqs. {A4}
and {AS) verifies that they are first integrals. More-
over, the conditions

—a" +a(@'—1)2 —3a'cos3$+2a =0

—a2qb" —-2aa'(P' —1) +3a3sin3& =0

——'(a')' ——'a'(y')'+ —a' —a'cos3&+ —'a" = 'JJ
2 2 2 2

(A4)

(AS)

(A6)

a'(0}=a'(X) =a'( —X) =0

are, because of the structure of Eq. (5.1), conse-
quences of the conditions

y(-X}=0, y(O)= —,'~, y(X)= —', ~;

To eliminate the quadratic terms in the derivatives
from Eq. (A3), we write

(a') 2 = o)(a') 2 —(1 —o)}aa" + ( l —cu }(aa') '
. (A7}

where cu is to be determined. In the first term in Eq.
(A7) we use Eq. (A6) and in the second we use Eq.
(A4}; the third term integrates to zero by virtue of

hence Eqs. (S.l) and (5.2) have the full generality of
Eqs. (A4) and (A5).

ln conclusion, we point out that the constant g in

the first integral [Eq. (A6)] is zero, as can be verified
by substitution. Hence the free energies of the in-

commensurate and commensurate states are equal at
the triple point, whatever the value of 2X. the dis-
tance between discommensurations.
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