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Impurities in quasi-one-dimensional Heisenberg systems: The effect of anisotropy
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The effect of small concentrations of impurities on the magnetic behavior of quasi-one-dimen-

sional Heisenberg systems with a small orthorhombic anisotropy has been studied both theoreti-

cally and experimentally. The predicted reduction of the ordering temperature T~ as a function

of impurity concentration x is compared with experimental data on (CH3)2NH2Mn& „Cd„Cl3
(DMMC:Cd), (CH3)2NH2Mn~ „Cu„Cl3 (DMMC:Cu), and CsMn~ „Cu,Cl3 2H20 (CMC:Cu).

We also measured the magnetic phase diagram of DMMC:Cd (x =0.77'!0) along each of the

three principal directions. The observed behavior can be qualitatively explained by the theory

presented in this paper.

I. INTRODUCTION

In the last few years, many experimental and
theoretical studies have been devoted to the influ-

ence of impurities on the behavior of magnetic sys-
tems. Especially in quasi-one-dimensional antifer-
rornagnetic systems, the substitution of weakly or

nonmagnetic impurities at magnetic sites has been
found to have rather drastic effects. ' ' One of the
most pronounced features is the strong reduction of
the three-dimensional ordering temperature TN. This
reduction is generally explained as follows. Be-
cause of the large intrachain interaction J, the mag-

netic correlations along the individual chains are very
well developed in the paramagnetic region, especially
at lower temperatures. Therefore, the presence of
even a very small interchain coupling J' may already

trigger three-dimensional long-range order. As a first
approximation, it is assumed that the substitution of
impurities gives risc to a decrease of the intrachain
correlations, which strongly reduces the "net effect"
of the interchain interactions and hence the three-
dimensional ordering temperature.

Generally, the problem is treated theoretically by

considering the interchain coupling within a mean-
field approach, whereas the properties of the indivi-

dual chains are calculated within the classical spin for-
malism. ' " Using this approach, Hone et a/. have
evaluated the reduction of T~ for quasi-one-dimen-
sional systems in which the magnetic interactions are
fully isotropic.

Recently it has been found' that the experimental
reduction of T~ in Cd- or Cu-doped {CH3)~NHMnC13
{TMMC) is significantly larger than this theoretical
prediction. It was assumed that the discrepancy
results from the anisotropy of dipolar interactions
between the Mn++ spins, which has been sho~n"'
to give rise to an XY rather than Heisenberg-like
behavior of the correlation length ( at lower tempera-

tures in this compound. The large effect of even a

small amount of anisotropy on the properties of
quasi-one-dimensional magnetic systems seems to be

a quite common feature, as is also evident from the
peculiar behavior of their magnetic phase di-

agrarns. ""Therefore we thought it worthwhile to
investigate in more detail the reduction of Tt„as a

function of the concentration of nonmagnetic impuri-

ties in the presence of orthorhombic anisotropy.
The organization of this paper will be as follows.

In the next section we will extend thc calculations on
the linear chain classical spin model including
orthorhombic anisotropy" to the randomly diluted

system. In Sec. III the results will be confronted with

experimental data on {CH3)2NH2Cd„Mni „C13
{DMMC:Cd). Some attention will be given to the ef-
fect of substitution of Cu instead of Cd and the
behavior of CsMnC13. 2H20 {CMC). The effect of di-

lution on the magnetic phase diagram will also be
constdel ed.

II. THEORY

Given the fact that the characteristics of quasi-
one-dimensional systems are believed to arise largely

from the properties of the individual chains, we will

follow the usual approach, in which the magnetic
behavior of the isolated chains is calculated as accu-
rately as possible, whereas the interchain interactions
are treated within the mean-field approximation. If
the intrachain interaction is antiferromagnetic, the or-

dering temperature T~ of such a system is given by'

2zJ'X,'D{ T~) =1,
where X,', denotes the staggered susceptibility of an
isolated chain and 2zJ' represents the interchain cou-
pling.

Let us consider the following classical Hamiltonian
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of orthorhombic symmetry describing an individual chain:

W

+ch)sis) g ( S;, S;+i)
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In this equation

s, = (s,', sf, s,') - ( cosq)); sin8;. sing; sin8;, cos8;)

H denotes the external magnetic field (
~
]z), and J

corresponds to the isotropic part of the nearest-
neighbor interaction. e, - (J —J)/J and e~
= (J —J~)lJ denote the axial and nonaxial part of
the anisotropy with respect to z, respectively. Gen-
erally a Hamiltonian of this type is solved by means
of the transfer-matrix formalism. " '9 The transfer
matrix is given by

A ( s;, s;+i) -exp[ —pX( s;, s;+i) ]

~ ( s ~ si+1)Qlm( si+1) d s i+1 ~letflet( si)

in which i can be chosen arbitrarily. In the present
case, this equation can be written as:

2%'

d8z J dii)zsin8z exp[ —p~(si, sz)])]a~(8z, it)z)

In the thermodynamic limit (W ~) all static prop-
erties of the chain can be expressed in the eigen-
values and eigenfunctions defined by this equation;
in particular the correlation function of the spin com-
ponents along the z direction is given by

(s s,'+, ) = X )]))o( s ) s*)])00( s ) d s
l-O ~OO

l 0,
~lO

ei
~oo

(6)

whereas the expectation value (sr')z can be written as

Its eigenfunctions )I)& ( s ) and eigenvalues h.
&

are de-
fined by the integral equation:

(5) has been briefly outlined in Ref. 15. A more de-
tailed treatment of the various numerical procedures
will be published elsewhere. The values of el and
)).)i) depend on JlkT, e, lkT, e~/kT, and the magni-
tude of the applied magnetic field.

As was already mentioned in the Introduction, the
intrachain correlations largely dominate the behavior
of a quasi-one-dimensional system upon dilution. In
order to obtain a qualitative picture of the effect of
anisotropy, we have calculated the inverse correlation
length K, which for an antiferromagnetic chain can be
defined by17, 18.

2 X, [( —I)&((sos, ) —(so )')]
Ktg = 0!=x,p, z

X, [( —I)'q'((so) s)) ) —(so ) )]

In Fig. 1 the inverse correlation length K of the spin
components along the "preferred" direction is plotted
as a function of the reduced temperature T'
= kT/2~ J]S(S+ I) for several values of the anisotro-
py. The dashed curves denote the limiting cases:
isotropic (Heisenberg), XY (J =O,J = J~ =J), and
Ising. The drawn curves reflect the results for CMC
and DMMC, using the values for the anisotropy re-
ported in the literature. ' " Inspection of this figure
shows that a small orthorhombic anisotropy, which
will be present in all real systems, except when for-
bidden by symmetry, causes a drastic increase of the
correlation length at lower temperatures. Hence the
substitution of nonmagnetic impurities will have a
more pronounced effect on the intrachain correla-
tions than in the isotropic case, and one may antici-
pate a larger reduction of the reduced three-dimen-
sional ordering temperature ( T/t/) ~ A quantitative
description of this effect is most readily given in
terms of the staggered susceptibility [cf. Eq. (I)].

The wave-vector-dependent susceptibility per spin
along the z axis of an isolated chain of infinite length
is given by

2

(s,*)'= Je )s) e ( )ssSTsssss {7) g'psS(S + I)
kT

Similar expressions can be derived for (s,'s;+, ),
(sos~+~), (sl) z, and (sl) . In Eqs. (6) and (7)
goo( s ) denotes the eigenfunction corresponding to
the largest eigenvalue A,oo. The calculation of the
eigenvalues A.l and the eigenfunctions 1tll from Eq.

X cos (qak) ( (sos,') —(s,')'); (9)
q ~-oo

a denotes the spacing between adjacent magnetic
ions. A similar expression can be derived for X (k)
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FIG. 1. Temperature dependence of the inverse correla-
tion length K of the spin components along the "preferred"

direction for some one-dimensional magnetic systems hav-

ing different degrees of anisotropy. The drawn lines denote
the behavior of the individual chains in DMMC and CMC.

and X~(k). Substitution of Eqs. (6) and (7) in Eq.
(9) yields

1 1

() "'
X ( k)x

q -oo (~1 ~pp

(10)

For k =0 and sr/a the summation over q consists of
two geometric series, and can be performed analyti-
cally. Formally Eqs. (6) and (7) are only correct in

the thermodynamic limit, in which case the largest
eigenvalue is sufficient to describe the partition
function Z = X„(h.„) . For a randomly diluted sys-

tem, these equations are only correct if the average
length of the chain segments is very large, i.e., for
small impurity concentrations x. Numerical calcula-
tions for a set of parameters appropriate to DMMC
indicate that at an impurity concentration of 1%, the
actual partition function differs only a few percent
from happ. Secondly, we wish to note that for a finite
anisotropic chain {s s;*+, ) is dependent of both i and
the length N of the chain. Therefore the staggered
susceptibility will not be the same for all magnetic

ions, a complication which does not occur for isotro-
pic or Ising systems in zero magnetic field. In princi-

ple, the resulting modifications for the isolated chain

may be calculated. ' However, in our opinion the
rather tedious numerical procedures involved with

such an approach would only be justified if the inter-
chain interactions were described in much more detail
than the present mean-field approximation. There-
fore, we will assume that for x « I, Eqs. (6) and
(7) describe the overall behavior of the various chain
segments fairly accurately, an assumption that is cer-
tainly correct in the limit x 0.

As the correlation function (sos,*) falls off with

distance as a sum of exponentials instead of a single
exponent as in the isotropic or Ising case, we will not
apply the recursion relation formalism given by
Thorpe" and Hone et al. , but proceed in a slightly
different way. %e assume that the impurities are
randomly distributed (quenched limit). In principle,
Eq. (9) is still valid for an infinite diluted chain with

the following obvious modifications. If the site la-

beled 0 contains an impurity, both {soso) and (so)'
are equal to zero; (s,')' =0 if the site q is occupied by

an impurity. If we have a random distribution of im-

purities, a configuration average over an infinite sys-
tem yields

((sasi) )) =(I —x) gcl'
IW

({so)') = ((s,')') = (I —x) co'

in which we used Eqs. (6) and (7). The configura-
tion average ((sas,')) can be obtained as follows. Let
sp be a magnetic ion belonging to an arbitrary chain
segment. The probability that s~ is also a magnetic
ion is equal to (1 —x) and hence the probability that
a chain of magnetic ions -sp, s~, . . . , sq is present is

equal to (I —x)'. For such a chain we have assumed
that (sIis,*) may be approximated by Eq. (6); if an

impurity would be present within the chain, (sos~)
would be equal to zero. If we take a configuration
average over all sites sp (both magnetic and nonmag-
netic), we obtain

((si')s,*))= (I —x) (I —x)' X cP
(~ A.pp

Substitution of Eqs. (11) and (12) in Eq. (9) yields
the average wave-vector-dependent susceptibility per
site for a diluted system:

g'»'S(S +1)
X (k,x) =(1 —-x)—

kT
oo oo q

X cos(qak) X (I —x) c12 . (13)
q~—oo ~pp

The calculation of the eigenfunctions and eigenvalues
of the transfer matrix remains unaffected, the only
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modification is the multiplication of kto/boo by

(1 —x). For the isotropic case, the procedure out-
lined above yields a result identical to that given by

Thorpe. " The average staggered susceptibility X„(x)
may be obtained from Eq. (13) by setting k - a/a.

As already mentioned above, the three-dimen-
sional ordering temperature of an infinite ensemble
of loosely coupled chains is implicitly given by Eq.
(1). In a diluted system, however, the effective in-

terchain coupling zJ' is reduced by a factor (1 —x), at
least for impurity concentrations x (& 1. Therefore
this equation should be modified to

1.0

0,9
&C

—.——isotroplc
ropic

0.05

2zJ'(1 —x)X,', (x, T ) =1 (14)
0.8 0.032
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X:0
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FIG. 2. Temperature dependence of the staggered suscep-
tibility per site for a diluted classical Heisenberg chain. The
curves are characterized by the impurity concentration x.
The construction to obtain Tt/(x) using Eq. (14) is also

shown.

If the intrachain interaction and the magnetic aniso-
tropy are known, the behavior of Ttt(x) may be
found by plotting (1 —x) X,', (x, T) as a function of
temperature for different values of x. In Fig. 2 a
graphical method is shown to obtain TN(x). The
mean-field interaction 2zJ' between the chains may
be eliminated by inserting the experimentally ob-
served ordering temperature TN(x =0). Some typical
results of this procedure are sho~n in Fig. 3 for an
isotropic and anisotropic system. The value of
Ttt =kTtt/2~J~S(S +1) indicates the degree of one
dimensionality. Inspection of this figure shows that
the effect of anisotropy drastically increases with in-

creasing degree of one dimensionality (low values of
Ttt), as might have been anticipated already from the
behavior of the correlation length, presented in Fig.
1. For the isotropic case, our results show a slightly
larger decrease of TN than the prediction given by
Hone et al. This is caused by the fact that Hone
et al. described the response of the diluted chains to a

staggered field by the staggered susceptibility per
magnetic ion instead of the staggered susceptibility per
site The behavior .of Ttt(x) derived above will be
confronted with experimental results in the next sec-
tion.

I

0.005 0.01 0.015

FIG. 3. Reduction of the three-dimensional ordering tem-
perature as a function of impurity concentration x for
several quasi-one-dimensional magnetic systems having dif-

ferent degrees of one dimensionality. The results are
characterized by the value of the reduced ordering tempera-
ture for x =0: Ttt(0) =kTtt(0)/2~j~lS($+1). Dashed

lines denote the isotropic case; drawn curves denote the
results obtained using the anisotropy parameters for
DMMC; i.e., e, = —5.75 &&10, e~ =+1.15 X 10

III ~ RESULTS AND DISCUSSION

Single crystals of DMMC were obtained by cooling
a saturated solution of equirnolar quantities of MnC12

and (CHs)tNH2Cl in absolute ethanol from 60 to
20'C. Specimens diluted with Cd and Cu were ob-
tained by adding the corresponding chlorides to the
solution. To prevent an inhomogeneous impurity
distribution within the single crystals only small crys-
tals were used, which were grown from a large
amount of the appropriate solution. The impurity
concentration x was determined by chemical analysis.
The impurity content in the crystals was roughly 1.5
times larger than the corresponding concentration in

the solution for DMMC:Cd and 0.4 times for
DMMC:Cu. Single crystals of CMC were grown by

evaporation of a saturated aqueous solution of
MnC12. 4H20 and CsC1. The Cu doped crystals were

obtained by adding CuC12 to the solution. The Cu
concentration in the crystals was found to be 3 times
smaller than the concentration in the solution.

The three-dimensional-ordering temperature was
obt'ained from heat-capacity measurements on single

crystals of about 0.2 g, and was identified by the
maximum of the X anomaly. The error in TN due to
uncertainties in the calibration of the thermometer
and the "rounding" of the specific-heat anomaly did

amount to 10—40 mK. As the magnitude of the X

anomaly drastically decreases with increasing impurity
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FIG. 4. Behavior of T&(x) for DMMC:Cd, DMMC:Cu,
and CMC:Cu. Experimental data on DMMC:Cd are denot-
ed by open circles, data on DMMC:Cu and CMC:Cu are
denoted by black dots. The black squares represent data on
CMC:Cu obtained by Velu et al. (Ref. 23) from susceptibili-

ty measurements, and are plotted for comparison. The pre-
dictions assuming an isotropic intrachain interaction
(J/k = —3.0 K for CMC, J/k -—5.8 K for DMMC) are
represented by a dashed-dotted line. The drawn curves re-
flect the effect of an appropriate amount of anisotropy. The
dashed part of these curves indicates the region where the
actual partition function differs more than 2% from the
theoretical approximation. For DMMC T/t/(x) is calculated
for J/k = —5.8 and —6.5 K.

content, our measurements were limited to the re-
gion x &0.02 for DMMC and x & 0.04 for CMC.

First, we will discuss the results on impurity-doped
DMMC. The data are presented in Fig. 4. The
theoretical reduction of T~ predicted by Hone et.al. ,

9

which is represented by a dashed-dotted line, is about
40% smaller than the reduction following from the
experimental data on DMMC:Cd if we use an intra-
chain interaction J/k = —5.8 K. This value has been
obtained from an analysis of the heat capacity of
DMMC in the paramagnetic region. " The agreement
with the experimental data is significantly improved
by the introduction of an appropriate amount of an-

isotropy. The easy-plane anisotropy may be found

experimentally from the magnitude of the 'spin-flop
field. The anisotropy perpendicular to the easy plane
may be estimated from a dipole calculation based
upon the inferred magnetic space group P2~~/c

Although it is not fully established that the anisotro-

py in DMMC is completely dipolar in origin, the cal-
culated magnitude correctly explains the observed
magnetic phase diagram. ' In order to obtain a satis-
factory agreement with the experimental data on
T&(x), using the anisotropy parameters given in Ref.
15, we have to assume an intrachain exchange in-

teraction J/k = —6.5 K. This value is just within the
limits of uncertainty J/k = —5.8 +0.7 K given in Ref.

21, but seems somewhat high. Probably this may be
caused by the theoretical approximations mentioned
in the preceding section, although the quantitative
effect of these approximations is very hard to esti-
rnate. Just for comparison, we like to note that the
theory given by Hone et al. yields the observed
reduction of T~ for J/k = —8.2 K, which is far too
high.

In Fig. 4 we have also plotted the results on
DMMC:Cu. The experimental decrease of Tg(x) is
found to be almost equal to that for DMMC:Cd, indi-

cating a rather small host-impurity interaction J|H. A

rough estimate, based upon the theory developed by
Hone et al. for the isotropic case, yields an upper
limit of i J~ni/k =0.4 K. This situation is quite dif-
ferent from TMMC, where substitution of Cu has a
much smaller effect on T~ than substitution of Cd,
from which an impurity-host interaction J~n/k =1.4
K was inferred. ' This difference is rather surprising,
given the fact that the Mn —C13—Mn —C13 chains in
DMMC and TMMC are largely similar. "" One
might suspect that the relatively small effect of sub-
stitution of Cu on the ordering temperature of
TMMC is due to clustering of the Cu ions, but this is
somewhat unlikely, since also susceptibility measure-
ments give comparable results; J~H/k =1.6 K.' Mi-
croscopic determination of J~H seems necessary to
clarify this question.

The results on CMC:Cu are also plotted in Fig. 4.
Both the theoretical predictions for the isotropic and
the anisotropic case yield a reduction of Tt/ which is
larger than that shown by the experimental data. The
effect of anisotropy is not very pronounced, as might
have been anticipated (Fig. 1) from the rather high
value of the reduced three-dimensional ordering tem-
perature of CMC (T& =0.093) compared to DMMC
( T& =0.036). The calculated reduction of T&(x) for
the anisotropic case is somewhat smaller than that for
the isotropic case, which seems rather unphysical ~

This small discrepancy may result from the fact that
the theory outlined above is only strictly valid for
x 0, but may also be attributed to the approxima-
tive nature of Eq. (1). Inspection of Fig. 4 shows
that in CMC:Cu the host-impurity interaction is not
negligible. Since in CMC the anisotropy has only a
minor effect, JtH was estimated from the theory out-
lined in Ref. 9. The result is iJc„~„i/k =1.0 K. A

direct comparison of this value with the results on
DMMC:Cu and TMMC:Cu is not very meaningful,
since the magnetic chains and the intrachain interac-
tion in CMC are quite different from those in
DMMC and TMMC.

Next, we will consider the effect of an applied
magnetic field H. It is obvious, that the presence of
impurities reduces the intrachain correlations. On
the other hand, it has been found that these correla-
tions are enhanced by an applied magnetic
field. " ""As the theory presented in Sec. II is in
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FIG. 5. Magnetic phase diagram of DMMC:Cd for each
of the three principal directions. Data for x =0.779o and 0
are denoted by black and open symbols, respectively. The
theoretical curves are calculated using an intrachain interac-
tion J/k = —5.7 K.

principle also valid for H ~ 0, we thought it
worthwhile to investigate the magnetic phase diagram
of DMMC:Cd in order to study the competitive effect
of H and dilution both theoretically and experimen-
tally. In Fig. 5 the magnetic phase diagram of
DMMC:Cd (x =0.77'/o) is plotted for each of the
three principal directions for 0 (H & 90 kOe. The
open symbols denote the data for x -0, which are
plotted for comparison. For all three principal direc-

tions, the phase boundaries of the diluted system
display a more or less constant shift towards lower
temperatures with respect to pure DMMC, except for
the highest fields. The theoretical curves show the
same tendency. A detailed quantitative agreement
between theory and experiment could not be ob-
tained. Partly this may be due to the various approx-
imations mentioned in the preceding section, but one
should note that the phase boundaries were calculat-
ed using an intrachain interaction J/k = —5.7 K, ac-
cording to Ref. 15, instead of the value J/k = —6.5 K
giving the best description of T~(x). The qualitative
effect of dilution on the magnetic phase diagram,
however, is explained correctly by the present theory.

The fact that the data on DMMC:Cd show a more
or less constant shift towards lower temperatures
upon dilution is in remarkable contrast to the
behavior reported for TMMC:Cu, "where the shape
of the phase boundary observed with H perpendicular
to the chain direction changes drastically with increas-
ing impurity content. It is not clear whether this
discrepancy is caused by the impurity-host interaction
JC„M„ in TMMC or by a change of anisotropy in-

duced by the Cu ions. Additional measurements are
necessary to clarify this question. A 'more detailed
study of the behavior of the spin-flop transition in

DMMC upon dilution is in progress.
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