
PHYSICAL REVIEW B VOLUME 21, NUMBER 9 1 MAY 1980

Calculations of the dynamic susceptibility of nickel and iron

J. F. Cooke, J. W. Lynn,
"

and H. L. Davis
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 3'7830

(Received 26 October 1979)

The spin dynamics of the transition-metal ferromagnets nickel and iron are investigated within

the framework of the itinerant theory of magnetism. The theory is developed in terms of a

generalized random-phase approximation which incorporates the band and wave-vector depen-
dence of relevant interaction matrix elements. In contrast to constant-matrix-element approxi-
mations, this formalism generates band- and wave-vector-dependent splitting of the energy
bands, possible "optical" spin-wave modes, and a different interpretation of the spin-wave disap-

pearance phenomena. First-principles numerical calculations of the neutron scattering intensity
based on this model have been found to be in excellent agreement with experiments. Recent
neutron scattering experiments have also verified the existence of an "optical" spin-wave branch
predicted by this theory.

I. INTRODUCTION

The itinerant (or band) model of magnetism is
known to provide a good qualitative description of
the one-electron properties of transition-metal mag-
nets. For example, well-defined Fermi surfaces,
nonintegral magnetic moments, the known d-elec-
tron contribution to the specfic heat, high-field sus-
ceptibility, and x-ray photoemission are all consistent
with the concept of electrons occupying energy bands
and, consequently, free to move through the lattice. '

The development of a reasonably accurate theory
which is also amenable to numerical investigation is,
however, a very difficult task. In addition to the
well-known problems associated with conventional
energy-band theory, the complicated exchange and
correlation effects between opposite-spin electrons
must be treated since they are of fundamental impor-
tance to the itinerant theory of magnetism. It is not
too surprising, therefore, that the vast majority of
work on the itinerant model has been in the area of
developing theories and techniques for calculating
one-electron energies and wave functions.

In order to test the results of these "first-principles"
calculations comparisons are usually made with ex-
perimental results relating to one-electron properties
of the magnet. While these comparisons are certainly
useful in testing the validity of the theory a more de-
tailed and stringent criterion is to test whether the
theory can provide a satisfactory description of the
spin dynamics, i.e., the dynamic susceptibility
X(q, co). This function contains all of the relevant
information about the dynamics of the spin system
and can be directly measured by inelastic neutron
scattering experiments.

Such neutron experiments have provided direct in-
formation about the elementary excitations of mag-
netic systems, the spin waves. Of particular interest

for itinerant magnets is the qualitative prediction that
spin waves may not exist over the full Brillouin
zone. ' The subsequent observation of the disappear-
ance of the spin-wave mode in both ferromagnetic
nickel' and iron not only verified this unique predic-
tion of the itinerant model but has provided the
stimulus to perform first-principles calculations.
Such calculations can provide a sensitive test of the
itinerant formalism because the behavior of the
spin-wave dispersion curve as well as the disappear-
ance phenomenon depend directly on the details of
band structure.

Realistic numerical calculations of X(q, eo) are not
easy to carry out since they need as input the elec-
tronic energy bands, wave functions, and relevant in-
teraction matrix elements. Several attempts have
been made to calculate X(q, ~) by employing certain
simplifying assumptions. The first calculation of this
type was performed by Thompson' using a param-
etrized single-parabolic-band description for nickel's
electronic structure. This model proved inadequate
because of the oversimplification of the band struc-
ture. The first attempt to use realistic energy bands
for nickel in the calculation of its susceptibility was
undertaken by Lowde and Windsor. They calculated
X(q, ru) using the random-phase approximation
(RPA) and rigidly spin-split bands. Again the agree-
ment between theory and experiment was not very
good.

It is important to note here that Lowde and
Windsor's RPA calculations were based on matrix-
element approximations which we feel are not ap-
propriate for transition-metal systems. Their approxi-
mation neglected all of the band and wave-vector
dependence of relevant matrix elements which, as
will be shown belo~, significantly affects the calcula-
tion. Several years ago Cooke' suggested an approxi-
mate way to include the band and wave-vector
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dependence of these matrix elements provided the
spin dependence of the electronic wave functions
could be neglected. It was shown that the improved
matrix-element approximation not only led to an al-

tered expression for the RPA susceptibility but intro-
duced a new effect, a wave-vector-dependent splitting
of the electronic energy bands. During the past few

years we have carried out an extensive first-principles
numerical investigation of this improved RPA for-
malism and have found excellent agreement with the
neutron scattering results for both nickel and iron.
Some of these results have been reported previously
in the literature. '

The purpose of this paper is twofold. The first ob-
jective is to generalize the original work of Cooke to
incorporate self-consistent spin-polarized wave func-
tions into the theory, while retaining the essential
physical criterion that the spin-wave energy ap-

proaches zero as q 0 (Goldstone theorem). The
second objective is to bring together and unify the

numerical results which have been obtained thus far
for ferromagnetic nickel and iron. %e will also
present and discuss some new results for X(q, co)

and the Stoner density of states obtained from
several different band calculations.

II. GENERAL THEORY

The basic assumption of the itinerant theory of
magnetism is that, at least to first order, the electrons
which are responsible for the magnetic properties of a

system occupy energy bands and propagate through
the crystal. %'e choose, therefore, to write the gen-
eral Hamiltonian in terms of a complete set of Bloch
states (P„k (r )), where n is the band index, k is the

wave vector, and 0. is the electron spin. If we define
C„-k and Cn-k as creation and destruction operators,
respectively, for electrons in the state p„-k then

H= X (nko — +U(r) mko)C„-„C -„

n, m, k, cr
2 me
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2

e 2
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G.,(qt) = ,t(TS; (t) Sa,-(0)),
where T is the time-ordering operator. Therefore,
the problem of calculating the dynamics of the spin
system can be reduced to a calculation of the Green's
function defined in Eq. (2).

Information about the spin-waves is contained in
the transverse Green's function'

G, (q, t) = i (Ts: (t)s+-(0) —) (3)

where

where U(r ) is the electron-nuclear interaction.
It can be shown that both the magnetic susceptibili-

ty and the spin-only part of the inelastic neutron
scattering intensity can be uniquely determined from
the time Fourier transform to the spin-spin correla-
tion function (Sf (t)sa&(0) ), where S is the a
component of the spin operator S.9 This correlation
function can in turn be obtained directly from the
Green's function

cross section. If the spin-waves correspond to true
eigenstates of the Hamiltonian then they will appear
as 8-function singularities in X(q, ~). If, however, a

spin-wave of wave vector q has available some decay
mechanism such as a spin-flip (Stoner) excitation,
then the magnetic response at that wave vector will

be distributed over a range of frequencies. Indeed
with a sufficiently large decay probability the
response will be spread over such a large range that
the spin-wave will no longer exist as a well defined
entity. The remainder of this paper will be devoted
to an approximate determination and subsequent nu-

merical evaluation of Eq. (3). The remainder of the
Green's-function matrix-element, G &, can also be
determined but those results will not be given here.

In order to determine G,„we first write it in terms
of electron creation and destruction operators. This
can be done by using the second quantization form
for S:,
S:= X (nkJ~e 'q ' ' ~mk+qt}C -„C -„+- . (5)

nm, k

Sq Sq +Isq (4)

are the spin-ladder operators. The imaginary part of
the time transform of G,„(q,t ) is in essence the ima-
ginary part of the dynamic susceptibility X(q, cu), and
hence is directly related to the neutron scattering

Substitution of this result into Eq. (3) gives

G,„(qt) = X, (nk/(e ' '' )mk +qt}
n, m, k

x G2(nk, mk+q, t) (6)
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where

G2(n k, m k + q, t)

i (—TC„+-„t ( i) C -„+-l(i) S+- {0)) (7)

We solve for Gq by using the equation of motion
method which generates an infinite set of equations
coupling G2 to higher-order Green's functions. We
now introduce the well-known RPA decoupling

scheme in the equation for G2." This approxima-
tion limits the theory to low temperature because it

neglects spin-wave —spin-wave interactions, as well as
certain spin-wave —electron and electron-electron in-
teractions.

The equation for Gq which results from this decou-
pling scheme can be further simplified by requiring
that the Bloch functions satisfy the following equa-
tion:

A2V2 2

+ U(r) + X f -, ([( —(r') (]( -, (r') d'r' (](„-„(r)
2 me

—gf„, 0 , (r) -J(—,,( '&U„(, ')(„-, (r' d&' =E( r ')y, —, (r), ( &

IN p

where f„-„ is the Fermi occupation number, E(n ko-) is the electronic energy, and U„(r, r') is a self-

consistently screened electron-electron interaction. The determination of a realistic U„( r, r ') which contains all

of the relevant exchange and correlation effects is the most important, and most difficult, problem associated
with the energy-band calculations. We will return to this point later.

For the moment we assume that Eq. (8) can be solved for the electronic energies and wave functions. The
equation for the time Fourier transform of G~ then reduces to

[z —E(mk+q]) +E(n k [)]G z(nkmk+ , q, z)=g(m" +qll("q''l«[)(f. k l .fmk+() t) ( ~nkt fmk+() t)

x $ (mk+q]ip[)U„(r, r'))nk[jp+q])Gz{i p,jp+q, z)
IJ. P (9)

Because of the approximations made to this point, Eqs. (8) and (9) represent the general RPA result for the
itinerant theory. One important feature of these equations is that the Goldstone theorem is preserved no matter
what we use for U„. This result follows as an indentity which can be obtained from Eq. (8). If we multiply Eq.
(8) through by (T&,( r ) and integrate on r it is straightforward to show that

2 2 2

E(nka)(mko'~n k o) =(mko' — + U(r ) n ko)+ X (i pa, mko' nko. , ipa)f. —
2 me

1 ~ i p

—g (i p o, m k o '( U„( r, r ') (i p o, n k o)f, .
/ p

(lo)

If q =0 is inserted in Eq. (9) and the result given by

Eq. (10) is used together with the completeness prop-

erty of the [(]( -„(r)], then

G,„(q =O, z) =t[(nt —nt)/z]

This result is in fact exact and simply states that the
only pole in G,„at q =0 is at z =0. This pole must
correspond to the spin-wave pole and, therefore, the
spin-wave energy must vanish as q 0.

In order to solve Eqs. (8) and (9) for the general
case we must first determine the relevant interaction
matrix elements. Since U„ is not known exactly we
must rely on approximate expressions. The simplest
approximation is to ignore all of the band and wave-
vector dependence of these matrix elements. If we
consider only the "d bands" and replace the interac-
tion matrix element in Eq. (9) by a constant then the

equation can be solved to yield the enhanced suscep-
tibility expression used by Lowde and Windsor. In
addition, we see from Eq. (8) that if the spin depen-
dence of the wave functions is neglected then this ap-
proximation also leads to a rigid splitting of the elec-
tronic energy bands [E(nk )]—E(n k[) =const].
By further simplifying these results to the case of a

single parabolic band we recover the result investigat-
ed by Thompson. 5

It is important to notice here that this enhanced-
susceptibility —rigid-band-splitting model is an approx-
imate solution of the general RPA equations which is
valid only in the constant-matrix-element limit. For
systems such as the 3-d transition-metal series where
the band and wave-vector dependence of the U„ma-
trix element may be important we must find a more
realistic solution. Incorporation of these effects into
the theory requires some detailed knowledge of the



21 CALCULATIONS OF THE DYNAMIC SUSCEPTIBILITY OF. . . 4121

electronic wave functions.
Consider the Korringa-Kohn-Rostocker (KKR)

form of the wave function'

(r ) = Xa„„(k )$„(r), I
r I ( &Mr (12)

in a similar way to yield

(nk~l~ "'lmk+q~')
= Xa„„(k)a (k +q)F „(q), (14)

where the qb„are products of radial functions and real
spherical harmonics, the a„„(k)are expansion coef-
ficients, RMq is the muffin-tin radius, and p, is a
symmetry index which corresponds to the angular
momentum indices (Im). If we extrapolate this wave
function out to the unit cell boundary and neglect the
relatively small energy and spin dependence of the
radial functions then

(n ~ kt crnzkzcr'I U~l n3 k 3rr'n4k4rr)

= Xa„,» (kt)a, (kz)
ILV

x a t, (k3)a„r ( k4) W„»„r, (13)

where

F„„(q) = @„(r ) e '&' ' @„(r ) d'r (i5)

G,„(q,z) = g FL(q) [I +1 (q, z) W]

LL,L

x I', „(q,z) F'„(q), (16)

The integral in Eq. (1S) extends over the unit cell.
Because of the separation of variables generated by

the expansion coefficients, substitution of the expan-
sions given in Eqs. (13) and (14) into Eq. (9) allows
us to convert the equation for 62 into a matrix equa-
tion which can be solved. Then, from Eq. (6), we
find

where 8'is a matrix element of U calculated with

respect to the symmetry orbitals $„.
The other matrix element in Eq. (9) can be treated

where the pair of symmetry indices (p, , u) has been
replaced by a single index L which runs over all pos-
sible combinations, I is the unit matrix, and

a„„l(k)a „l( k + q)a„„t(k)a„rt(k +q)( f„-„l—f -„+-l)l, (q, z) =1»„„r(q, z) =-
P, V

z —E(mk q+t) +E(n k J)

The result given in Eq. (16) represents the general
RPA solution under the assumptions made about the
wave functions. The inclusion of the band and
wave-vector dependence of the matrix elements has
led to a more complicated result than the enhanced
susceptibility expression considered by Lowde and
Windsor. Another important aspect of this solution
is that because of the matrix character of the solution
we have the possibility of more than one spin-wave
mode. The existence and number of such additional
modes depends on the details of the band structure.

III. ONE-ELECTRON PROPERTIES

In this section we will investigate the effect of in-

cluding the band and wave-vector dependence of the
interaction matrix elements on the energy-band struc-
ture. By substituting the result given in Eq. (13) into
Eq. (10) we find that the electronic energy can be
written in the general form

with

h», .= X W». ,.nf. , -

and

f..=
~ X la...(l ) I'f.—,.

mp
(20)

Here e(n k o) is the contribution from the first two
terms on the right-hand side of Eq. (10). This con-
tribution has a very weak spin dependence generated
by the explicit spin dependence of the wave func-
tions. Essentially all of the spin dependence of the
electronic energy comes from the second term in Eq.
(lg). The function h»» „ is just h„„evaluated in the
"paramagnetic state, " i.e., the nonmagnetic state. In
this case the wave functions are not spin dependent
and the electronic energy reduces to
e(n k t) =a(n k )). The function f„ is just the
number of electrons of symmetry type p, and spin o-.

The spin-splitting parameter 5 is defined by

E(n kcr) = e(n ka) + pa„„(k)a„„(k) h(n, k) = E(n k t) —E(n k J) (21)

x(h„.„—I& „), (18)
and from Eq. (18) we see that it is both band and
wave-vector dependent, in contrast to the constant-
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matrix-element result where 4 is a constant. Notice
also that the splitting depends on a sum of the
number of electrons with a given symmetry index
weighted by the relevant interaction matrix element,
and not simply on the total number of electrons with
a given spin.

The procedure we use to obtain the band structure
for an itinerant magnet is based on a perturbation ap-
proach. The first step is to carry out a conventional
nonmagnetic band calculation for the system of in-

terest. These results are then used as the starting
point for a self-consistent calculation of the spin-
polarized bands and wave functions. By doing the
calculation in this manner we need only consider the
parameters W'„„„~in terms of how they effect the
spin-dependent part of the calculation. This will al-

low us to reduce the number of parameters needed in

the theory considerably.
For example, first-principles spin-polarized calcula-

tions indicate that the spin splitting of the s- and p-

like states is very small compared to the d-like
states" and so, as a first approximation, we retain
only those 8'„„„~which refer to d symmetry. Furth-
errnore, we retain only the diagonal terms N»»
= W„, and assume that the S'„are identical for all p,

belonging to the same irreducible representation.
Based on these assumptions the electronic energy
reduces to

E(n ko) =a(n ko) + X' ~a„„(k )
~

(h„„—h~ )

(22)

where g refers to a sum only over d-symmetry

terms and

Eq. (22) we can neglect the spin dependence of
a(n ko) a(n k) and a„„(k) a„„(k). This

result suggests an alternative approach to calculating
the spin-polarized band structure without having to
use any interpolation scheme; determine ~(n k ) and

a„„(k) from a "realistic" KKR calculation for the
paramagnetic state and then iterate Eqs. {22) and
(23) to convergence for fixed parameters N „. We
have found essentially the same spin-polarized band
structure from both techniques outlined above. It
must be emphasized, however, that while the calcula-
tions presented in this paper are not sensitive to the
spin dependence of the electronic wave functions this
is not necessarily true for other types of calculations,
e.g. , the magnetic form factor.

We thus have two parameters, W, and W, , at
2g

our disposal. These two parameters have been
chosen so that the calculated ferromagnetic band
structure gives the observed magnetic moment, and
the correct t2g to eg character of the moment as ob-
served in neutron magnetic form-factor measure-
ments. For nickel the spin-only moment"" (at
T =0 K) was taken to be 0.561@,~, with 19% e~ char-
acter to the moment, ' while for iron'

Jx p' = 2.122 p, q, with 53% eg character to the mo-
ment. " Consequently once the paramagnetic band

0 7

(23)

There are five terms in the sum in Eq. (22) but only
two parameters, corresponding to eg and t2, represen-
tations. This result is similar in form to the energy
expression obtained from the Hodges, Ehrenreich,
and Lang interpolation scheme" provided we neglect
the (weak) spin dependence of a(nko) and replace
the H „by a single constant.

There are several ways to proceed with the calcula-
tion. One method, outlined previously by Cooke, ' is
to make use of Slater-Koster" (for bcc iron) or
Hodges, Ehrenreich, and Lang'2 (for fcc nickel) to
set up a self-consistent procedure for obtaining the
spin-polarized bands and wave-function expansion
coefficients. This procedure is not only applicable to
our perturbation approach but can also, in principle,
be modified to allow us to calculate the dynamics of a
magnet from any given band structure.

Self-consistent calculations have been carried out
using this formalism for ferromagnetic nickel and
iron. These calculations indicate that the spin depen-
dence of the wave functions can be neglected without
introducing significant errors, which implies that in

0.3

0.2
0.5
L

WAVE VECTOR

0.5 1.0
X

FIG. 1. Ferromagnetic energy bands generated from
Stocks's eI al. (Ref. 18) paramagnetic potential. The solid
curves are for the majority spin while the dashed curves are
for the minority spin.
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on the moment were then used to generate the fer-
romagnetic band structure.

A number of other band structures were also used
to calculate the one-electron properties (and dynamic
susceptibility) taken from both KKR first-principles
calculations as well as from paramagnetic and fer-
romagnetic band structures taken from the litera-
ture. ' " The ferromagnetic band structures
were handled by fitting the Slater-Koster parameters
to the spin-up and spin-down bands separately. By
way of example we show in Fig. 3 the total density of
electron states calculated from Wood's potential, and

structure has been chosen, the only two adjusted
parameters in the theory are fixed by the basic static
quantities know about the moment, and thus there
are no adjustable parameters available in the calculations
of the dynamic susceptibility to force agreement with the
inelastic neutron scattering experiments.

The ferromagnetic band structure of nickel, based
on the paramagnetic bands proposed by Stocks et al. '

is shown in Fig. 1. The spin splitting of the d-like
bands is strongly wave-vector dependent as a result
of the different splittings obtained for the eg and t2g

symmetries; i.e., 6, =0.4 eV and 5, =0.1 eV.

Additional wave-vector-dependent splitting results
from spd hybridization. Because of the relatively
small eg splitting we find only one hole pocket at the
X point, in agreement with experiment. ' This is
quite different from most other calculations' which
find 5, =—~t and two hole pockets at X. The

g 2g

results of this band calculation are also in good agree-
ment with the recent angular resolved photoemission
results obtained by Eastman et al. ' In particular, the
calculated spin splitting at the L point is approximate-
ly 0.3 eV, which is in agreement with the experi-
ments and half as big as predicted by other calcula-
tions.

The results for iron differ from nickel in that the
t2g and eg splittings needed to produce the correct
symmetry character of the moment turn out to be
essentially identical, which leads to an approximate
rigid splitting of the d-like bands. The wave-vector
dependence of the band splitting in this case ori-
ginates solely from the sp hybridization of the d
bands; the splitting at each k is then proportional to
the amount of d character of the band at that k. Fig-
ure 2 shows the ferromagnetic band structure gen-
erated from Wood's paramagnetic band structure.
Slater-Koster parameters out to second-nearest neigh-
bors (resulting in 27 parameters) were used to fit to
Wood's bands, and the parameters found were simi-
lar to the values used by Gold er a/. " The conditions
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FIG. 3. Total density of states for ferromagnetic iron.

FIG. 2. Ferromagnetic energy bands for iron generated from Wood's (Ref. 22) paramagnetic potential.
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FIG. 4. Symmetry projected density of states for iron.

Fig. 4 shows the projected density of states for e~,
t2g, and sp character for majority spin states (solid
curve) and minority spin states (dashed curve). Note
that due to the spd hybridization the splitting does
not correspond to a rigid shifting of the majority and
minority densities of states. The areas below the Fer-
mi energy for the symmetry projected curves give the
total number of electrons of the symmetry and spin
type, f„.Addition of these symmetry projected
curves gives, of course, the total density of states
shown in Fig. 3. These calculations have been done
using the Gilat-Raubenheimer (GR) 28 technique,

I
with a mesh of 3080 k points in the

~~ irreducible

Brillouin zone (BZ) and an energy mesh of 0.00068
Ry. These calculations were not particularly time
consuming, and the fine mesh assured very accurate
numerical convergence. For this example we ob-
tained the following: p. (t2g) =1.406@,q, p, (e~)

IV. CALCULATIONS OF THE DYNAMIC
SUSCEPTIBILITY

The general form of the solution for G,„given in

Eq. (16) is not altered by the approximations we have
made for O'. Numerical calculations of the F„„which
appear in this equation have demonstrated that, to
reasonable approximation, we need only consider the
diagonal terms in the calculation of G,„. In addition
the s and p contributions have also been shown by
direct numerical calculation to be negligibly small in

comparison to the d-symmetry terms. Therefore, to
a reasonable numerical approximation, the major
contribution to G,„is

G,„(q,z) = X'F„„(q)[I +1'(q,z) ii']„„'

x 1'„,(q, z) F„'„(q ) (24)

~here, again, the prime on the sum indicates a sum
over only the d-symmetry indices, and

[r(q,z) w]„„=r„„„„(q,z) e„. (25)

Notice that the only parameters which appear in the
expression for G,„are the same two which were
fixed by the requirement that the band structure yield
the correct moment and ratio of e~ to t~~ character in
the moment. Thus, in this model the dynamics of the

spin. system is uniquely determined from the band struc-

ture; i.e. , there are no adjustable parameters.
An extensive series of first-principles calculations

of G,„has been carried out for nickel and iron. The
initial calculations published some years ago for nick-

=1.777',g, p, (sp) = —0.100',&, EF -0.6442 Ry {mea-
sured from the bottom of the bands), and I= 2,22
eV. This gives a total spin-only moment of 2.123@,~,
and the net d spin a 52.9% character as observed ex-
perimentally. " At the Fermi surface we find that the
electrons are characterized by having 80% t~g charac-
ter and 76% majority spin. %e remark that the small
oppositely directed "conduction-electron" moment
results solely from spd hybridization effects and not
from exchange effects. A small negative
conduction-electron moment is observed experimen-
tally. ' " Corresponding results for nickel were also
obtained but will not be given here.

The band structures presented in this section are
not intended to be correct in every detail but we feel
they are reasonable. The Fermi surfaces are reason-
ably correct, as guaranteed by the use of realistic
paramagnetic bands, and the moment and symmetry
character of the moment are also correct, as
guaranteed by the choice of the two parameters in

the theory. In the next section we will use these
band structures to calculate the dynamic properties of
the spin system within the RPA.
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el were obtained using the Gilat-Raubenheimer"
technique for calculating the BZ sums defined in Eq.
(17) and paramagnetic wave-function expansion coef-
ficients. Since that time new computer programs
based on the tetrahedron BZ integration method~9

and spin-polarized expansion coefficients have been
developed and applied to the calculation of G,„. The
tetrahedron method is, in principle, a better tech-
nique for calculating BZ sums like the ones encoun-
tered in this problem because, unlike the GR
scheme, it can treat exactly the Fermi factor differ-
ence f„k

&
f k+&l We found, however, that both

techniques gave essentially the same results if carried
to numerical convergence.

The results presented here will be in terms of the
spin-only part of the transverse inelastic neutron
cross section for scattering neutrons into the solid an-

gle d 0, which for low temperatures is proportional
to the imaginary part of G,„
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All of the calculations were carried out for zero tem-
perature since the theory is valid only in this limit.
The 12 lowest-energy bands were used, 6 majority
and 6 minority.

The scattering cross section for iron for various
values of q along [100] is shown in Fig. 5. The
results along the [110] and [111]were found to be
virtually the same as along [100]. The spin-wave
dispersion curve obtained from the position of the
spin-wave peaks is found to be isotropic in q and is
plotted in Fig. 6. The agreement with the experirnen-
tal results' is seen to be excellent.

i

io

0 O. i 0.2

(q )
(relotive units)

As the spin-wave peak increases in energy at the
higher l q [, the magnitude of the peak decreases as
the width increases. The area under the curve how-

ever, remains constant; that is

FIG. 6. Spin-wave dispersion curve for ferromagnetic
iron. The solid curve represents the present work, while the
bars are experimental values at room temperature from Ref. 4.

q pi
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FIG. 5. Spin-wave scattering cross section for ferromag-

netic iron for various wave vectors (in units of 2m/a~} along

[100j. The area under each curve for the individual q's is a

constant.

~here C is a constant. Thus the "disappearance" of
the spin-wave scattering in the neutron scattering ex-
perirnents in actuality depends solely on the instru-
mental resolution and sensitivity. For the resolution
used in the experiments3' [ —15 20 meV FWHM
(full width at half maximum) at spin-wave energies
—100 meV] we see that the calculations would

predict little change in the integrated intensity of the
scattering (as measured at constant ru, not constant

q ) until a spin-wave energy of —70 meV, where the
spin-wave linewidth becomes comparable to the in-

strumental resolution. The measured intensity would
then gradually decrease as the intrinsic linewidth in-

creased until the scattering became undetectable.
Between q =0.35 and 0.40 we find that the spin-wave
linewidth increases substantially, and in addition a
second spin-wave peak is clearly evident at —360
meV as shown in Fig. 7. The peak intensity of this
scattering is very weak compared with the spin-wave
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The calculated cross section for nickel is shown in
Fig 8 for q along [100]. These results differ from
th for iron in. that a remnant of the spin-wavetose o

ak a ears to exist out to the zone boun a y.
addition, two branches are clearly visible o pover art of

e [1 1 1l direc-the zone as is the case for iron. In t e i

tion, ont eo eh other hand, the spin-wave peak simply
continues to decrease in intensity as I q increases,
and we would expect the spin-wave scattering to be-
comee unobservable above —100 meV.

The spin-wave dispersion curve with q a o g
for nickel obtained from the band structure described
in the previous section is shown by the curves in Fig.
9 labeled CD1. There are two branches, one "optic"
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The remainder of the curves plotted in Fig. 9 cor-
respond to calculations carried out with different po-
tentials and approximations. The dispersion curve la-

beled CD2 was obtained by slightly modifying the
paramagnetic bands used in the calculation labeled
CD1 in order to test the sensitivity of the calculation
to small changes in the potential ~ The dispersion
curve is practically unchanged and only the lower q
part is drawn in.

The curve labeled HEL was obtained from a band
structure which was shown by Hodges et al. ' to be
incorrect for nickel. This calculation demonstrates
that if unreasonable band structures are used then we

get poor agreement with experiment. Finally, the
curve labeled LW was obtained from the enbanced-
susceptibility —rigid-band-splitting model investigated
by Lowde and Windsor6 and was based on exactly the
same set of paramagnetic bands used to generate the
ferromagnetic bands for the CD1 calculation. The
LW dispersion curve is then what one gets from the
CD1 result if a constant-matrix-element approxima-
tion is used. Clearly the effect of including the band
and wave-vector dependence of the matrix elements
is essential.

Another important aspect of this improved matrix-
element approximation is that it leads to a correct
prediction of the disappearance of spin-waves in both
nickel and iron. Here again the constant-matrix-
element approximation falls short. In order to under-
stand why this is the case we need to examine the
theory in more detail.

FIG. 9. Spin-wave dispersion curves for ferromagnetic
nickel for various band structures and approximations. The
experimental data are represented by the bars and from

Ref. 3.

and one acoustic, which appear to interact. The rea-
son the scattering vanishes in the optic branch as

q 0 is because of the exact result given in Eq. (11)
that all of the scattering must be in the acoustic
mode. The agreement of this part of the dispersion
curve with the experimental results' is clearly very
good. In the region above 100 meV the [111]spin-
wave peaks were found to broaden considerably. The
dispersion curve obtained from these relatively weak
peaks bent over (deviating from quadratic behavior)
and then died out. The [111]dispersion curve is ef-
fectively identical to the [100] result for energies
around 100 meV and below.

Part of the apparent discrepancy between theory
and experiment along [100] was recently eliminated
by a neutron experiment carried out by Mook. ' The
optical mode was indeed detected and was found to
be in excellent agreement with the behavior predicted
in Fig. 9. The bending over of the acoustic branch
was detected but no evidence was found for the ex-
istence of a weak branch persisting out to the zone
boundary.

U. SPIN-%A VE DISAPPEARANCE PHENOMENON

The disappearance of spin-waves can be understood
in terms of a very simple argument. Spin-waves in
the itinerant model correspond to a bound state
between an electron of a given spin and a hole of op-
posite spin. Another type of magnetic excitation
which exists in an itinerant magnet results from an
electronic spin-flip excitation across the Fermi surface
which creates single-particle electron-hole pair with

opposite spin. Such excitations are called Stoner ex-
citations. Spin-waves can, therefore, decay into Ston-
er excitations provided their energies are comparable
and there is sufficient coupling. The spin-wave life-
time will depend on the details of the coupling
between these excitations and on the density of Ston-
er excitations into which the spin-wave can decay.

In the constant-matrix-element approximation it is
well known that the spin-wave lifetime p, which is in-

versely related to the width of the spin-wave peak, is
proportional to the total density of Stoner excitations
for a given momentum transfer q

p(q, ru) =—X 5(ru —E(m k+ qt) +E(n k j))
nm, k (28)
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where 8(x) is the Dirac 8 function. Since the bands
are rigidly split in this approximation, p is nonzero
only at the splitting parameter 5, when q =0:

p(q =0, au) =g(cu —5) (29)

As Iq! increases from zero, p(q, uj) will be nonzero
over some finite energy range. The region in q, cu

space where p(q, uu) is nonzero is called the Stoner
continuum and is shown schematically in Fig. 10,
along with the spin-wave dispersion curve. This leads
us to the conventional picture of the spin-waves

disappearing as they run into the Stoner continuum.
We have carried out an extensive study of the

Stoner density of states for nickel and iron. which

shows that this picture cannot be correct. An exam-

ple of the type of results that we find is shown in Fig.
11. These particular results were obtained using our
bands for nickel and are for q along [111]. The big

contribution to p( q, cu) comes from the d-like

bands, with the maximum occurring around the aver-

age d-symmetry-splitting parameter. The important
point to be made here is that nothing very much oc-
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FIG. 10. Schematic representation of the magnetic excita-
tion spectra for a single-band itinerant ferromagnet as based
on a constant-matrix-element approximation.
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curs in the region around 100 meV as we sweep

through the range of wave vectors where the spin-

wave should disappear. %e also find that even if the

large contribution to p(q, ao) is shifted down in ener-

gy {by arbitrarily lowering the d-symmetry-splitting
parameter) there is still much too gradual a change in

p with both q and ~ to account for the sudden disap-

pearance of the spin-waves observed in the neutron
experiments. The discrepancy between the spin-wave

disappearance and the high density of Stoner states is

even more striking for iron, since the disappearance
occurs at —100 meV as in nickel but the band split-

ting is approximately 4 times as large (d —2 eV). A

typical Stoner denstiy of states for iron is shown in

Fig. 12. Qualitatively similar densities were obtained

for different q and different potentials, with the only
general trends noted that the spectra tended to be
somewhat sharper at smaller

~ q ~, broader with larger
5, and peaked around the value of the splitting.
Even in the extreme case of 5 =0 shown in the lower
part of Fig. 12, the bulk of the Stoner density of
states occurs at high energies, and the density is still
not very large below —100 meV. Of course for iron
and nickel it is not correct even qualitatively to set
3=0for T) T, .

The situation is altered significantly when we intro-
duce the band and wave-vector dependence of the
matrix elements. In this case the expression for 6,„
is quite complicated [see Eq. (24)I but by introducing
the matrix which diagonalizes (I + 1' W) it can be re-
duced to a form which is similar to the constant-
matrix-element result. We can then identify the
quantity which determines the spin-wave width. This
function has the general form

p(q. ru) =—X K(n, m, k, q, &u)
1

llltl, k

x g(ru —E(m k + q() + E(n k )))
(30)

where K is a complicated but well-defined function of
the wave-vector expansion coefficients and elements
of the diagonalization matrix. This function can be
viewed as a weighted density of Stoner excitations.

Numerical calculations of p clearly indicate why the
spin-wave peak disappears. Results from such a cal-
culation for iron are shown in Fig. 13. The criterion
which controls the spin-wave linewidth is the value of
p in the immediate vicinity of the spin-wave pole.
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FIG. 12. Typical Stoner density of states calculated for
iron with a band splitting of b =2.2 eV (top) and I =0 (bot-
tom).

FIG. 13. Weighted density of Stoner states for ferromag-
netic iron for various wave vectors (in units of 2'/a0) along

[100]. The width of the spin wave is determined by the
magnitude of p in the vicinity of the spin-wave pole (see
Fig. 6). Note that around 100 meV the magnitude of p in-

creases abruptly for q between 0.35 and 0.4, and this causes
a large increase in the spin-wave linewidth (see Figs. 5 and

7). The total Stoner density of states shows no significant

change in this region.
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We see that between q =0.35 and 0.40 p increases
dramatically (at —100 meV), and this in turn
broadens the spin-wave width. The total Stoner den-
sity of states on the other hand shows no structure in
this energy range but rather is just a monotonically
increasing function of energy which is weakly depen-
dent on q. It is, therefore, a rather complicated
weighted density of Stoner states that controls the
disappearance phenomena and not the total density
(E =1). These calculations also show that there is a
nonzero width to the spin-wave line at all nonzero q.
The widths, of course, are small for small q. The
simple picture given in Fig. 10 is, therefore, still valid
provided we view the shaded region as the region of
a high density of appropriately weighted Stoner exci-
tations.

VI. CONCLUSIONS

An approximate method for calculating dynamic
properties of an itinerant ferromagnet has been
described and numerically investigated. This method
is based on a Green's-function approach with RPA
decoupling. The general RPA equations have been
solved using an approximate method for including
the band and wave-vector dependence of relevant
matrix elements. This improved solution of the RPA
equations leads to a band- and wave-vector-depen-
dent splitting of the energy bands, optic spin-wave
modes, and an alternate view of the spin-wave disap-

pearance phenomenon.
First-principles (zero-parameter) numerical calcula-

tions of the dynamic properties of nickel and iron
have been found to be in excellent agreement with
neutron scattering experiments. These calculations
not only yielded the correct dispersion relation and
correctly described the measured disappearance
phenomena but predicted the existence of an optical
spin-wave branch in nickel which was subsequently
observed. These numerical results were found to be
essentially independent of the explicit spin depen-
dence of the electron wave function.

The results presented in this paper clearly indicate
that the itinerant-electron model of magnetism pro-
vides not only the correct qualitative description but
also a good quantitative description of the low-

temperature dynamic properties of transition-metal
magnets. The extension of these calculations to fin-
ite temperature cannot be carried out at present be-
cause of the absence of a realistic finite-temperature
theory. This very difficult problem is currently under
investigation.
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