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We have performed Monte Carlo simulations on the random anisotropy axis model of Harris,
Plischke, and Zuckermann (introduced to describe amorphous magnetic films such as Dy-Cu or
Dy-Al) in the Ising-like limit of infinite anisotropy energy. The ground state of this model (stu-
died in samples of up to 20 x 20 x 20 spins) exhibits significant short-range ferromagnetic order
but no long-range magnetic order in three dimensions, supporting arguments of Pelcovits, Pytte,
and Rudnick. The specific heat shows a narrow maximum but no obvious critical behavior.
Relaxation studies provide evidence for a distinct stable low-temperature phase, but cannot
determine whether a sharp phase transition occurs. The spin susceptibility at higher tempera-
tures and magnetization as a function of field at low temperatures have been calculated.
Although the absence of critical behavior in the specific heat of this model in zero field is rem-
iniscent of some Ising spin-glasses, the magnetic behavior is indistinguishable from that of a fer-

romagnet with moderate coercivity.

INTRODUCTION

To describe the unusual magnetic properties of
amorphous intermetallic compounds containing non-
S-state rare-earth ions, Harris, Plischke, and Zucker-
mann'~ have introduced a random anisotropy axis
model or RAM. In these materials, magnetic ions
with asymmetric charge distributions interact with
their surroundings, giving rise to an anisotropy ener-
gy which in the low-symmetry amorphous environ-
ment will be of the easy-axis form. In amorphous
substances, one expects that the preferred axis orien-
tation will vary randomly from site to site with little
correlation, a hypothesis which is supported by direct
examination of computer models of amorphous me-
tallic structures.> Finally, since the magnetic species
are present in high concentration in these systems,
the exchange interactions seen are predominantly fer-
romagnetic.

Harris er al. incorporated these ideas in the follow-
ing model Hamiltonian:

3=-J35.5,-D 3 (#-5)?* . (1)
(if) i

where §,- is an n-component spin at site /, J is the
nearest-neighbor exchange-coupling constant, and the
unit vector #7; is the random easy-axis direction at site
i. The n;’s are distributed independently and isotropi-
cally. Although Harris er al. intended to model the
properties of amorphous TbFe;, the presence of two
types of magnetic ions make that system more com-
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plicated than Eq. (1). However, intermetallic com-
pounds of rare earths such as Dy and nonmagnetic
metals such as Al, Cu, and Ag have since received
careful experimental study,? and this model has been
applied to them.

Several authors have developed mean-field treat-
ments of Eq. (1), and predicted phase diagrams on
this basis,*™® with differing results. Harris and Zobin*
predicted a low-temperature ferromagnetic state for
small anisotropy, characterized by the ratio D/J, and
a spin-glass state for large D/J. Callen er al.’ con-
sidered the ground state only in a mean-field
analysis, and concluded that for all values of the rela-
tive anisotropy, the ground state was ferromagnetic.
Numerical study of random local mean-field equa-
tions by Patterson et al.® gave similar predictions of
ferromagnetism.

Monte Carlo calculations of the properties of Eq.
(1) with classical spins and various ratios of D/J, car-
ried out by Chi and various associates,’” have given
qualitative agreement with the magnetic phenomena,
such as coercivity and remanance, observed for the
amorphous alloys, but the resulting predictions about
the nature of the low-temperature phase or phases
have been ambiguous. Chi and Alben found the
lowest-lying states were magnetic even in the limit of
large D/J, but' Chi and Egami subsequently applied a
more elaborate computer algorithm and concluded
that the ground states were nonmagnetic. Harris and
Sung® have also simulated ground states of this
model, and report a significant energy difference
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between the lowest-lying spin-glass states and the fer-
romagnetic ground state.

Our interest in this model was stimulated by
theoretical predictions that it should not be magnetic
at all, and that mean-field theory should not apply.
Aharony’® has performed a 4 — € renormalization-
group expansion in the disordered phase, and found
a "runaway" to either a spin-glass state or to some
type of smeared transition. A simple argument gives
a physical interpretation to this runaway.'® Construct
a ground state for Eq. (1) by dividing the system up
into cells of linear dimension L. Let the spins be fer-
romagnetically aligned in each cell and oriented in a
direction which maximizes the energy gained from
the anisotropy term. The energy per spin gained in
this way will be « DL™/2 while the exchange energy
cost of the resulting random orientations, allowing
for relaxation of any mismatch over a distance L, is
o« JL™2. Below four dimensions a breakup into clus-
ters is favored, with a characteristic cluster size of
Lo (J/D)¥4-9,

Thus the runaway is a crossover to Ising-like
behavior in each cell, introducing on that scale some
sort of two-level systems, or "instantons." The runa-
way depends only on the dimensionality of the sys-
tem. Other factors, such as z, the coordination
number of a spin, will influence only the coefficients
in Lo. This argument leaves open the question of
whether the cells have any preferred relative order-
ing. However, Chen, and Lubensky,'! using the re-
plica technique of taking averages, have derived an
effective Hamiltonian for the large anisotropy limit of
Eq. (1). It is identical to the effective Hamiltonian of

an Ising spin-glass with random exchange interactions.'?

Pelcovits, Pytte, and Rudnick (PPR)'? have
presented a variety of independent arguments which
show that the ferromagnetic state is unstable below
four dimensions, when the number of spin com-
ponents is =2. Using expansions in powers of D/J
about the ferromagnetic state and the fact that x,(q)
remains gapless (i.e., « ¢72) to all order in D/J, they
show that 4 is the lower critical dimensionality for
model (1). Thus mean-field arguments cannot be re-
lied upon to give the phase diagram in two or three
dimensions.

A second reason for our interest in this model is
that quite analogous technical problems and experi-
mental uncertainties occur in spin-glasses. Massless
"replicon"'* modes cause instabilities in the spin-glass
mean-field theory. The physical nature of these
modes is a mystery, but they are a consequence of
isotropy .in the large scale, just as is the result,

X,(g) « g2, used by PPR. Similarly, some theoreti-
cal arguments suggest that d. =4 for spin-glasses,'* !’
yet a rich variety of phenomena are observed in ex-
periments on real materials as well as in computer
experiments in 2D and 3D. Even if the spin-glass
transition proves not to be sharp, but to be more like

the conventional glass transition, the profound differ-
ences between the low-temperature phase and a
paramagnetic system need to be understood. We
hope that close study of the borderline ferromagne-
tism which occurs in the RAM may provide some
guidance for dealing with spin-glasses.

In this paper we concentrate on the Ising-like
D — oo limit of model (1), since the experimental
systems of interest are known from high-field mag-
netization studies'® to have D/J >> 1. It is not clear
that the prediction by PPR of no ferromagnetism
below four dimensions can be reconciled with the ob-
served properties of, e.g., Dy-Cu films.!” Finally, the
D — oo limit permits different methods of calculation.
To make the two-level systems explicit, we write

S,=no; , )

where o;=+1 and |S| is set = 1 for convenience,
and obtain

X= E—J(ﬁ,-‘ﬁj)a',aj . 3)
(if)
This is a random-bond Ising model.

It has two soluble limiting cases. The infinite-
ranged version, in which the sum in Eq. (3) extends
over all pairs of spins, should give behavior appropri-
ate to Eq. (3) in sufficiently high spatial dimensional-
ity. This limit proves to be a ferromagnet. One-
dimensional chains with the Hamiltonian (3) are easi-
ly solved, and have a nonmagnetic ground state, with
only short-range magnetic order at 7 =0. We
describe these limits in Sec. II, and then present
position-space renormalization-group arguments
which suggest that the transition to ferromagnetic
low-temperature behavior occurs at a finite critical
dimensionality. Computer simulations are then used
to study model (3) in two and three dimensions. In
Sec. III, we consider ground-state properties of Eq.
(3) in three spatial dimensions. Finite-temperature
properties of the model in zero magnetic field are dis-
cussed in Sec. IV. In that section we make a qualita-
tive comparison of certain time-dependent phenome-
na in the RAM with the same properties in systems
known to have a phase transition. Section V reports
magnetic properties of the system in an applied field.
Our conclusions are collected and summarized in Sec.
VL

II. LIMITING CASES

The infinite-ranged limiting case of Eq. (3), in
which all pairs of spins are coupled,
3C.,,,=2'-J(ﬁ,-'ﬁj)(r,-a'j , (4)
i>j

for ] =<,j=<i =< N, is an interesting case to study.
This construction suppresses spatial variations in or-
dering by making all sites adjacent, and usually
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results in a model for which the exact solution is
identical to the mean-field-theory description of a
finite-dimensional system with the same type of in-
teractions. Thus it should describe the high dimen-
sionality limit of Eq. (3). We shall now show that in
this limit a ferromagnet is obtained.

Two cases will be of interest. If the original Hamil-
tonian (1) described Heisenberg spins (n =3), it is
most natural to assume that the #; are distributed
over the unit sphere with uniform probability. If the
spins in Eq. (1) are planar, or xy spins (n =2), we
shall assume the 7; to be uniformly distributed over
the unit circle. For convenience, we shall usually
describe only the Heisenberg case. Since Eq. (4) can
be rewritten

2
.= .

E";,'G',' (5)

i

IN =(5J)

1
2

the energy depends only upon the magnitude of the
magnetization. The lowest-energy states are those
which maximize the total magnetic moment of the
system.

A configuration which maximizes the magnetiza-
tion along some chosen direction 7y has all spins
pointing in the same hemisphere or half-circle, with
Ao as the polar axis; i.e.,

(AgS)) >0 (6)

for all i. Different choices of 7 give rise to at least
N distinct configurations, one of which will be the
ground state. The energies of the remaining states
produced in this way deviate from the ground-state
energy by relative amounts of order N™"/2. Thus this
set of low-lying states becomes, in the limit N — oo,
an isotropic set of degenerate ground states. Thus, in
contrast to classical vector spin models with no aniso-
tropy, the entropy per spin vanishes at temperature

7 =0 in the RAM as (InN)/N.

For each approximate ground state, defined by a
choice of 1y and the condition (6), an appropriate
choice of the signs of the {A;} (which have no physi-
cal significance) makes all o;=+1. This is just a
gauge transformation, in the sense Toulouse'® has in-
troduced, with each choice of 7, corresponding to a
natural global gauge for the description of the RAM.
Mattis!® has discussed random Ising models in which
the ground state can be gauge transformed into a
configuration with all o; equal. The model (4)
shares that property, but it holds for each of its many
ground states (in the limit N — o0), which are not
unique.

The spectrum of single spin-flip excitations from a
ground state of Eq. (4) is given by the probability
distribution of cos (8;) = (/¢-S;) over the hemisphere
or half-circle. For the Heisenberg model, the distri-
bution of cos (6,) is constant over the interval 0 to
1, while for planar spins the excitation density will be
proportional to [1 —cos(8;)2]17/2. In both cases, the
density of zero-energy excitations is finite, so a
specific-heat linear in T is expected. The ground-
state energy per spin in Eq. (4) is given by (#;-#;)J.
This is %J in the Heisenberg model, and 4J/#?
=0.405/ in the xy model. The ground-state moment
(m) is found by averaging (/y-A,;) over a hemisphere
or half-circle. The resultis (m) = %S for n =3, and
(2/m)S =0.637S for n =2.

Derrida and Vannimenus? have recently solved
this model at nonzero temperatures, and for arbitrary
values of D. Their results have a mean-field-like
form, and exhibit a paramagnet-ferromagnet transi-
tion at T, =J/n, where n is the number of spin com-
ponents, for all values of D. They obtain a specific
heat which is linear in 7T at low temperatures when
D — oo,

In contrast to the isotropic, ferromagnetic,
infinite-ranged RAM (4), the 1D version of this
model is nonmagnetic, and has only twofold degen-
eracy in the ground state. The ground state can be
constructed by aligning each spin with respect to its
left-hand neighbor. If we choose a gauge in which all
A; point in the same hemisphere, negative interac-
tions will occur whenever two successive axes are
more than 90° apart, as sketched in Fig. 1. For
Heisenberg spins, 1/7 of the bonds are antiferromag-
netic in this gauge, for xy spins, % This causes the
magnetization to tumble over as one moves along the
chain in constructing the ground state, with the result
that (m) =0.

Thomas?' has recently published a solution for ar-
bitrary temperatures of the 1D RAM in the limit
D — oo. He finds that

<(§i‘§i+n>)=(<§i'§i+1))" =exp(—n/Ly) , (1)

where the double brackets denote averaging over the
distribution of {f;} in addition to thermal averaging.
In the ground state, for Heisenberg spins, L, is
found to be (In2)~! = 1.44, while for xy spins it is
(In%-rr)‘I =2.21. Since every bond is satisfied, the
ground-state energy per bond is lower in 1D than in
the infinite-range model (4). The resulting energy
per bond is given by — (|4,A;|)J, which is -—%J for
n=3,or —(2/w)J for n =2.

/== 7=\N [\~ ~\//r s/ \/~\—/

FIG. 1. Ground-state configuration of spins in a 1D RAM I[see Eq. (4)]. Each spin is aligned with respect to its left-hand neighbor.
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One dimension provides an extreme example of
the destruction of ferromagnetic order through local
fluctuations. Negative interactions between the o;’s
defined in a particular gauge cause the average mag-
netization direction measured in the vicinity of a
point far from the origin to execute a random walk
over the surface of the sphere, soon leaving the vi-
cinity of the direction, iy, chosen at the origin. A
similar tendency is evident in 2D or 3D. If the n; are
assigned to the sites of a lattice with all (A;-79) > 0
for some choice of ry, the state with all o;=+1 is
certain to be unstable, since some of the spins will
experience net negative exchange fields. The distri-
bution of internal fields, h;, where

h;=2/(ﬁj‘ﬁj)0'j , (8)
J

is half the excitation energy for a single spin flip, was
found by sampling at sites of a 3D simple cubic lat-
tice with Heisenberg spins and is shown in Fig. 2.
Roughly one-fifth of the spins are initially unstable in
this case, so the "asperomagnetic" picture?? of a ran-
dom ferromagnetic state with spin orientations con-
fined to a hemisphere cannot hold in a finite-
dimensional RAM. Further calculation is needed to
determine whether this relaxation reduces {(m) to
zero, or leaves it nonzero.

The position-space recursion relations introduced
by Migdal®® and generalized by Kadanoff?* provide a
way to estimate the effect of dimensionality in this
model. The basic idea is that two spins b steps apart
on a d-dimensional lattice will interact through of or-
der 497! independent, or parallel, b-stepped paths.
The prescription for a recursion relation in 4 dimen-
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FIG. 2. Distribution of internal fields [see Eq. (7)] when
all spins point in a given hemisphere. Data are averaged
over 20 samples of 20 x 20 x 20 spins each. Note that a
large fraction of spins experience destabilizing fields.

sions is, therefore, to take b bonds in series, couple
groups of 547! of them in parallel, and use the result-
ing new interactions as input to the next stage. In
the low-temperature limit, the strength of b exchange
interactions in series is the magnitude of the weakest
interaction in the chain. The sign of the combined
interactions is the product of the signs of the consti-
tuents.” To combine several chains in paraliel, one
simply adds their interaction strengths.

Once a gauge, g, has been fixed, the bonds
Jy=J (A n;) are distributed between —J and J with
weight P(J;) = (2N~ + (wJ)'sin™' (J;) (for
n =3), and have average strength %J, ferromagnetic
in sign. Taking two such bonds in series gives

-’ik =Jsgn[(ﬁ,ﬁ,)(fr,ﬁk)] min[lﬁ,—-ﬁ,|, Iﬁjﬁk“ , (9)

decreasing the average bond strength to 0.1J. Taking
m chains in parallel increases the average interaction
strength m-fold. For two two-stepped chains in paral-
lel, as is appropriate to a two-dimensional lattice, the
result is still less ferromagnetic than the original
bonds. For 3D, four two-stepped chains in parallel
have an average strength of 0.4/, more ferromagnetic
than a single bond. The distribution of bond
strengths which results from summing Eq. (9) over
four intermediate sites, holding the two end sites
fixed, is compared in Fig. 3 with the original distribu-

1.0 T T T T
0.8 b
(b)\ /(a)
0.6 [ I
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<
8
g
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02 b
0.0 1 L 1
-3 -2 -1 (o] 1 2 3

bond strength

FIG. 3. Three distributions of low-temperature bond
strengths for the random-axis model, each for a sample of
960000 bonds. Plotted are (a) individual bonds, (b) chains
of two bonds each [obtained from Eq. (8)], and (c) sets of
four parallel two-bond chains.
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tion of interactions for a single bond of the RAM,
The Migdal procedure therefore suggests that there
will be long-range ferromagnetic order in the 3D
RAM, but only short-range correlations in 2D.

The prediction that the D — o« RAM (3) is fer-
romagnetic at low 7 above some critical dimensionali-
ty, d., is a plausible result, given the properties of the
infinite-ranged limit (4). We are skeptical, however,
of the conclusion that d. lies between 2 and 3, since
the Migdal-Kadanoff recursion in effect shifts bonds
from their actual locations, and does not respect frus-
tration.”” We find that 0.40 of the elementary square
plaquettes are frustrated in model (3) for Heisenberg
spins, regardless of dimensionality. [If the same frac-
tion (%) of antiferromagnetic bonds were present but

uncorrelated in their positions, 0.42 of the plaquettes
would be frustrated. The fact that the random bonds
are derived from the random angles defined at the
sites distorts the frustration statistics only slightly.]
In studies of 3D random-bond Ising models in which
the sign of a fraction of the bonds was reversed
without changing their strengths, ferromagnetic order
was found to be destroyed when roughly 0.35 of the
plaquettes were frustrated.?® In the RAM, the nega-
tive bonds are, on the average, weaker than the fer-
romagnetic bonds, so the loss of ferromagnetic order
should require a greater degree of frustration. In the
light of the studies of spin-glasses, and the position-
space renormalization-group arguments presented
here, it is at least possible that the RAM is a fer-
romagnet in 3D, and quite likely that it is ferromag-
netic for all d =4.

IIl. NUMERICAL STUDIES —GROUND STATE

The ground state of the RAM for Heisenberg spins
on 3D simple-cubic lattices was studied by computer
simulation. Samples were created by assigning values
of the A; with a random number generator, allowing
ni* to be uniformly distributed between 0 and 1, while
the azimuthal angle varied uniformly between 0 and
2m. Each sample was then cooled slowly, starting
from a random configuration of {o;}, using standard
Monte Carlo techniques.?’ Once cooled, samples
were repeatedly warmed to moderate temperatures
and cooled again, sometimes subjected to small exter-
nal fields, while the lowest-energy states and the as-
sociated moments were monitored. We searched ex-
haustively for single- and two-spin flips which
lowered the energy of the sample, and permitted flips
of four spins at the corners of a plaquette. This gave
no significant further energy lowering, nor did it
modify any spin correlations significantly. Correla-
tion functions (S;'S;+,) were obtained for each
ground state, using the actual spins defined by Eq.
(2). One sample of 20 x 20 x 20 sites was studied ex-
tensively at higher temperatures as well as near its

ground state, accounting for more than 20 hours of
computing on an IBM 370/168, or about 4 x 10°
Monte Carlo time steps per spin (since each attempt-
ed spin flip requires about 25 usec). Results for this
sample are reported in this and Secs. IV and V.
Smaller samples, several each with 16°, 123, 10°, and
83 sites, were also considered, since significant size
dependences were found in the low-temperature
properties.

The ground-state energy of the RAM with Heisen-
berg spins on the 3D simple cubic lattice was found
to be —1.11 £0.02J per spin. This translates into
—0.37J per bond, almost exactly halfway between the
results, — %J and —%J, found in the infinite-range
limit and the 1D case, respectively. It indicates that a
significant amount of local relaxation away from the
ferromagnetic state has taken place.

A second measure of the extent of relaxation away
from the ferromagnetic state is the internal field dis-
tribution. Figure 4 contrasts the distribution of A;
found in the ground state of our 20 x 20 x 20 site
sample with the unrelaxed distribution from Fig. 2.
The density of single spin-flip excitations, P(h), is
maximum at A =2J, and decreases to one fourth its
maximum value as # —0. The nonvanishing density
of excitations at zero energy implies that the specific
heat of this model will have a contribution linear in
T, although the Schottky anomaly associated with the
larger density of excitations around A =2J may dis-
guise the linear term at most accessible temperatures.
Using the data in Fig. 4, we estimate that the contri-
bution to the specific heat from single spin-flip exci-
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FIG. 4. Distribution of internal fields in the ground state
of a 20 x 20 x 20 sample. For comparison the ferromagneti-
cally aligned case shown in Fig. 2 is dotted in. P(h) is finite
at h =0.
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tations in this model is roughly

C(T) =0.1(T/J) +0.225(T/D? . (10)

The relaxed internal field distribution shown in
Fig. 4 is not a sensitive function of sample size.
Rather similar distributions were obtained in samples
of the RAM with 16, 123, and 87 sites. In particular,
the characteristic feature that P(h =0) =<0.25P,,,, is
obtained in all four sample sizes. In contrast to the
situation in systems with longer-ranged interac-
tions, 22 which act to reduce P(h =0) to zero, P(h)
for the RAM appears not to depend upon any
cooperative effects. It is therefore likely that an ap-
propriately constructed cluster model can give a good
account of the low-temperature thermal properties of
the RAM.

To determine whether the model is ferromagnetic
or not we have calculated spin-correlation functions
G(R) = (S5;-S;4r) for the 20 x 20 x 20 site sample as
well as for several smaller samples in their ground
states. These results, averaged over all pairs of spins
displaced by a given number of steps along a cube
axis, are plotted in Fig. 5. The nearest-neighbor
correlation function, like the ground-state energy, is
insensitive to sample size, but the decay of correla-
tions at greater distances proves extremely sensitive.
In a sample of 8° sites, G(R) decreases only to
=0.08 at a separation of 4 sites before the periodic
boundary conditions cause it to increase again.

G (R) decreased only slightly further in a 123 site
sample. Samples with 16 and 203 sites were large
enough, however, that G(R) decreased to zero
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FIG. 5. Spin-spin correlations in the ground state of the
RAM, averaged over pairs of spins along a cube axis, for
samples of various sizes: circles correspond to 20 x 20 x 20,
open squares to 16 x 16 x 16, open triangles to 12 x 12 x 12
and squares to 8 x 8 x8. Note the evidence for short-range
ferromagnetic order.

within numerical uncertainty. Repeating the calcula-
tions of G (R) on a different sample with 20° spins,
we reproduced the results in Fig. 5 to within £0.02.
The decay length analogous to L, which one infers
from Fig. 5 is approximately 1.5, not significantly
greater than its value for the 1D case.

We conclude, therefore, that there is a threshold
sample size necessary for accurate numerical investi-
gation of the RAM. Samples of linear dimension 10
or 12 may well appear ferromagnetic, especially if the
anisotropy coefficient, D, is not taken to be infinite,
but larger samples will have more of the characteris-
tics of a spin-glass. The samples studied by Chi
et al.” and by Harris and Sung® had only of order
1000 sites each. We suspect that the difficulty these
authors encountered in determining the nature of the
true ground state was a consequence of the small
sample sizes employed.

In studying the low-lying states of RAM’s of vari-
ous sizes we observed this sort of threshold size ef-
fect. The lowest-energy states of samples with linear
dimensions 8—12 sites tended to be weakly magnetic,
with magnetizations some 20% of the maximum pos-
sible. Larger samples, 16 or 20 sites on a side, had
moments of only 1 to 3% of the maximum in their
ground states. In all cases, however, states with
greater magnetization could be obtained with very lit-
tle cost in exchange energy, typically < 0.1/ per spin
above the ground state. We discuss these easily mag-
netized states further in Sec. V.

IV. FINITE-TEMPERATURE PROPERTIES
IN ZERO FIELD

The thermodynamic properties of our 20° sample
were determined by Monte Carlo runs at finite tem-
perature, with and without an external field term cou-
pling to the §,~. The results for the zero-field case are
reported in this section. Care was taken to average
the data over very long times to ensure precision.
Typically, 10000 Monte Carlo time steps per spin
(MCS) were used for each temperature low enough
(kT <1.5J) that there was evidence for magnetic or-
der beyond immediate neighbors.

The internal energy of the 20° spin Heisenberg
model is plotted in Fig. 6. In the infinite-ranged
RAM with D >> Jand Heisenberg spins, the internal
energy is zero® above the transition temperature.
(The analogous mean-field ferromagnetic transition
temperature for the 3D RAM would be £T/J =%z

=2.) Below this critical temperature, U(T), in units
appropriate for comparison with our 3D results, de-
creases to —0.75J. The observed U(T) in 3D is
lower at all temperatures, as a consequence of local
relaxation away from the ferromagnetic state. A
more interesting comparison can be made with the
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internal energy in the 1D RAM,
Uip( T /J == (52) (tanh (A7, /kT) ) an

This is also the one-bond, or lowest order contribu-
tion to the internal energy in the usual high-
temperature expansion of the free energy for model
(3). Itis indicated by the solid line in Fig. 6. In 3D,
ferromagnetic short-range order, which suppresses
thermal fluctuations, causes U(T) to decrease more
rapidly than the 1D curve. Since at the lowest tem-
peratures, not all bonds are satisfied, frustration
(which is absent in the 1D case) increases the
ground-state energy to —1.11J instead of —1.5J.
This effect is first seen near T =1.25, where U(T)
begins to saturate in the 3D model.

Direct examination of G (R, T) supports this in-
terpretation of Fig. 6. In Fig. 7 we show G(R,T) for
spins separated along the (0,0,n) axis, at tempera-
tures of 0.05, 1.0, 1.2, and 2.0J. At kT =1.2J, mag-
netic nearest-neighbor correlations are decreased by
only 25% or so from their zero-temperature values.
However, G (R) is changing rapidly with tempera-
ture, for roughly half of the decrease in each correla-
tion occurs in the temperature range from 7 =1.0J to
1.2J. By T=2.0, G(R) has become much shorter
ranged. The correlations prove to be reasonably iso-
tropic. Data from different symmetry axes, when

INTERNAL ENERGY

“00 05 1.0 15 20 25 30 35 40
KT/J

FIG. 6. Internal energy of a 20 x 20 x 20 sample of the
RAM in the Ising limit as a function of the temperature 7.
Data are averaged over 7500 MCS or more. The solid line
indicates three times the internal energy of a ID RAM.
Frustration accounts for the increase in the internal energy
at T=0.

plotted against separation distance, fall on the same
curves as the data in Fig. 7.

The specific heat obtained for our largest sample,
and as averaged over several smaller samples, is
shown in Fig. 8. At the lowest temperatures, the
data increase linearly or slightly faster with tempera-
ture. Using the excitation spectrum P () plotted in
Fig. 4, we can estimate the contribution of single
spin-flip excitations to C(7). P(h) was approximat-
ed as a constant contribution extending from A =0 to
4J, plus an isosceles triangle, with the same width
and three times the height of the constant back-
ground. The contribution to C(T) from these
processes, given by (10), is indicated in Fig. 8 by a
dashed line. Almost all of C(7) is accounted for in
this way at temperatures < J.

We can also use this formula to make contact with
experiments on Dy-Cu films. Data on Coey er al.”
are compared with this low-temperature prediction in
Fig. 9, and fairly good agreement is obtained. To fix
the temperature scale (T/J) in Fig. 9, JS? for the
Dy-Cu film was extracted from the high-temperature
susceptibility (#=19.7 K). The film for which the
data in Fig. 9 is plotted had a concentration of about
48 at.% Dy, which implies an average coordination
number of about 6, so our 3D sc lattice data should
be applicable without further adjustment. The good
agreement obtained shows that the Ising-like degrees
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1 2 3 4 5 6 7 8
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FIG. 7. Spin-spin correlations in a 20 X 20 x 20 RAM at
temperatures of 2.0, 1.2, 1.0, and 0.05J. The spatial separa-
tion R is n steps along the [001] direction. Observe the
marked decrease in the extent of correlation at 7=2.0/, in
contrast to the behavior up to 7=1.2J.
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FIG. 8. Specific-heat data for a 20 x 20 x 20 sample of the
infinite random anisotropy model (circles), and for
12 x 12 x 12 samples (squares). Dashed line indicates contri-
bution of single spin reversals, calculated using P(h). The

maximum value of the specific heat shows no size dependence.

of freedom do in fact dominate the thermodynamics
of this system at low temperatures. However, the
P(h) curves which explain the low-temperature
specific heat were not sensitive to sample size. Thus
the low-temperature excitations observed through the
specific-heat measurement are relatively local. They
give no direct information about the nature of
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FIG. 9. Data from Ref. 9 for Dy 43Cuqs,. The dashed
line represents our results for the Ising limit of the random-
axis model, with the temperature scaled appropriately.

cooperative effects over large scales which might oc-
cur close to the freezing temperature.

There is a rather narrow rounded maximum in
C(T) at T=1.3J. Such a maximum, seen at the or-
dering temperature of a more conventional system,
might be rounded due to finite size effects. As a test
for critical behavior, we compared curves for C(7)
obtained on several sizes of samples. C(7) in a con-
ventional ferromagnet sharpens up perceptibly as the
sample size is increased. This does not occur in Fig.
8. The same temperature appears to be the freezing
temperature by more intuitive criteria. [U(T) begins
to saturate, as discussed above, and some slowing of
equilibration times occurs, as discussed below.] But
there is no evidence for any critical singularity in the
specific heat near 7 =1.3J, just as is the case in spin-
glasses.’® There is a faint possibility that a weak up-
wards cusp occurs in C(T) at T =0.7J, and sharpens
slightly with increasing sample size. This might
result if the specific-heat exponent a =—1. But there
appear to be no associated freezing effects unique to
that range of temperatures.

We have also studied the 2D square lattice, with
planar spins, and anisotropy axes which are uniformly
distributed in angle in the plane of the spins, again
taking the Ising-like limit. Our observations for
C(T) are shown in Fig. 10. The curve is quite simi-
lar in form to the 3D results. The maximum is
rounded (and insensitive to sample size), and the
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FIG. 10. Specific-heat data for a 2D RAM (64 x 64 sam-
ple), with xv spins and random circular anisotropy. Up to
15000 MCS were taken in the vicinity of the peak. Qualita-
tive features resemble those for the 3D RAM with n =3
spins shown in Fig. 8.
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low-temperautre region appears to contain both 7 and
T? contributions.

We have examined the time dependence of the en-
ergy density in our Monte Carlo calculations to dis-
tinguish between low- and high-temperature
behavior. For each measurement the system was
first equilibrated at some temperature T, say 1.7/,
for up to 1000 MCS, using samples of up to
30 x 30 x 30 sites. T was then changed to a nearby
value, T3, say 1.4/, and the energy monitored as a
function of time as the new equilibrium was ap-
proached. This was done for both 7} > T, and
T\ < T,, for pairs of temperatures above the apparent
freezing temperature, near it, and below it. The
resulting energy relaxation curves are displayed in
Fig. 11(a). The temperature differences | T, — 7|
were chosen to make the resulting change in internal
energy of order 0.1/, The short-time behavior is per-
ceptibly temperature dependent. The time for the
energy to reach a steady state value is short at high
temperatures, longer in the vicinity of 7 = 1.3/, and
short again at low temperatures (7 < J). The relax-
ation time obtained in this way increases slightly with
increasing sample size near 7 =1.3J, but is insensi-
tive to sample size at higher or lower temperatures.

For comparison, we have performed similar obser-
vations on two systems known to have conventional
phase transitions, with divergent correlation lengths.
Curves for the 2D Ising ferromagnet, which has a
transition at 7 =2.3J, are shown in Fig. 11(b). Criti-
cal slowing down causes the lengthening of the equili-
bration time at 7 =2.2J in the 2D magnet. At lower
temperatures, in the ordered phase, equilibration
again occurs rapidly. The equilibration of the 1D Is-

ing ferromagnet, which has a transition at 7 =0, is
studied in Fig. 11(c). In this case, the equilibration
time increases monotonically with decreasing tem-
perature.

The increasingly rapid equilibration seen in the
RAM below T = 1.3/ suggests that there is a distinct
stable phase at low temperatures, in contrast with the
1D system, which orders only at 7=0. We have
seen similar behavior in spin-glasses with bonds of
random sign but constant strength (unpublished).
This evidence conflicts with the recent proposal of
Moore and co-workers'* that spin-glass ordering (and
by extension the nonmagnetic low-temperature phase
of the RAM) is a kinetic effect due to long equilibra-
tion times. Although they suggested that the 1D Is-
ing ferromagnet would provide a good analogue to
the behavior of a spin-glass at low temperatures, Figs.
11 show that the approach to equilibrium is much
more rapid in the RAM, at least over short and
moderate time scales.

Dynamical observations like those in Fig. 11 probe
only short time scales (of order 107 to 107 sec in
the physical system being simulated), and cannot dis-
tinguish long-lived metastable states from equilibri-
um. Figure 11(a) suggests a transition like a glass
transition, but does not rule out a sharp phase transi-
tion which exhibits no critical slowing down in the
nonequilibrium energy relaxation time. Calculations
by one of us®! on spin-glasses with interactions of
random sign have found weak slowing down of the
energy relaxation times close to the freezing tempera-
ture, although the relaxation time determined from
the decay of magnetization fluctuations in equilibri-
um does exhibit marked critical slowing down.*?
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FIG. 11. (a) Equilibration of the internal energy in a 30 x 30 x 30 spin RAM after a sudden increase in temperature. The
temperature changes studied were 0.3—0.8, 1.1-1.3, 1.4—1.7, and 1.9-2.5J. The system was allowed to equilibrate at the first
temperature for 400 MCS before each curve was taken. (b) Equilibration curves, analogous to (a), for a 60 x 60 spin Ising fer-
romagnet at temperatures 1.3—1.8, 2.2-2.5, and 4.0-5.0J. (c) Equilibration curves, analogous to (a), for a 1D Ising ferromag-
net with 1000 spins. The temperature pairs studied in (c) are 0.4—0.7, 0.7—1.0, and 1.4-2.0J.
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V. MAGNETIC PROPERTIES

Model (1) was originally proposed to account for
anomalous magnetic properties, in particular the tem-
perature dependence of the coercive field, in amor-
phous rare-earth—iron alloys. In this section, we re-
port results of our calculations of the magnetic-field-
dependent properties of the random axis model with
Heisenberg spins and anisotropy axes uniformly dis-
tributed over the surface of the sphere. Chi and Al-
ben’ have obtained hysteresis loops from computer
simulations at zero temperature for various values of
D, the anisotropy constant. Our calculations for this
model complement theirs by providing information at
finite temperatures, in the limit of D >> J. The
results of this section should be comparable with ex-
periment, if the RAM is in fact an appropriate model
for the rare-earth alloys.

Hysteresis loops, remanent magnetizations, and
coercive fields were obtained on 16 X 16 X 16 spin
samples, large enough to have nonmagnetic ground
states. In Fig. 12 we show results obtained at
T =0.3J and 0.8/ (magnetization and demagnetiza-
tion curves only). The data were obtained by cooling
the sample in the absence of a field, then changing
the field in steps of 0.1/ while allowing 1000 MCS for
equilibration at each value of field. At temperatures
above roughly 1.2/, the magnetization is reversible
on this time scale, and a longitudinal susceptibility

0.6 T T T

MAGNETIZATION

-0.6
-1.0 -0.5 0.0 0.5 1.0

Field (h, /J)

FIG. 12. Hysteresis loops for the RAM at temperatures
of T=0.3 (open data points) and T =0.8 (solid points).
The sample contained 16 X 16 x16 spins, and was cooled in
zero field for the start of each case. For each point, 1000
MCS were taken.

can be defined. Observation of hysteresis below 1.2/
is consistent with our identification of 7 =1.3J/ as the
freezing temperature 7,. By the usual experimental
criteria, this model can be said to have a spontaneous
moment below T, even though we find that the
lowest energy states are nonmagnetic. The differen-
tial susceptibility in finite fields is nonlinear. Even at
low temperatures, fields in excess of J are required
for the magnetization to approach its saturation
value, 0.5S per spin.

This magnetic behavior contrasts with the M (h)
characteristics one obtains for a uniform Ising fer-
romagnet on the same time scales. In the uniform
system, the hysteresis loops are square, rather than
rounded as in Fig. 12. The experimental literature on
rare-earth intermetallic amorphous films reviewed in
Ref. 2 contains many examples of hysteresis curves
which are rounded like Fig. 12. The coercive fields
of the amorphous films are relatively low at most
temperatures. By contrast, even close to the ordering
temperature in the uniform Ising system, fields com-
parable to J in strength must be applied to obtain re-
versal of the metastable magnetization in times less
than 1000 MCS.

To show the evolution of the hysteretic behavior of
the RAM with decreasing temperature we collect
demagnetization curves for temperatures 1.2, 0.8,
0.6, 0.4, 0.2, and 0.05/in Fig. 13. In each case the
sample was cooled to that temperature in a field of
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FIG. 13. Demagnetization curves for a 16 x 16 x 16 sam-
ple of the RAM. The sample was cooled in a field of 1.0/ to
temperatures of (left to right) 0.05, 0.2, 0.4, 0.6, 0.8, and
1.2J, before decreasing the field. 800 MCS of equilibration
were taken for each point plotted.
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REMANENT MAGNETIZATION

Temperature (kT/J)

FIG. 14. Remanent magnetization (the zero-field inter-
cept) and coercive field (zero-magnetization intercept) as a
function of temperature, extracted from the data in Fig. 13
for the 3D random-axis model.

1.0J. The field was then reduced in steps of 0.1 or
0.05J, allowing 800 MCS for equilibration at each
field value. The curves remain rounded to the lowest
temperature studied.

The intercepts of the curves in Fig. 13 are plotted
in Fig. 14. As is seen experimentally,? the magneti-
zation increases smoothly to its limiting low-
temperature value, while the coercive field remains
small down to temperatures roughly one-third of T,
before increasing dramatically. For large D/J, Chi
and Alben’ observed a coercivity of roughly 0.2zJ
(z =6 in our case) at T =0. This agrees with the
largest coercive field plotted in Fig. 14.

VI. CONCLUSIONS

In this investigation we have attempted to clarify
the properties of the random axis model (1) by re-
stricting attention to its extreme case, D — oo. Our
results support the hypothesis that the limiting model
(4) is a ferromagnet in sufficiently high spatial
dimensionalities, but is a spin-glass with short-range
ferromagnetic correlation in 3D. This confirms Pel-
covits, Pytte, and Rudnick’s prediction'? that fer-
romagnetism is unstable in the 3D random axis
model. Reference 13 leaves open the question of
whether the RAM becomes ferromagnetic in suffi-
ciently high dimensionality when D is large. The dis-
cussion of the infinite-range limit, which has a mani-
festly ferromagnetic ground state, suggests that it
does. In addition we find, within the uncontrolled
approximations of position-space rescaling, that the

model becomes ferromagnetic above some relatively
low spatial dimensionality. A Migdal-Kadanoff recur-
sion procedure gives a crossover between 2D and 3D.
We speculate that in fact ferromagnetism is stable
above 4D for any D.

Previous numerical studies’-® of the 3D RAM have
come to varying conclusions, some arguing for a fer-
romagnetic, others for a spin-glass phase at low tem-
peratures. We conclude that the observations of fer-
romagnetic behavior were an artifact of significant
short-range ferromagnetic correlations in small sam-
ples. For many purposes, simulations in samples of
20 sites on a side appear to be adequate. Naive
domain formation arguments suggest that the charac-
teristic length for ferromagnetic correlations goes to
zero as D — . However, the exactly soluble 1D ex-
ample shows that a characteristic length of 1-2 sites
persists for values of D large enough to restrict the
spins to have only Ising-like degrees of freedom. We
find a comparable persistence of short-range order in
3D.

Several connections can be made between this
work and recent studies of models of spin-glasses.
Ising systems with bonds of randomly varying signs,
a class of models including both the RAM and the
most commonly studied spin-glasses, have nonmag-
netic 1D ground states which can be constructed
trivially. There are also similarities between the
RAM and spin-glasses in the infinite-range limit,
since both have the unusual feature (for Ising
models) of having highly degenerate ground states.
The ground states of the RAM in the infinite-ranged
limit can conveniently be labeled by the direction of
their magnetization. The spin-glass ground states
have no analogous natural label. The magnetization
in the RAM is useful in characterizing the instability
of the ferromagnetic state below 4D. The instability
occurs as a direct consequence of frustration, as dif-
ferent ground states are preferred in different spatial
regions. It remains to be seen whether any similar
local characterization of locally rigid regions, or clus-
ters, can be constructed for spin-glasses. However,
the spin-glass is a more difficult problem in another
way. Mean-field theory breaks down for it in the
infinite-range limit, while in the infinite-range RAM
the frustration is irrelevant.

The RAM is quite successful in reproducing the
magnetic properties of the class of amorphous fer-
romagnetic films it was intended to model. The mag-
netization increases slowly over a wide range of tem-
peratures below Ty, rather than rapidly within a nar-
row critical region, as would be seen in a uniform
ferromagnet. The coercive field increases even more
slowly at first, but then becomes quite large at tem-
peratures well below the freezing temperature. Hys-
teresis loops in the RAM are rounded at low tem-
peratures.

Zero-field static properties are also in qualitative
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agreement with experiment. The specific heat at low
T, calculated by taking only single spin flips into ac-
count in the large D limit, agrees to within 20% with
the low-temperature data of Coey er al.!” for
Dyo.43Cugs;. The Dy-Cu films have such small
volumes that the peak in the magnetic specific heat
could not be resolved experimentally and compared
with our theory. However, Wenger and Keesom®®
found that the specific-heat maximum in classical
spin-glasses contains no sharp features, just as we ob-
serve for the RAM.
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