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The structure and stability of metallic glasses and the relationship between the constitution diagram and
glass formation in binary alloy systems is discussed on a quantum-mechanical basis. An ab initio
pseudopotential method is used to calculate the interatomic forces in transition-metal-free glass-forming
alloys. The knowledge of the interatomic forces allows a microscopic calculation of the structure and of the
thermodynamic properties of the crystalline, liquid, and amorphous intermetallic phases. The liquid and
amorphous structures are calculated using cluster-relaxation and thermodynamic variational techniques. We
show that the bonding in all stable phases arises from an optimal embedding of the neighboring atoms into
the attractive minima of the interatomic pair potentials —for disordered phases this is visualized by the close
matching between the minima in the pair potentials and the maxima in the partial pair-distribution
functions. The role of the traditional alloy-chemical factors r(i) size ratio, (ii) strong chemical bonding
(charge transfer and screening), and (iii) valence-electron concentration] in establishing this "constructive
interference" is elucidated. It is argued that the geometrical basis of all these structures —crystalline as well

as disordered —is tetrahedral close packing. For a majority concentration of the smaller atoms this leads to
Frank-Kasper phases; for a majority concentration of the larger atoms this leads to a random tetrahedral
packing based on icosahedral microunits. Thus the interrelation between the formation of topologically close-
packed intermetallic compounds, the formation of eutectic phase diagrams, and the formation of metallic
glasses is readily, and quantitatively, understood. The use of the pseudopotential technique restricts the
application of our method to simple-metal glasses, but we argue that many of our results apply to all
metalloid-free metallic glasses.

I. INTRODU(."TION

Since the early work of Klement, Willens, and
Duwez' on the rapid solidification of liquid metals,
a large number of alloys has been prepared as
metallic glasses. It is now widely believed that
nearly all metallic liquids would undergo a transi-
tion to a glassy state provided that crystallization
could be bypassed. Whether or not a glass forms
at a given cooling rate depends on thermodynamic
conditions that favor the disordered (liquid or
amorphous) relative to the crystalline state and
on kinetic conditions that inhibit crystallization.
In this paper we shall concentrate on the first
point. We want to explore the microscopic origin
of the interatomic forces that yield a relatively
low free energy for a disordered atomic arrange-
ment in some systems, while for other systems
a periodic structure is strongly preferred.

Several models have been proposed to explain
the relative stability of metallic glasses. They
are all based on the observation that glass forma-
tion occurs most easily in systems possessing a
deep eutectic minimum in the phase diagram and
is usually restricted to a quite narrow concentra-
tion region around the eutectic. 'The existence of
a deep eutectic may be related either to a very
high stability of the liquid relative to the crystal-
line solid phase or to a destabilization of the
crystalline mixture. 'The stabilization of the liquid

ha. s been related to packing effects or electronic
effects. Bennett and co-workers' suggested that
the smaller and softer metalloid atoms in transi-
tionmetal-metalloid glasses (e.g. , Pd, „Si„,Fe, „B„,
x 0.15—0.25) fill the large holes in a dense random
packing of hard spheres (DRPHS). From the size
and number of these holes one might predict a con-
centration of just 15 to 25% metalloid atoms, in
good agreement with some of the classical glass-
forming metal-metalloid alloys. However, this
model is unable to explain the stability of amor-
phous metal-metal alloys. Nagel and Tauc' used
a free-electron type argument and argued that for
Q= 2k+, where kz is the Fermi wave vector and

Q the wave vector of the first peak in the static
structure factor S(q), the Fermi level falls into
a minimum in the electronic density of states.
Thus the disordered state should have a relatively
low electronic energy. Nagel and Tauc's argu-
ment is built in analogy to the Mott-Jones formu-
lation of the Hume-Rothery rules for crystalline
alloys. Hume-Rothery's critical valence-electron
concentrations (VEC 's) correspond to the case
of a Jones-zone plane touching the Fermi sphere,
i.e. , ~Q

~

= 2k+ where Q is now a, vector of the
wavenumber lattice. In this case a gap opens in
the energy band at —,'Q and produces a minimum in
the density of states. Of course there are no
bands and consequently no band gaps in the dis-
ordered state, but Nagel and Tauc proposed that
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there should be a "pseudogap" which is manifested
through a minimum in the density of states. This
pseudogap must be isotropic and should lower the
electronic energy of the amorphous structure rel-
ative to a crystalline structure with anisotropical-
ly distributed gaps. If k~ is estimated in a free-
electron approximation (and the d electrons are
ignored in the count) the condition Q = 2k~ is in-
deed met for a number of metallic glasses. 'The

conjecture gains further support from the fact for
Q = 2k~ a straightforward extension of the Faber-
Ziman theory' ' for the electronic transport prop-
erties of liquid metals explains the negative tem-
perature coefficient of the electrical resistivity
found in many amorphous systems. However, re-
cent photoemission experiments" failed to con-
firm the predominantly s-like character of the
electronic states near the Fermi level of Pd8pSi20
postulated by Nagel and Tauc and low-temperature
specific-heat measurements' on amorphous Pd-
Si-Cu and Pd-Si alloys failed to confirm the mini-
mum in the density of states at E~. Esposito et
al."have criticized the use of the Faber-Ziman
theory for systems containing strong-scattering
transition-metal ions. In the free-electron limit,
the Nagel-Tauc theory reduces to a VEC rule
predicting optimum glass formation for a VEC
= 2 e/at. Giessen and co-workers" have pointed
out that among the Ca-based metallic glasses,
those with Mg and Zn (average VEC = 2.0) are the
least stable ones, whereas those with Al and Ga
(VEC = 2.4) and Cu, Ag, and Au (VEC = 1.6) are
much more stable. Hence the Nagel-Tauc rule,
though still an interesting conjecture, is far from
being universally accepted.

On the other side, Chen" proposed that the de-
stabilization of the crystalline mixture rather
than the stabilization of the liquid near the eutectic
composition is responsible for the easiness of
glass formation. Chemical affinity stabilizes
stoichiometric crystalline AB„AB,. . . phases
(cf. below). The destabilization of the crystalline
phases with higher A concentrations is thought
to be due to the mismatched energy arising from
the addition of atoms of different size to the crys-
talline phases and would explain the observed
eutectic compositions of 20-30% B atoms. This
parallels a conjecture of Turnbull" that there
might be alloy compositions for which the free
enthalpy of the amorphous solid is lower than that
of any single crystalline phase. In that case a
glass must be formed if the alloy is constrained
against crystallization in a two-phase mixture.

Giessen and co-workers" "pointed out that there
is a remarkable coincidence between glass forma-
tion and the formation of certain classes of stoi-
chiometric compounds such as Frank-Kasper"-

phases (Laves, p, , and g phases) and cementite
(Fe,C)-type phases. It is certainly worthwhile
to pursue this correlation somewhat further. In
Table I we present a classification of binary glass-
forming systems according to the chemical nature
of their components: simple metals (S), transi-
tion metals (T), rare-earth metals (R), and
meta, lloids (M). It is evident that the metallic
glasses may be grouped in three main classes:
(a) The now classical T-M glasses of the Pd-Si
type. " They are characterized by the simultaneous
occurrence of cementite-type crystalline com-
pounds, the chemical bonding in these systems is
at least of partially covalent character. In the re-
maining classes there is no evidence for any non-
metallic contribution to the bonding forces. The
S-S,"S-T,"and T-R (Ref. 20) glasses may be
grouped under a common heading. (b) They are
characterized by the formation of highly stable
(congruently melting) AB, Laves phases or closely
related Frank-Kasper structures (C aCu„Th, Mn»,
BaCd„, NaZn» types, etc. ) at majority concentra-
tions of the smaller B atoms. Glasses are formed
at a majority concentration of the larger A atoms.
In this region of the phase diagram there are no,
or only relatively unstable (peritectically decom-
posing), crystalline intermetallic compounds.
Some prototype phase diagrams are depicted in
Figs. 1(a) to 1(c). There appears to be a clear
correlation between the width of the glass-forming
region and the stoichiometry of the stablest in-
termetallic compound (the one with the highest
melting point; this correlation will be explained
in more detail later on). We shall designate this
group of metallic glasses as "anti-Laves phases, "
a term which has been proposed by Giessen" for
the Ca-based amorphous alloys. The third group
(c) contains the metallic glasses formed by tran-
sition metals only. " This class is characterized
by complex tetrahedrally close-packed structures
of the Frank-Kasper type, such as the p. and 0
phases. Contrary to the anti-Laves phases, the
glass-forming region overlaps with the usually
rather broad homogeneity range of the crystalline
compounds; a typical phase diagram is shown in
Fig. 1(d). While the crystalline phases belonging
to group (b) are usually strictly ordered and
characterized by a size ratio r„/xs ~ 1.15, the
phases of group (c) show a, tendency towards sub-
stitutional disorder with a size ratio r„/rs - 1.15.

In this paper we shall demonstrate that it is now
possible to explain the constitution diagrams and
the interrelation between glass formation and

phase diagram from a microscopic quantum-mech-
anical basis. To begin with, let us sketch the
path to be followed for an ab initio calculation of
a phase diagram:
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TABLE I. Classification of glass-forming binary metallic systems according to the chem-
ical nature of their components.

Class '
Glasses
(typical

composition)
Characteristic (most stable)

inter metallic compounds

T-M Pd 8pSlgp

Fe8oP~p

Pd&Si, Fe3P (cementite)
Pd~Si, Fe&P

group (a)

S-T

S-R

Mgzp Z n3p

Ca6)Mg33
Ca6)A133

Ca6() Z n4p

Ca65Pd3,,
Ca65Cu35

Tl6p He40

La)o Alsp

Cevphl, (

Gd6&Co3&

MgZn2
Ca Mg& Laves phases
CaAl&

Cazn, , CaZn„, Cazn,
CaPd2 Laves phase
Ca Cu; Frank-Kasper phases
Ti2 Be(7
TiBe2 Laves phase
LaAlg

Laves phases

Gd Co2 Laves phase
Gd Co5 Frank-Kasper phases
Gdo Co&&

group (b)

Nb6oNi4o

a6oNi4o
Fe55%4,g
Ta~)Ir 4)
Ta55Bh4;

"NbNi"
disordered p, phases"TaNi"

Fe&WG p, phase

0 phases with 60-80/0 Ta

group (c)

S—simple metal; T—trans ition metal„R —rare-earth metal; M—metalloid.

(1) Calculate the self-consistent atomic poten-
tials of the components. (2) Assume composition
(concentration). (3) Assume possible crystal
structure. (4) Assume lattice constants. (5)

Superpose atomic potentials, calculate self-con-
sistent band structure and electronic total energy.
(6) Repeat (5) for different values of the lattice
constants to determine their equilibrium values.
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FIG. j.. Typical phase diagram of glass-forming systems (after Ref. 21, cf. text).
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(7) Repeat (4) to (6) for other possible structures.
(8) Repeat (2) to (7) for other concentrations. As
a final result of this procedure we obtain the en-
thalpies of the possible alloy phases at T= 0 K and
at a given pressure as a function of concentration.
'The stable phases and the boundaries of their
homogeneity ranges are given by the well-known
common-tangent construction. Beyond the deter-
mination of the stable phases we can get at least
an indication on the possible formation of metas-
table phases, e.g. , if the system is constrained
against phase separation. " The procedure given
above is restricted to 7 = 0 K; for finite tempera-
tures we have to add the thermal entropy which is
the sum of a vibrational and a configurational part.
In principle this necessitates a complete know-
ledge of the vibrational and the defect structure
of the crystal. For configurationally disordered
systems there is an additional complication:
Starting with an initial guess for the interatomic
forces, we have to calculate the atomic structure.
For this atomic structure, we have to calculate
the electronic structure. This gives an improved
estimate for the interatomic forces and the whole
cycle has to be iterated to self-consistency. It
is quite clear that in general the realization of
this program is a tremendous computational
task. However, for simple metals pseudopotential
theory allows some substantial simplifications. "'"
Within second-order perturbation theory and linear
screening, the interatomic forces are simply
central pair potentials and volume forces, and the
problem of the total energy calculation is reduced
to the computation of lattice sums (in either direct
or reciprocal space) over the structure-indepen-
dent effective interatomic pair potentials. The
construction of appropriate interatomic potentials
for binary alloys is described in Sec. II. In Sec.
III we apply these potentials to calculate the
ground-state properties (relative structural ener-
gies, enthalpy, and volume of formation) of crys-
talline intermetallic compounds and solid solutions
in some glass-forming simple metal alloys
(Mg-Zn, Ca-Mg, Ca-A1, Ca,-Zn). We show that the
formation of close-packed Frank-Kasper phases'6
may be understood in terms of a pair-potential
picture. Once the interatomic forces are known,
the atomic structure of the disordered (liciuid or
amorphous) phases may be calculated either using
a fully numerical procedure (molecular dynamics,
Monte Carlo, or cluster relaxation) or using one
of the thermodynamic perturbation theories [Gibbs-
Bogolyubpv varjatipn methpd ' pr Weeks-Chand-
ler-Anderson (WCA) method]. " The results for
the liquid-state structural and thermodynamic
properties obtained by the variation method are
presented in Sec. IV. The results of a cluster-

relaxation calculation for a glassy Mgo, Zno 3
alloy' are discussed in Sec. p. We show that
within the pair-potential approach, the structure
of the amorphous alloy may be interpreted in a
way which is very similar to the interpretation
of the Laves-phase MgZn, . Moreover we show
that a supercooled liquid, described by the Gibbs-
Bogolyubov method is a very good first approxima-
tion to the structure of the glass. This allows for
the extension of the correlation between the pair
potentials and glass formation to a number of
other interesting systems. In Sec. VI we combine
the results of the three preceding sections in or-
der to derive the principal features of the phase
diagram from our ab initio calculations. This
allows for the elucidation of the interrelation be-
tween the phase diagram and glass formation on
one side and between the stability of Frank-Kasper
phases and glass formation on the other side.
Technically, the application of our methods is re-
stricted to transition-metal-free systems. 8ow-
ever, we think that most of our results apply to
transition metals too, the main problem being to
find an appropriate way to define interatomic pair
potentials.

Some of our results have been announced re-
cently in the form of a short letter. "

II. INTERATOMIC FORCES IN BINARY ALLOYS

Pseudopotential methods have been very suc-
cessful in describing the physical properties of
many pure simple metals. 3' The applicatipn of
the scheme to alloys was at first somewhat less
successful. This is related to the fact that the
pseudopotential is often considered as a purely
atomic property which is (except for conduction
electron screening effects) independent of the
atom's surrounding. In reality the pseudopotential
is a collective rather than an' atomic property.
It describes the scattering of electrons by an atom
in a given effective medium (the average potential
of all other ions and electrons in the crystal).
If this effective medium changes (e.g. , by alloy-
ing), the pseudopotential changes too. It might be
difficult to imagine how such effects could be in-
corporated in a parametrized model-potential
theory, but they appear in a very natural fashion
in an ab initio pseudopotential theory based on
orthogonalized plane waves (OPW's). " In an
A-B alloy we have to orthogonalize the conduction-
electron states to two different sets of core
states, those of the A and B ions. This is the
starting point for the derivation of an optimized
alloy pseudopotential which is a straightforward
generalization of Harrison's pure metal theory. "
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ing, the interatomic potentials follow very closely
the redistribution of the screening charges. The
change in the short-range part of the potentials is
equivalent to a shrinking of the Ca ion and an ex-
pansion of the Al ion. This is a microscopic ex-
planation for an effect which is well-known in the
metallurgical literature as the "chemical compres-
sion"" of an electropositive atom on alloying with
a more electronegative atom. If Ca is alloyed with
a still more electropositive metal, e.g. , with Li,
the effect goes into the other direction: The
screening charge is accumulated at the site of the
Li ion and reduced around the Ca ion; the effective
diameter of the Li atom shrinks, while the Ca
pseudoatom is slightly expanded [Fig. 2(b)]. Our
results corroborate Pauling's" early discussion
of the role of electron transfer effects in inter-
metallic compounds. We assume that the B com-
ponent in anA-8 alloy is more electronegative
than A. Thus the bonding in the alloy has some
ionic character, A. has a positive and B a negative
charge. This corresponds to the orthogonalization
part of our calculation (we refer also to the inter-
relation between effective charges and electro-
negativity as discussed by Hafner and Sommer").
According to the electroneutrality principle, the
stability of the compound is increased if the
charges in the atomic cells are reduced by a
transfer of electrons from B to A. This corres-
ponds to the screening part of our calculation.
It is remarkable that electrons are transferred to
the electropositive component —thus in the opposite
direction as in the formation of ions in ionic com-
pounds. The effects discussed here exist in all
alloys, but they are certainly more important in
alloys with large differences in the electronic den-
sity and in the electronegativity of both compon-
ents. A very clear example of their importance
will be given at the example of the series of
C aAl„C aMg„C aLi„Laves phases.

It is interesting to note that the position of the
first minimum in the pair potential of the pure
metals 2R „agrees very well with the interatomic
distance in a close-packed structure (= two times
the Goldschmidt radius R~, the metallic radius
for twelvefold coordination); Ca: R „=2.02 A,
R~=1.97 A:, Mg: R „=1.59 A, R~=1.60 A; Zn:
R

q
=1.42 A, R~=1.34 A; Li: R f =1.61 A, R~

= 1.56 A; Al: R „=1.43 A, R@=1.45 A. This
suggest that the radius R „(which varies on
alloying) is a more sensible measure of the effec-
tive atomic size than the rigid radius R„.

The configurational (structure-dependent) part
of the internal energy per atom of the crystalline
alloy is given by the sums"" Q, &, and Q, z&

ex-
tend over the A and B sublattice, respectively N
is the number of atoms in the crystal)

E„=— V r& -r&
2N i(i) ~(g~

g
4~ 4g

+ cd V»(r) fg»(r) —1]r'dr (2)

+2c„c~ V„~ x» r —1 x'Ch

Equations (1) and (2) allow an interpretation of the
structural stability in terms of pair interactions
and a first estimate of the structural energies.
For an exact calculation of E„, a reciprocal
space representation is preferable. ' '"

III. CRYSTALLINE ALLOYS

A. Tetrahedrally close-packed Frank-Kasper phases and
related structures

In the introduction we have pointed out that the
constitution diagrams of many glass-forming sys-
tems are characterized by the occurrence of
tetrahedrally close-packed intermetallic com-
pounds of the Frank-Kasper type. In a recent
paper we-have shown that the formation of Frank-
Kasper phases in binary alkali-metal systems
(Na, K, Na, Cs, K,Cs-hexagonal Laves phases, "
K,Cs, -hexagonal stacking variant of a p, phase")
may be explained by pseudopotential theory in
terms of an energetically very favorable packing
of a large number of atoms (high coordination
numbers) into the minima of the interatomic pair
potentials. As the first microscopic treatment of
such complex structures the theory was certainly
a success, though it must be admitted that from
the nature of the constituent metals —the alloys
are homovalent and thus electronic effects are
present, but rather small —the problem was still
quite simple. 'The formation of Laves phases of
Ca with Al, Mg, and Li (the first two systems
form glasses, while the last one does not) is a
rather more challenging problem. Classically,
the formation of Laves phases has been thought
to be determined by the requirements of sphere
packing. " If we require that both A. -A and B-B

Using the partial pair-distribution functions g, „(r),
we can write the configuration energy of an amor-
phous or liquid phase as (c„and ca are the con-
centrations of the A and B atoms)
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strong chemical bonding (large electronegativity
difference) between the components. Simon's law
is the counterpart of regard's law for mixed crys-
tal, which predicts the additivity of the atomic
volumes. The alloys considered here obey
Simon's law quite well (Fig. V). However, Simon's
law does not predict a strain-free configuration.
For larger size ratios, the contacts between the
larger atoms appear to be appreciably compres-
sed. Now, if we plot the nearest-neighbor diagram
in terms of the effective atomic diameters in the
alloy, the points representing the phases are
shifted along the line described by Simon's law;
those of the stable phases are now between the
lines of strain-free contacts. This demonstrates
that the formation of a Laves phase is governed
by the tendency to form as many strain-free
bonds as possible. This is illustrated in Figs.
3(a) to 5. The interatomic distances coincide
very well with the minima in the interatomic po-
tentials. Thus the physical principle for the bon-
ding in Laves phases consists in a lowering of
the electronic energy by packing as many atoms

as possible into the minima of the pair interac-
tions. The theory allows going one step further
and differentiating between the different stacking
variants of the Laves phases. In Table II we show
the calculated energy differences between the cubic
(MgCu, type) and the hexagonal (MgZn, and MgNi,
types) Laves phases. In agreement with experi-
ment, MgZn„CaMg„and CaLi, are predicted to
be hexagonal (MgZn, type) and CaA1, is predicted
to be cubic. This is an important test of our
theory since the structural energy differences are
the result of a close cancellation between electro-
static terms (which always prefer a cubic arrange-
ment) and band-structure terms. Since the near-
est-neighbor configuration is identical for all
three structures, the success of the structure
calculation tells us that our effective pair poten-
tials are very realistic even for larger distances.
In our treatment of the alkali-metal Laves phases"
we have shown that the free (i.e. , not determined
by space group symmetry) parameters of the hex-
agonal Laves-phase structures may be calculated
by minimizing the free energy in the configuration
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was the explanation of the K,Cs, structure. "
Figure 6 shows some preliminary results for the
Ca-Zn system: it is demonstrated that the inter-
atomic distances of the CaZn, (CeCu, type), CaZn,
(CaCu, type), CaZn» (BaCd» type), and CaZn„
(NaZn„ type) compounds fit very well into the
minima of the interatomic potentials (though it
must be admitted that the correlation is not com-
pletely idea, l for Zn-Zn neighbors —our calcula-
tion overestimates the radius of the Zn atom by
about 0.06 A, cf. Sec. III, possibly because of the
neglect of s-d hybridization effects). A complete
calculation of the thermochemical parameters of
this system is under way and we are quite opti-
mistic that we will be able to explain the relative
stability of these compounds.

A unifying feature of most of the crystal struc-
tures considered here is their coordination poly-
hedra (CN). The smaller majority atoms have
CN12 icosahedral coordination for the Laves, p. ,
and 5 phases, not or partially not icosahedral for
the CaCu5 BaCd]] and NaZn» structures. The
CN12 polyhedra are linked by larger interpene-
trating Frank-Kasper polyhedra (CN14, CN15,
CN16) for the first group of structures, and by
even larger polyhedra (CN18, CN20, CN22) for
the latter structures. "

FIG. 5. Interatomic pair potentials V;.(x) and partial
pair distribution functions g;~(x) for a Cao 33Ll.p 6y alloy
(cf. Fig. 3). The arrows indicate the interatomic dis-
tances in the CaLi& (MgZn2 type) Laves phase.

space of the atomic positions. A similarly suc-
cessful calculation has been performed for the
compounds considered here. Both the electro-
static and the band-structure forces prefer strong-
ly distorted, highly anisotropic atomic arrange-
ments and the observed highly isotropic structure
is the result of a very delicate forcebalance.
This is important since it shows that our theory
is accurate enough to explain the structure on a
local microscopic level.

We have also calculated the thermochemical data
for the alloys, e.g. , the enthalpy of formation
~(CaMg, ) = -3.6 Kcal/g-at. [expt. ~(CaMg, )
= -3.2Kcal/g-at. "]and the volume of formation
~n(caMg, ) = -9.2/ [expt. ~&(CaMg, ) = -5.6/."].
For the heterovalent alloys the calculation of~ is complicated by the fact that the electronic
effects described above required a reconsideration
of the structure-independent first-order contribu-
tion to the binding energy. This will be described
in a subsequent publication. '

Our pair-potential argument is not restricted to
I.aves phases, but may be extended to more com-
plicated intermetallie phases. A first example

B. Mixed crystals

Glass formation is usually restricted to systems
with a very low solid solubility. From our pair-
potential picture it is immediately evident that
due to the size difference a disordered arrange-
ment of the ions on a.ny possible lattice is ener-
getically very unfavorable. We calculate large
positive enthalpies AH and slightly positive vol-
umes 4Q of formation for mixed crystals in all
the systems considered. An example of our re-
sults for hep Ca-Mg mixed crystals is shown in
Fig. 8. (The calculated structures for the pure
metals are hcp for Mg and fcc for Ca. The cal-
culated energy differences between the fcc and

hcp polymorphs of Ca are extremely small. The
hcp mixed crystal is lower in energy for up to
80 at.%Ca; for larger Ca contents the fcc mixed
crystal is energetically more favorable, but the~ for the two structures are almost indisting-
uishable on the scale of our figure. )

C. Intermetallic compounds with compositions close to the
composition of the glass

The formation of a metallic glass clearly re-
quires that the possible intermetallic compounds
with a composition falling in or near to the glass-
forming region have a. higher or at least only
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lated A1B, and TiNi, structures will be examined.
These structures have been selected on the basis
of radius-ratio considerations. In Figs. 3(a) and

4(a) we compare the interatomic distances of hy-
pothetical Ca,Mg and Ca+1 compounds with the
CuAl„Mg, Cu, Mg, Ni, and the TiNi, structures
with the corresponding interatomic potentials.
The distances are calculated according to Simon's
rule [Eq. (4)], taking the atomic radii R „as de-
termined for the pure metals. In all cases the
electronic effects discussed above (substitution
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FIG. 8. Enthalpy 4H and volume 40 of formation of
a hypothetical hexagonal close-packed solid solution of
Ca and Mg.

I I

1.2 1.3
RA/R 8

FIG. 7. Nearest-neighbor diagram (after Pearson,
Ref. 37) for the I aves phases: D; is the atomic dia-.

meter, R; the atomic radius, do the interatomic dis-
tance. The dot-dashed line represents Simon's rule
tEq. (3)]. Dots D; and R; as for the pure metals,
crosses as deduced from the interatomic pair potentials
in the alloys. The arrows show the importance of the
renormalization of the size ratio and the strain parame-
ter by charge-transfer and screening effects.

of 8 „for the pure metals by the corresponding
R „for the alloy) yield a reduction of the strain
parameters for most bonds. For the AlB2,
MoSi„and TiNi, structures there is no energet-
ically favorable interrelation between distances
and potentials. The coordination is energetically
very unfavorable at least for some neighbors
[only the ca.se of the TiNi, lattice is shown ex-
plicitly in Figs. 3(a) and 4(a); the other two lat-
tices have even higher energies]. It is clear that
such structures with a rather anisotropic coordi-
nation cannot be stabilized by central pair poten-
tials alone. On the other side, the interatomic
distances of the CuAl„Mg, Cu and Mg, Ni lattices
fit rather well into the minima of the pair poten-
tials. We have estimated the relative configura-
tional energies of the crystalline and amorphous
phases in a very simple way by summing the pair
interactions over the nearest-neighbor coordina-
tion shells only [Eqs. (1) and (2), for the pair-dis-
tribution functions of the amorphous phases, cf.
Sec. V]. Our estimate predicts that the most stable
crystalline structures are Mg, Ni for Ca+i, and

Mg,Cu for Ca,Mg and Mg, Zn, the structural en-
ergy differences between the three lattices being
of the order d,Z-1200 cal/g-at. However, the
energy predicted for the glassy phase is nearly
the same: 4E relative to the most stable crystal-
line compound is hE= —280 cal/g-at. for a-Ca+i,
BE=100 cal/g-at. for a-Ca, Mg, and AE= 200
cal/g-at. for a-Mg, Zn. To test the reliability of
our estimate, we compare the estimated ~
[a-CaMg, -CaMg, (I.aves phase)]= 1500 cal/g-at.
with the result of the exact calculation AE = 2000
cal/g-at. and find a very reasonable agreement.
Considering that the disordered phase has a higher
entropy of formation we find that, in agreement
with Turnbull's conjecture, " the amorphous alloys
have a lower free energy than any single crystal-
line phase considered here.

The reason for the relatively low stability of
the crystalline compounds is easy to explain. The
average CN is 13.33 in the CuAl„Mg, Cu, and

Mg, Ni lattices, it is the same as the average CN
of the Laves phases. However, in contrast to the
highly isotropic (i.e. , all the bonds of one species
have the same bond length) coordination in the
Laves phases, the coordination is now quite aniso-
tropic [cf. Figs. 3(a) and 4(a)]. This reduces the
possibility of finding an energetically favorable
arrangement in terms of pair potentials. Further-
more, though the number of A-A and A-B contacts
is larger in the crystalline than in the amorphous
Ag compounds (cf. also Table III and Sec. V),
the number of B-B neighbors is much smaller.
A detailed comparison shows that while the energy
of the A-A interactions is approximately the same
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TABLE III. The numbers of nearest-neighbor correlations in amorphous and crystalline
alloys.

&xB&-x
Origin
atom

Amorphous
A B total average

Crystalline
B total average

Mgvp Zn3p

Mg7pZn3p
b

Ca6~Mg33
b

Ca33Mg67
b

Ca6~Al3~
b

Nb5pNi5p

Mg
Zn

Mg
Zn
Ca
Mg
Ca
Mg
Ca
Al
Nb
Ni

8.7 3.7 12.4
8.6 3.2 11.8
8.6 3.7 12.3
8.6 3.3 11.9
8.1 3.8 11.9
7.6 3.2 10.8
52 87 139
4.3 7.2 11.5
8.3 3.7 12.1
7.5 3.3 10.8
5.2 5.9 11.1
5.9 6.5 12.4

12.2

12.2

11.5

12.3

11.6

11.8

11
8

6
11

8
7
6.9

4
2

12
6

2

8
5.1

15
10
16
12
15
10
15
12

13.3

13.3'

13.3

13.4'

Calculated form the cluster PDF.
Calculated from the variational hard-sphere PDF.
The nearest-neighbor coordination numbers are the same for the CuA12, Mg2Cu, and Mg&Ni

structures.
Laves phase.
After Chen and Waseda, Ref. 63.
Average coordination number for the p,-phase Nb6Niv.

in the crystalline and in the amorphous states,
the A-8 interactions prefer the crystalline and
the B-B interactions the amorphous structure.
Since, due to electronic screening effects (cf.
Fig. 2), the B Binteracti-ons are very strong in
the alloy, this last contribution dominates.

IV. LIQUID ALLOYS

'The combined application of pseudopotential
and thermodynamic perturbation theories enables
one to calculate the thermodynamic and structural
properties of simple liquid metals and alloys
from a quantum-mechanical basis. 'The pseudopo-
tentials theory allows formulation of the internal
energy in terms of the effective pair potentials
(or energy-wave-number characteristics) and the
partial pair -distribution functions (or partial
structure factors).""Closed-form expressions
for the structure factors4' and the thermodynamic
quantities of hard-sphere mixtures are furnished
by Percus-Yevick theory. 4'~4 Both theories are
linked by a variational technique based on the
Gibbs-Bogolyubov inequality. " This inequality
states that if the Hamiltonian of a given system is
regarded as the Hamiltonian of a reference sys-
tem plus a perturbation, the free energy of the
system will always be lower than that of the
reference system plus the expectation value of
the perturbation (calculated with the structure
factors of the reference system). Our reference
is that of a mixture of hard spheres, the pertur-

V,~(o,q)
—V,q"= —,kBT, s,g =A, &, (5)

i.e. , the difference between the pair potential at
o,&

[with o» = —,'(o„+os), the potentials are addi-
tive] and it's minimum value is just equal to the
mean kinetic energy of free particles. The ob-
vious meaning of Eq. (6) is that the hard-sphere
diameters are the average collision-distances.
Furthermore it shows that they are determined
by the short-range part of the potentials only,
i.e. , by the depth of the attractive minimum and
the steepness of the repulsive part. Equation (5)
is also accurate enough to serve for an approxi-
mate determination of the hard-sphere diameters.
Details of the application of the Gibbs-Bogolyubov
technique have been described elsewhere, "so
only the final results will be presented here.

The method yields both the structure and the
thermodynamic quantities. In Fig. 9 we compare
the theoretical structure factor and the pair dis-
tribution function for liquid Ca with the experi-
mental results of Waseda et a/." The agreement
is quite impressive and tells us that the repul-
sive part of the Ca-pair potential is sufficiently
hard-core-like to make our approach realistic.
Similar results for other metals can be found in
an earlier paper. " No experimental investigation

bation is the deviation of our pair potentials from
a hard-sphere behavior, and the hard-sphere dia-
meters will be chosen to minimize the free ener-
gy. The resulting hard-sphere diameters cr„, oa
obey very well the relation
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FIG. 9. Static structure factor S(q) (a) and pair dis-
tribution function g(~) (b) for liquid Ca at T = 850 C.
Solid line theory: the dots represent the experimental
results of Waseda et al. (Ref. 49).

of the liquid structure of one of the alloys con-
sidered here is known.

A comprehensive calculation of the thermody-
namic properties over the entire concentration
range has been performed for the Ca-Mg system,
because this is the only alloy for which complete
experimental data are available. ""Our results
for the free enthalpy 4G, the enthalpy ~, the
entropy AS, and the volume 4Q, of formation are
shown in Fig. 10. Taking into account that we
are calculating extremely small energy differ-
ences, the agreement with experiment is exceed-
ingly good. The asymmetry in the AG curves
(the maximum of the theoretical curve is at
-65 at. % Mg; expt. at -54 at.%Mg) shows that
there is no particular stabilization of the melt at
the eutectic composition (=27 at. % Mg). It is not
necessary to assume the formation of CaMg,
associates" in the melt to explain the- concentra-
tion dependence of AG. 'The asymetry in 4G re-
sults from the asymmetry in the dense random
packing of two different kinds of spheres. For
purely geometrical reasons it is easier to achieve
a high packing density (yielding a lower energy)
at a majority concentration of the smaller atoms
than at a majority concentration of the larger

0.50'

0.4t

Ca

FIG. 10. Free enthalpy ~G, enthalpy 4H, entropy
48, and volume 40 of formation, and the packing frac-
tion q for liquid Ca-Mg alloys. The points and crosses
represent the calculated values at T = 900 'C () and T
= 700 C (&&); The continuous line represents the ex-
perimental results of Soimmer et al. (T = 737 'C, Ref.
50), and the broken line the 4G (for T= 923 'C) quoted
by Hultgren et al. (Ref. 51).

atoms. This is evidenced by the concentration
dependence of the volume of formation and of the
packing density (cf. Fig. 10). The change of the
mean atomic radius 7 is very small over the en-
tire concentration range ar s 1%. This suggests
the possibility to extend Simon's rule of additive
interatomic distances to disordered close-packed
systems. There is a slight. inflection in the AG
curve at -33 at.%Mg, which of course should not
exist in a completely miscible system. So at this
stage it is certainly a spurious effect due to the
limited accuracy of our calculations. Nonetheless
there is a possibility that this a remnant of a ther-
mal effect found in the glassy state. " We will
come back to this point in Secs. V and VI.

Again it is very instructive to study the interre-
lation between the pair potentials and the inter-
atomic distances as given by the partial pair dis-
tribution functions (Figs. 3 to 6). From Eq. (2)
it is clear that if the minima of the pair potentials
coincide with the maxima of the corresponding
partial pair distribution functions, the integrand,
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V(y)[g(r) —1] will be negative over the largest
part of the integration range, yielding a very low
configurational energy. We see that this "con-
structive interference" between V(r) and g(r) is
realized over the entire range of Ca-Mg alloys.
We note that the physical. mechanism for the
stabilization of the liquid alloy is identical to
that for the stabilization of the Laves phase.

The conditions for this type of interference
occurring depend on the size ratio and on the com-
patibility of the wavelength of the oscillations in

V(r) and g(r) As. ymptotically, they go as

and

V;;(r)- cos(2k~x)/x'

[g,,(x) —1]—sin(Q, p')/r,

(6)

The first realistic approach to the structure of
metallic glasses was the Polk hypothesis, '"

where k~ is the Fermi wave vector and Q, &
is the

wave vector where the partial structure factor
S,.&(q) has it's first maximum. The Q,.& are related
to the hard-sphere diameters by a phenomenolog-
ical relation due to Bletry":

Q;q= —7.64 -4.32 —1
1 (8)

OiJf g

with the average sphere diameter g =c„o~+c~a~.
At the first look, Eqs. (6) and (7) point to the

Nagel-Tauc rule Q;&= 2k~ and suggest an inter-
pretation of 'this rule in terms of a pair-potential
argument, as proposed by Beck and Oberle. "
Upon closer inspection we see that due to the
different size of the components (Q„„+Q» & Q» ),
a constructive interference of all three g,.&(x)

(which do not oscillate in phase) with the corres-
ponding V,.&(x) (which oscillate in phase) is im-
possible in the asymptotic region. Anyway, this
is not very important, since the amplitude of the
oscillations is strongly damped. 'The matching
between the interatomic distances and the minima
of the potentials is more important for short and

intermediate distances, where V, ,(x) (especially
that of the minority atoms) deviates quite substan-
tially from its asymptotic form. In this region,
the existence of an energetically favorable inter-
relation between V, &(r) and g, &(j ) is a mo. re com-
plicated function of the atomic radii [which deter-
mine the wavelength of the oscillations ing, &(r)

and the initial phases of both g,~(x) and V„(v)],
the valence electron concentration (VEC) [which
determines kz and hence the wavelength of the
oscillations in V;&(x)], and of the electronegativity
difference (which determines the renormalization
of the atomic radii through electronic bonding ef-
fects).

V. AMORPHOUS ALLOYS —METALLIC GLASSES

which assumes that quenched amorphous alloys
can be described by the Bernal dense random
packing of hard spheres (DRPHS) model. " Von
Heimendahl" and Barker et a/. " independently
made the important step of relaxing the Bernal
model structure under assumed pair potentials
of a Lennard-Jones type. Very recently, von
Heimendahl introduced two essential improvements
in the relaxation process": (i) The interactions
between the atoms are described by the pseudopo-
tential-derived pair potentials calculated by the
present author and (ii) periodic boundary condi-
tions. The last point allows elimination of sur-
face effects, such as unphysical density fluctua-
tions which arise when finite clusters are used
to simulate bulk properties. The use of realistic
pair potentials accounts for the two-component
nature of the metallic glass and for the chemical
processes in the formation of the alloy. It con-
stitutes an important improvement over Lennard-
Jones-type potentials, especially for higher than
nearest-neighbor interactions.

The starting point of the relaxation calculation
was a cluster of 800 atoms inside a regular
rhombic dodecahedron, taken from the center of
kinney's big DRPHS model. ' The pair potentials
are used to calculate the total force F(r, ) on the
atom situated at ry While all other atoms are
kept fixed at their positions, one can calculate
the displacement 6r, necessary to move the atom
into a force-free position r, = r, + 5r, . In the re-
laxation procedure the 5r, of all atoms are cal-
culated and stored. Then the new positions r,"
are calculated by adding a certain fraction of
6 ry to ry Starting from the new posit;ions, the
whole procedure is repeated until the latest set
of 5r, is negligible. This relaxation algorithm
is essentially equivalent to the steepest-descent
algorithm described by Hoare. "

The result of von Heimendahl's calculation for
the partial pair -distribution functions and the
partial structure factors of the Mg, ,Zn, , glass
are shown in Figs. 11 and 12. They show the
structure in the second peak which is usually ob-
served in amorphous systems the S„(q) may be
used to calculate the intensity for the elastic
scattering of neutrons and x rays. In Figs. 13(a)
and 13(b) the theoretical results are compared
with the experiments of Rudin. ' For the neutron
scattering the agreement with experiment is quite
excellent, apart form a slighly underestimated
splitting of the second peak. The main peak in
the x ray scattering intensity I(Q)»es at Q
=2.56 A ' (theory); respectively, Q =2.68 A '
(experiment), again with a quite good overall
agreement. If we try to interpret these results,
we have to consider that the x-ray smttering
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FIG. ll. Total and partial pair distribution functions
I, &; (x) for the Mgo VZno 3 glass. The histogram shows
the result of the cluster-relaxation calculation, the
continuous line the result of the thermodynamic var-
iational technique (T=25 C). The average and the par-
tial interatomic potentials V;~(r) are shown in the inset
(right-hand scale).

form factor of Zn is much bigger than that of Mg,
-75/~ of 1(Q) originates from the Zn atoms. Hence
we can conclude that our Mg potential seems to be
very accurate, while our Zn potential yields Zn-Zn
distances which are approximately 0.12 A larger
than found in the experiment. This agrees with
our prior estimate (Secs. II. and IIIA).

In Fig. 11 we can again compare the potentials
and the pair distribution functions. It is no longer
surprising that there is again a one-to-one cor-
respondence between the minima in the V;&'s and
the maxima of the g,-&'s. Thus, the glass is stab-
ilized by the same close-packing mechanism than
the Laves phase and the liquid alloy.

It is worthwhile to pursue this last correlation
somewhat further. Nearly every review article
on metallic glasses starts with the comparison
of the structure factors of the liquid and the glass.
The intermediate state —the supercooled liquid-
is generally not accessible to experiment. There

is no such problem for a theoretical investiga-
tion. We can apply our Gibbs-Bogolyubov varia-
tional technique to room temperature. For a
supercooled Mg, Zn& alloy at T = 25 C we get 0~,
= 2.76 A, o.„,= 2.96 A, corresponding to an average
packing density of hard spheres of g=0.62. The
variationally determined hard-sphere pair-distri-
bution functions (PDF's) and structure factors
compare very well with the result of the cluster-
relaxation calculation (Figs. 10 and 11), the posi-
tion, height, and shape of the oscillations are
very well reproduced. " This result is important
for two reasons: (i) It demonstrates that except
for some degree of short-range order (which is
manifest in the splitting of the second peak), the
structure of the glass is identical to that of the
supercooled liquid and (ii) it allows the study of
the interrelation between the PDF's and the pair
potentials without the expense of a full cluster-
relaxation calculation. In Figs. 3 to 6 we display
this relationship for the systems Ca-Mg, Ca-Al,
Ca-i. i (with the o,&'s calculated using the full
variational technique) and Ca-Zn [with o,&

esti-
mated using Eq. (5)] both in the liquid and super-
cooled liquid (=amorphous) states. For the Ca-Mg,
Ca-Zn, and Ca-Al systems, the potentials and the
PDF's are very well "in phase" over the hole
range of nonnegligible interionic forces. For Ca-
Mg and Ca-Zn this is true for all concentrations,
while for Ca-Al, the PDF's and V,.&(x) are well
in phase on the Ca-rich side, but as the Al con-
tent is increased, the maxima of the PDF's move
out of the minima of the potentials for second
and higher neighbors. For the Ca-Li system we
have QL, c,= 2k~, so one would expect a similarly
favorable PDF-V,.

&
relation. However, due to the

large size difference (oL, /oc, =0.65), the second
peak in the PDF is split and the second neighbors
are shifted to energetically less favorable dis-
tances, this correlates with the fact that the con-
stitution diagram of Ca-Li is of a peritectic type
and that there is no glass formation in this sys-
tem.

It is interesting to compare our results with
some recent experimental information on T-'T
glasses. In 'Table III the theoretical coordination
numbers (CN) for our Mg-Zn, Ca-Mg, and Ca-A1.
glasses, calculated from g,&(r) according to the
prescription of Sadoc and Dixmier, "are listed
together with the results for a Nb-Ni glass, de-
rived from the experimental g,&(r) of Chen and
Waseda. " Of course the HS model does not show
any preferred coordinations, but we see that this
is also the case for the cluster calculation and
for the experimental CN. The total CN is nearly
constant =12 and there are only very small dif-
ferences in the coordination of the larger and
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FIG. 13. (a) Elastic coherent x-ray scattering inten-
sity I(Q) for the Mgp yZnp 3 glass. The points represent
the result of the cluster-relaxation calculation, with the
x-ray form factors fI and f» calculated by pseudopo-
tential theory. The continuous line is the measured
scattering intensity. (b) Interference function S(Q) for
coherent elastic neutron scattering by a glassy
Mgp 7Znp 3 alloy. The dots joined by a full line shows
the result of the cluster-relaxation calculation. The
shaded area represents the spread of the experimental
points The experimental data have been kindly com-
municated by H. Rudin prior to publication (Ref. 60).

smaller atoms. This is in marked contrast to
T-M glasses where unlike-atom pairs are strongly
preferred, but appears to be a common fact of
all group (b) and (c) (cf. Table I) glasses.

The concentration dependence of the interatomic
distances demonstrates another common aspect.
The interatomic distances (for simplicity we take
the HS diameters cr, &) in amorphous Ca-Mg, Ca-
Al, Cu-Zr, and Nb-Ni alloys are shown in Fig. 14.
We see that the contraction of the A-A and A. -J3
distances (where A stands for the component with
the lower electronegativity) is common to many
metallic glasses. In Sec. II we have shown that
this contraction arises from a charge transfer
due to orthogonalization and screening effects.
Similar charge transfers, possibly involving d
electrons may be expected for T-T glasses.

Finally, the Gibbs-Bogolyubov method permits
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FIG. 15. Free enthalpy AG, enthalpy 4H, entropy
4$, and volume 40 of formation, and packing fraction
g of supercooled liquid (- amorphous) Ca-Mg alloys at
T = 25 'C (relative to the supercooled pure metals).

at least an estimate of the thermodynamic prop-
erties of a metallic glass. The results for Ca-Mg
at room temperature are shown in Fig. 15. They
are similar to the results for the liquid alloy:
and AQ are asymetric due to packing effects, 4S
deviates substantially from the ideal (parabolic)
form. The main point is that there is no minimum
of AG in the glass-forming region. The formation
of a glass is determined by several concurring
factors. It is interesting that the AG curve is
concave at -35%Mg. If this is not a spurious re-
sult, it means that the supercooled liquid tends to
phase separate into liquids with -15% and -50%Mg.
St. Amand and Giessen" note that "in the Ca-Mg
system, heating may result in phase separation
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of a single glass into two glasses. " This point de-
serves further investigation.

The predicted volume of formation should not be
directly compared to the experimental density of
the glass. As pointed out by Chen and Jackson, "
the specific volume of a metallic glass depends
on it's thermal history. The thermal expansion
coefficient changes discontinuously at the glass
transition temperature, which in turn depends on
the cooling rate. Thus our calculated density is
rather an upper bound than the realistic value.

0

E
p9

Ch

Qo -2

c9

T=700' C T= 420'C

VI. PHASE DIAGRAM AND GLASS FORMATION

We can combine the results of Secs. III-V to
derive the phase diagram and the essential cri-
teria for the glass formation. However, there is
still a "missing link" in our theory: Our results
for the crystalline phases refer to T = 0 'K; we
have to calculate their thermodynamic proper-
ties. For the pure metals this constitutes, at least
in principle, no difficulty. We know that our
pseudopotentials yield very accurate phonon spec-
tra,"thus we can directly use this information
to calculate the vibrational energy and entropy in
a quasiharmonic approximation, or even add an-
harmonic corrections. This method has been used
to treat temperature-induced martensitic transi-
tions. "'" Another possibility would be to use a
Gibbs-Bogolyubov variational method, the refer-
ence system being now a solid with a Debye" or
an Einstein" spectrum. Here we shall content
ourselves with an even simpler estimate. We
calculate the Debye temperature from the phonon
dispersion relations: Mg 8D = 390 'K [expt. 8n(T
= 0 'K) = 396 'K];Ca 8~ = 235 'K[expt. 8D (T = 0 'K) = 230
'K]." Taking a temperature-independent 8n, and
computing the free energy in a quasiharmonic ap-
proximation, we calculate the melting points of
the pure metals: T„(Ca)-1400 'C, [expt. Tz(Ca)
= 850 'C]; T~(Mg) - 800 'C, [expt. T„(Mg) = 650 'C]
with a reasonable accuracy. In order to account
in a global way for anharmonic effects, we adjust
the energy difference between the solid and the
liquid in such a way that our simple estimate
yields the correct melting temperature. The re-
quired adjustment is quite small, only 8%(Mg)
and 15%(Ca) of E,(T„) F,(T=O) For th-e. mixed
crystal we assume an ideal entropy of formation
4$; M for the Laves phase is taken from experi-
ment (Mc~„= —0.2 cal/g-at. K),"both assump-
tions having no influence on the following.

We have now collected all necessary ingredients
for constructing AG diagrams as a function of tem-
perature. The limits of stability of the different
phases are determined by a common-tangent con-
struction [Fig. 16(a)]. In this way we derive a

900-

700

Ca Mg Co Mg

FIG. 16. Free enthalpy &0 of formation (relative to
the pure liquid, respectively supercooled liquid metals)
of Ca-Mg alloys at T=700 'C and T=420 C (i.e, close
to the recrystallization temperature): —solid solu-
tion, &&—liquid (respectively, supercooled liquid)
solution, O—Laves phase. The error bars represent
the estimated uncertainty, the full line is a tentative
interpolation. The common-tangent construction for the
determination of the phase diagram and of the glass-
forming range is indicated (cf. text).

fully realistic phase diagram [cf. Fig. 1(a)]. The
melting temperature of the Laves phase is some-
what overestimated, since the theoretical bG is
lower than the experimental one. for the Laves
phase and vice versa for the liquid alloy. In view
of the extreme difficulty of the problem, this is
certainly a success. The picture demonstrates
very clearly in which manner the eutectic compo-
sition is determined by the relative magnitude of
G for the liquid and crystalline phases.

A similar plot may be constructed for a tem-
perature below the lowest eutectic [Fig. 16(b)].
W'e see that there is a limited concentration range
in which 4G of the supercooled liquid is very close
to the straight line representing the (Ca+ CaMg, )
two-phase mixture (in interpolating the b,G values,
we ignore for the moment the inflection at -33%
Mg, cf. the discussion in the previous section).
If the system is constrained against phase separa-
tion (this is now a. kinetic condition) glass forma-
tion will occur with great ease.

These diagrams show the way in which both the
destabilization of possible crystalline phases and
the stabilization of the disordered (liquid or amor-
phous) phase cooperate in the formation of me-
tallic glasses. 'The width of the glass-forming
range is limited by the stoichiometry of the stable
intermetallic compounds. If the maximum sta-
bility occurs at a higher concentration of the
smaller B atoms (this is the case for a higher
size ratio 8„/As, e.g. , in the Ca-Zn system),
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the diagrams of Fig. 16 are somewhat more asym-
etric. The 4G curve of the amorphous alloy will
be parallel to the two-phase line over a broad
concentration range. This explains the correla-
tion between the width of the glass-forming region
and the component size ratio noted by St. Amand
and Giessen. "

The energetics of phase stabilization and de-
stabilization may be understood in terms of our
pseudopotential approach. The geometrical prin-
ciple underlying all stable phases, both ordered
and disordered, is tetrahedral close packing. At
minority concentration of the larger A atoms,
this leads to structures formed by interpenetrating
coordination polyhedra: icosahedra around the
smaller B atoms, larger Frank-Kasper and

Friauf polyhedra around the larger A atoms. At
a majority concentration of the larger atoms,
we have again a coordination in the form of tri-
angulated coordination shells, typically CN= 15
around the larger and CN= 1Q around the smaller
atoms (CuAI„CuMg„and NiMg, structures").
The CN for A-A contacts is now higher than that
corresponding to a statistical distribution (cf.
Table III), at the expense of a reduced number of
B-B contacts. This yields a relatively high con-
figurational energy, even though the interatomic
distances fit tolerably well into the minima of
the pair potentials. An icosahedral coordination

312

r"
2KF

X~~X 2KF X

Mg-Mg Ze ~( ~(& Qgg-Zq
PQ

'Qc Mjo ~p &
&~ Mg Mg

2,4

2,8—

I

Lj 2,4-
C$

2Q
Ca

Li-Li/
/

/ 0
X 2g-

2 KF / 0 ~Ca-Li
F

)0

ca-caAt-At 0 o
/ 0

~At-ca

2,~- .'../"0
Wa-ca

3,2-

2,8-
LI
C5

Ca At

FIG. 17. Positions Q;& of the main peak in the partial
structure factors S~J(Q) and Fermi wave vector k& ver-
sus concentration for several amorphous alloys.

of the small B atoms would be energetically pre-
ferable, but seems to be incompatible with the
requirement of crystal periodicity.

For the metallic glasses we have approximately
CN=12 for both kinds of atoms, the partial coor-
dination corresponds to a random distribution of
A-A, A-B, and B-B bonds. Thus we could spec-
ulate, following Briant and Burton, "on icosahed-
ral coordination polyhedra as the constituting
element of the structure of metallic glasses.
They have pointed out that 13 atoms in an icosa-
hedral packing form 42 nearest-neighbor con-
tacts, six more than in a closest crystalline
packing. Thus an icosahedral arrangement will
be preferred for attractive nearest-neighbor in-
teractions. Our pair potentials are attractive not
only for nearest, but also for second- and third-
nearest neighbors. This leads very naturally to
the larger icosahedral units discussed by various
authors. '""'" An analysis of the relaxed cluster
in terms of the local coordination will be needed
to clarify this point. The occurrence of icosa-
hedral units with their fivefold symmetry is also
suggested as a possible mechanism for lowering
the entropy of the glass without the onset of crys-
talliz ation. "

It is evident that the cornerstone of our theory
is t'he existence of an oscillation effective pair
potential which is attractive for all neighbors
within the range of nonnegligible interatomic
forces. We turn now to the necessary conditions
for such 3, "constructive interference" between
pair potentials and pair-distribution functions.
As we have already mentioned in Sec. IV, the
most obvious, but not satisfying, interpretation
is a, Nagel-Tauc type rule' Q = Q,&= 2k+. I,et us
consider this rule once more. Figure 18 shows
that the alloy which fulfills this condition most
closely is Ca-Li, the only one which does not form
a glass. It is very easy to establish a long list
of counterexamples: Li-Mg, Li-Al, Al-Mg, etc.
The reason is that the Nagel-'Tauc rule emphasizes
the VEC and neglects all other alloy-chemical
factors such as size ratio and electronegativity.

Our theory manifests the similarity of the chem-
ical bonding in crystalline, amorphous, and liquid
alloys. 'The relative importance of the alloy-chem-
ical factors is the classical one:

(i) size-ratio, (ii) strong chemical bonding
(charge transfer and screening), (iii) valence-
electron concentration. Our treatment of the Ca-
Al glass shows very clearly the way in which (a)
a high component size ratio (in terms of the pure
metal radii), (b) a relatively large electronegativ-
ity difference (strong bonding), and (c) a high av-
erage alloy valence all contribute to the stability
of metallic glasses. The empirical validity of
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these correlations has been demonstrated by
Giessen and co-workers. "" The most important
factor is an effective size ratio allowing for an
icosahedral close packing (R„/Rs -1.1 to 1.3).
The VEC is also important, but since (counting
only s-p electrons) it can vary only from 1 to 4,
it is evidently not a very sharp criterion.

Technically, our method is restricted to simple-
metal glasses. The comparison of our results
with results on T-T glasses, however, suggests
that many aspects are common to all metalloid-
free glasses. This is corroborated by recent
theoretical work on the interatomic forces in
transition metals" that demonstrate the useful-
ness of the pair-potential concept at least for
close-packed d-band metals.
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