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e have investigated, via Monte Carlo computations, the phase diagram of an ordering

binary alloy —equivalent to an Ising spin system —on an fcc lattice with nearest- and next-
nearest-neighbor pair interactions X =J X„„o,tr& —al X„„„o;oi,o; =+ 1, J ) 0. Our

studies indicate that this system undergoes a first-order transition; i.e., there is a discontinuity in

the energy and order parameters as a function of temperature, for values —1 & e & 0.25. For
larger values of ~o~ the transition appears to be continuous, without any metastabie states. Our

results are in good agreement with Kikucki's cluster variation method at the two values of n at

which it has been applied, namely, 0 and —0.25. For e (—0.5 renormalization-group argu-

ments strongly indicate that the transition is first order. If this is so, then our results indicate

that the discontinuities for a & —1 must be very small. The nature of the ground states

changes at o. =0 and —0.5. At these values of a the ground states are infinitely degenerate.
The structure of the low-temperature phases, at all values of u, is discussed.

I. INTRODUCTION

nn nnn

where the sums will always be understood to go over
the N 4L' sites of an fcc lattice with periodic boun-

dary condition. The spin-spin interaction between
1

sites i and j in Eq. (1.1) is equal to 4
(utj" +u,i

—2v& ) where v,&" is the interaction between atoms
of type A on sites i and j, etc. The equivalent exter-
nal magnetic field is given by h —,(v,~" —v,~ )

+
2 (p,~

—p,q), where p.~ and p, q are the chemical

potentials of the 3 and 8 atoms. The term h Xa; in

Eq. (1.1) is relevant only when the magnetization m
1

for fractional concentration of A atoms c = —,(m

+1)] is not precisely fixed since otherwise it is in-

dependent of the configuration. In the present paper
we shall consider only the case h 0 corresponding

We describe here the results of Monte Carlo stud-
ies of the phase diagram of an ordering binary alloy

on a rigid fcc lattice, i.e. , coherent phase diagram,
with nearest- and next-nearest-neighbor pair interac-
tions. As is well known there is a complete isomor-
phism between configuration of an AB alloy and that
of an Ising spin system —achieved simply be identify-

ing "spin up" ("spin down" ) at site i, cr; -1(—1), with

an A (B) atom at that site. The Hamiltonian for the
system may be conveniently written in spin language
as

X-J Xa;og —aJ Xa;tran —h $o.;

to an average concentration of 0.5. Preliminary
results for n & 0 were reported earlier, ' and results
for e ~0.5 will be presented in a separate note.

The phase diagram of this system for J & 0, a
model of an alloy which orders at low temperatures is
a problem of considerable theoretical and practical in-

terest. The latter arises from the fact that many im-

portant alloys with an fcc structure can be reasonably
well described by the Hamiltonian (1.1)." At the
same time, different approximation schemes give
greatly varying results for this system. Thus, for only
nn interaction, o. =0, mean-field predicts a second-
order transition at T =4J/k, the quasichemical ap-
proximation' predicts a first-order transition at
T = (0.36) (4J/k), while the pair approximations
gives no transition at all. These methods do not
seem capable of dealing with the complexity of the
frustrated structure of the phases here. As we shall
see later, however, our computations indicate that
Kikucki's cluster variation method' does offer a reli-
able approximation scheme for this system. Using
tetrahedral basic clusters, it gives2 3 for a =0 a first-
order transition at T =0.4733 (4J/k). Other
methods which may in principle yield accurate infor-
mation about the phase diagram are low-temperature
series expansions and renormalization-group calcula-
tions. (High-temperature series do not seem to be
useful for the study of the transition. )

A low-temperature expansion has been carried out,
for e-0, to five terms by Betts and Elliott extend-
ing the three-term series by Danielian. The coeffi-
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cients in the series (beginning with the third) depend
on the ground state about which the expansion is
made. Since there are, for e =0, an infinite number
of ground states, Betts and Elliot performed an aver-
age over all of them. As was shown by Slawny, how-

ever, the six most symmetric ground states dominate
all others at a =0 and only they should be used in
the expansion. ' The extension and analysis of such
an expansion is therefore an interesting open prob-
lem.

Renormalization-group calculations have so far
been limited to predictions about the order of transi-
tion. " This will be discussed in Sec. II, where the
structure of the ground states and low-temperature
phases, at h =0, are described. %e also present
there in summary form our proposed T —e phase di-
agram for h =0 (equal concentrations). The Monte
Carlo computations forming the basis of our phase
diagram are explained in Sec. III and details of the
results are given in Sec. IV.

II. GROUND STATES AND LOW TEMPERATURE
PHASES FOR A 0

x ~
»» ~&a»»»~

rk
C»

(a) (b)

I~» &+i a»»» y
r' t ~rr rC~»~ps»»»e&

x

+ x

+--0 -- --+r tr r
C

t

(c)

FIG. 1. One cube of the fcc lattice shown for the four
possible structures (a) type-I antiferromagnetic (AB) struc-
ture, (b) type-III antiferromagnetic (A2B2) structure, (c)
type-II antiferromagnetic, and (d) type-IIb antiferromagnetic
structure.

A. Ground states

The ground states of the Hamiltonian (1.1) on an
fcc lattice with L cells on a side, L cells, N -4L'
sites, with periodic boundary condition were analyzed
by Cahn and Allen. ' The nature of the ground
states changes at o, =0 and —0.5. Considering the fcc
lattice as made up of four simple-cubic lattices, the
ground state for n & 0 consist of three pairs of config-
urations in which two sublattices are occupied by A

particles (spin pointing up) and the other two by 8
particles (spin pointing down) as in Fig. 1(a). The
ground-state energy per site in units of J is Eo =—2
—3a. (The order parameter of this system is a
three-component vector, n =3, with cubical sym-
metry; cf. Mukamel and Krinsky. ' )

For —0.5 & o. & 0 there are again six ground states
(three pairs) consisting of A28t-type configurations
(type-III antiferromagnet) as shown in Fig. 1(b) with

Eo —2 —e. The order parameter now corresponds'
to n -6.

For e & —0.5 the ground state is either the CuPt
structure (type-II antiferromagnet) or the "type-IIb"
structure (Fd3m). The two arrangements of the unit
cell which are not related by symmetry are shown in
Figs. 1(c) and 1(d). In the structure of Fig. 1(c)
each nearest-neighbor tetrahedron consists of an odd
number of each of the two species (A or 8) which
gives rise to ferromagnetically ordered (111)planes.
This is distinct from the arrangement in Fig. 1(d)
where the tetrahedra have an even number of the
species and no ordered (111)planes exist. In both
structures each of the four sublattices is antifer-

romagnetically ordered. (With a two-component or-
der parameter to each sublattice, we have n =4 for
this system. } To get from one structure to the other
it is necessary to flip the spins on one of the sublat-
tices. The degeneracy of each of these sets of states
is 8. The ground-state energy is Eo- —3'. At 0, =0
and —0.5 the degeneracy of the ground state goes to
infinity" as b, b ) I, when L ~. The entropy
per site therefore goes to zero as L ' when L

B. Low-temperature phases

There exists a general theory due to Pirogov and
Sinai, "extended by Holtzinski and Slawny' that
describes the low-temperature phases of very general
lattice systems, e.g. , with many-body interactions as
well as many-component alloys without any sym-
metry. The theory starts with the periodic ground
states of the system and its main technical restriction
at the present time is that these be finite. It there-
fore applies directly in our case only for a & 0 or
—0.5. It follows from this theory that for cx )0 and
for —0.5 & a & 0 there are six (three pairs) phases at
sufficiently low temperatures. For a & —0.5, where
there are two types of ground states, Slawny has
shown that the type-IIb structure dominates at low

temperatures", i.e., a macroscopic system will have
eight (four pairs) equilibrium phases at low tempera-
tures corresponding to Fig. 1(d). This dominance is
however quite weak —it is only in sixth order that the
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FIG. 2. The Ta phase diagram for the fcc lattice,
x -3a/(2+3iai). The circles are Monte Carlo data for
L -8 except for the point at x -, (a —2.0). Points at
x - t1 are the series of expansion results (Ref. 27). The
dashed lines are the proposed boundaries separating the dif-

ferent phases. Close to a 0 and a —0.5, the points are
triple points, exact location of which cannot be determined,

low-temperature expansions for the free energy based
on the two types of ground states differ. The type-
IIb structure gives lower values. Hence, we might
expect to see both kinds of states in our computer
simulations of small systems, but the type IIb will

dominate as the size increases.
For a =0 and —0.5 the theory does not apply

directly. Arguments by Slawny, ' however, strongly

suggest that at a =0 the six symmetric states given in

Fig. 1(a) (the ground state for a )0) dominate at
low temperatures while for a —0.5 the states of Fig.
1(b) (ground states for —0.5 & a & 0) dominate.

These considerations lead to the part of the phase
diagram appropriate to very low temperatures given
in Fig. 2. Note there the leftward curvature of the
dashed lines starting at e 0 and —0.5 in accordance
with the suggested dominance at these values of 0, .
This is unfortunately all that rigorous theory can say
at the present time about the phase diagram except
that at sufficiently high temperatures there is for all e
a single disordered phase. There is nothing that can
be said rigorously about the nature of the transition,
whether second or first order, between the low-

temperature ordered phases and the high-temperature
disordered one. It is therefore necessary to analyze
this question by approximate methods and by experi-
ment. Computer simulations constitute one type of
such experiment. They have the advantages of an
exactly known Hamiltonian and the disadvantages of
being limited to small systems and finite computa-
tions.

We have already mentioned the conflicting results
of some approximation schemes and shall now
describe briefly the results, as far as we understand
them, of renormaiization-group considerations. (We
refer the reader to Refs. 11, 13, and 19—23 for de-

tails. ) For e )0, we have an n -3 order parameter
with cubic symmetry and the Landau-symmetry cri-
teria' permit either a first- or second-order transi-
tion. The renormalization group, to first order in e,
finds a stable fixed point for the appropriate Landau-
Ginzburg Hamiltonian with an uncertain domain of
attraction. Hence, it also permits the transition to be
either first or second order. In particular it can
switch from one kind to the other kind, as suggested
by our phase diagram, Fig. 2. Such a changeover has
also been found both from renormalization-group
and Monte Carlo computations for a system like ours
on a bcc lattice' and for systems with more compli-
cated interactions on a simple-cubic lattice. For
a (—0.5 the Ginzburg-Landau Hamiltonian for a
type-II antiferromagnet corresponds to a system with

an n -4 order component. Such an iteration shows
no stable fixed point to second order in an ~ expan-
sion. " This result suggests strongly that the transi-
tion should be first order but that conclusion has
been questioned on the basis of experiments on ceri-
urn monochalcogenides. " A possible explanation lies
in the existence of a very weak first-order transi-
tion. 23 We were therefore particularly interested in
investigating this question by Monte Carlo methods.
As we shall see however, later, the computer experi-
ments, while strongly supporting the existence of a
first-order transition for —1 ( e & —0.5, are ambigu-
ous for a & —1.

III. MONTE CARLO METHOD

The microscopic state x of the system of N sites
can be specified by giving the value of o-; = +1 at
each site

x = ( o-;, (72, . . . , rr~) (3.1)
The variable xcan take on 2 values. We then con-
sider an ensemble of these systems such that the
probability that a system picked from the ensemble at
random will be in the microscopic state x, is P(x).
When the system is in equilibrium at a temperature T
then

P, (xa) = Z ' exp [ pH (x) ], —
(3.2)

Z = Xexp [ PH(x)]—
X

where P = (kT) ', k is the Boltzmann constant, and
H(x) is the configurational part of the Hamiltonian

given by Eq. (1.1). In our model we consider an fcc
lattice with periodic boundary conditions. When the

system is started at some initial time t -0, with some
nonequilibrium probability distribution P(x, 0),
P(x, t) will evolve according to a master equation

- X [K(x',x) P(x', r) —K(x,x') P(x, r) ]
Qt I

(3.3)
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In the usual Monte Carlo calculations, the transition
probability E(x,x') from a state x to x', is construct-
ed so as to satisfy the detailed-balance condition

K(x', x) exp [ —PH(x') ] = K(x,x') exp [ —PH(x) ]

0.4)
which is sufficient but not necessary to ensure that
the equilibrium distribution is a stationary solution of
the master equation and is approached for long times,
t oo, from any initial state. Thus at long times, the
Monte Carlo provides configurations drawn from the
distribution P„(x). Any required averages may be
computed from these.

In our simulations at a fixed magnetic field h =0
we used a transition probability corresponding to a
"spin-flip" operation, i.e., Glauber dynamics. A site
is picked at random and the energy change 4E that
would result from the flip is calculated. The spin is
in fact reversed if exp ( —dE/kT) is greater than a

random number ( chosen uniformly between 0 and
1 ~ The number of attempted "flips" per site gives a
time scale for the calculation regarded as a stochastic
simulation of Eq. (3.3).

In carrying out our computer simulation at a partic-
ular temperature the system was started either (a)
from a random state, (b) from an ordered state, or
(c) from an "equilibrium configuration" at a nearby
temperature. Quantities such as the internal energy
E and sublattice magnetization m were calculated
directly from the averages of these quantities over
many different configurations after an initial equili-
bration period. The fluctuations in the energy were
also determined. This yields an independent but
sometimes unreliable determination of the specific
heat at temperature T

((H') —(H)'), (H) =NE
i

(3.5)

The results of these computations will be described in

the Appendix.
The use of Monte Carlo techniques to study phase

transitions, particularly continuous (second-order)
ones, has been discussed by many authors. ' %'e

shall therefore limit our discussion here to first-order
transitions. At a first-order transition the infinite
system exhibits a discontinuity in the energy and/or
in other order parameters. W'hile there is no discon-
tinuity in a finite system, a graph of energy versus
temperature formed by connecting points obtained
from Monte Carlo studies of small systems at dif-
ferent temperatures, may reveal the discontinuity
present in the infinite systems. This becomes more
difficult, however, as the infinite system discontinui-
ty, b, E, becomes smaller. For sufficiently small b,E it
may be entirely impossible. There are thus several
sources of difficulty in deciding the nature of the

transition on the basis of Monte Carlo results: (a)
the intrinsic round-off of the average energy-versus-
temperature curve E( T.N) for fixed N, (b) the limit-
ed number of temperatures at which we carry out the
calculation, and (c) the uncertainty in the values of
E(T,N) obtained from one (or a few) computer runs
at a given T—this is particularly troublesome in the
vicinity of the transition temperature. There are dif-
ferent but comparable problems in a real experiment
when b, E is small.

To understand the nature of these problems we
note for T in the vicinity of T, the first-order transi-
tion temperature in the infinite system, the probabili-
ty distribution for the energy H will have two peaks,
centered roughly about the average energy in each of
the two coexisting phases. In the limit N ~ one of
the peaks dominates for T ~ T with ratio of areas
under each peak behaving asymptotically as
exp [$(T)N], f( T) =0. In a Monte Carlo simula-
tion the number of attempts per site required to sam-
ple both peaks adequately will grow with N going to
infinity as N ~. It is thus only by taking a very
long sample that one would get very accurate values
of E(T,N) Even more .important, extremely long
runs are necessary to obtain the specific heat C( T, N)
from computations of ((hH) ). The divergent con-
tributions to C(T.N) in Eq. (3.5) at T = Tcome
from jumps between the peaks and not from fluctua-
tions inside the peaks. These are clearly dis-
tinguished, however, only when N is large in which
case we cannot wait long enough to see the jumps
between the peaks (cf. Appendix).

The existence of these two peaks manifests itself in
practice by giving rise, for the reasons described
above, to metastable states when our system is heat-
ed or cooled across T. The length of time spent in
these metastable states should increase with the size
of the system and decrease, for given N, as —)LE/kT
decreases. The existence or absence of metastable
states, becoming more pronounced as N is increased,
is then a guide in determining the order of the transi-
tion. The expected relaxations of the energy as it is
cooled across the transition temperature is shown in
Figs. 3(a) and 3(b) for a first-order and a second-
order transition: At a second-order transition there is
a monotone relaxation of energy while at a first-order
transition long-lived metastable states are evident.

Most of our simulations were carried out on an fcc
lattice with L =8 (N -2048sites). Some computa-
tions were, however, also carried out for L = 5, 10,
and 14 size lattices. All results unless otherwise indi-
cated will be understood to refer to the L =8 lattice.
The energy and sublattice magnetization were aver-
aged over time intervals between 500 and 2500 at-
tempted interchanges per site. For a given N we
denote by T,(N) the temperature at which a
smoothed curve of E( T, N) vs T appears to have its
maximum slope.
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FIG. 3. (a) Time variation of energy per site for a =0 as
it is heated up from T =0 tperfectly ordered (AB)] config-
uration to T=0.4445(4J/k) [above T, (W) j for the L =8
lattice. Existence of the metastable states shows a first-
order transition . (b) Time variation of energy per site for
a =6.0 as it is cooled across T, from a disordered state to
T =6.8966(4J/K) for L =14. There does not exist any me-
tastable states indicating a second-order transition.

IV. RESULTS

a. +=0. Figure 4(a) shows the plot of energy
E(T)/E(0), for a=0, together with the metastable
points. The existence of such metastable points can
be seen from a typical plot of eriergy with time in Fig.
4(a) when the system was heated from a perfectly or-
dered state to a temperature T -0.4445(4J/k).
These observations suggest the existence of a first-
order transition at temperature T, =—0.4415(4J/k) as
compared to T, -0.4733(4J/k) predicted by the clus-
ter variation (CV) method. ' The change in entropy
hS - dE/kT, at the observed transition is -0.20.

039 0 43
kT/4 J

0.'47

FIG. 4. (a) The energy E(T)/E(0) for a =0 is shown by
circles. The triangles are the metastable points obtained by

heating and cooling across T, shown by the vertical line.

The solid curve is given by the (2,2) Pade approximate
(Ref. 8). The transition temperatures given by both series-
expansion and cluster-variation methods are shown. (b)
Sublattice magnetization vs kT/4J for a =0. The solid line

gives the position of the transition temperature.

This is in good agreement with hS -0.25 obtained
by the CV method.

The large degeneracy of the ground state (of order
2 ) posed a problem in getting stable values of the
sublattice magnetization in a reasonable time. To ob-
tain such values the simulation had to be started
from an ordered state. A plot of sublattice magneti-
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zation versus T is given in Fig. 4(b).
b. a )0. Simulations at a-0.05 and 0.167

showed behavior similar to that observed at a =0.
The discontinuities hE and m' at the transition tem-
perature T,(a) kept on decreasing, however, and for
a 0.25, 0.445, 1.0, and 6.0 were not observable at
all. Figure 5 shows plots of the average energy
E( T, n) divided by E(0.a) vs kT/E(0, a), where
E(0, a) = —2 —3a is the ground-state energy. Plots
of average sublattice magnetization versus T/T, (a)
are shown in Fig. 6.

An inspection of Figs. 5 and 6 indicates that at
small values of a there is a discontinuity in the ener-
gy and sublattice magnetization which is absent for
large values of a. This suggests a changeover from a
first- to a second-order transition at about a =0.25
with the likelihood of a tricritical point. Such an in-
terpretation is further strengthened by the absence of
metastable states for larger values of a. The time
variation of the energy at a =6.0 for a lattice with
L 14, when the system was cooled from a random
state to T =6.8966(4J/k) is shown in Fig. 3(b).
There does not appear to be any metastable state and
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FIG. 6. Plots of the sublattice magnetization vs T/T, are
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so we judge the transition at a =6 to be a continuous
one.

We also carried out a finite-size scaling analysis at
a =6.0 where we might expect to be outside the tri-
critical region. Using lattices of size L =5, 8, and 10
and the scaling relation'

C3
C3 C3

T, (N) = T, (oo)(1 —a/L ); X=1/v=1/0. 64 (4.1)
t:)co

C3

~O

UJ
C3
CO-

O

C3- Lo we estimate kT, (~)/4J =7.8 and the exponent P for
the sublattice magnetization to be in the range
0.21—0.36. The specific-heat behavior can be
represented by the relation

C(TN)/Nk =2 [1 —T/T, (~)] +b (4.2)C3

O
J, , J,

0.75 1.05
kT/E(G, ot ]

O1 3S

FIG. 5. E(T, o.)/E(O, o.) vs kT/E(O, u) for positive
values of o, are shown. The left bottom scales are for the
three smaller values of o, where the discontinuities are indi-
cated. The top and right scales are for a «0.25 where the
transition is continuous. The transition points are indicated
by arrows.

for T ( T, (N) with a= —,A =1.4, and b = —2.0.
This is consistent with the behavior at a second-order
transition (Ising or Heisenberg) but is certainly no
proof.

In Fig. 7 we plot our values of the transition tem-
peratures kT, (a)/E(0, a) versus a variable
x'=3a/(2+3~a~) the fraction of the ground-state en-
ergy due to next-nearest-neighbor interactions to ob-
tain a phase diagram of our system in the Tx plane
for a & 0. For x =1 (a = ~), the system splits up
into four independent sublattices with nn interac-
tions. Extrapolation of our plot to x 1 gives a value
of the transition temperature within a few percent of
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FIG. 7. Plot of kT, (a)/E0(e) vs x =3a/(2+3a. ) for
a )0. The point at x =1 is the series-expansion values.

that computed from an extended series expansion. "
It is generally accepted that the transition for this sys-
tem at x =1 is of second order.

c. —0.5 ( o. (0. Computations for —0.5 ( a (0
where the ground state is A282 or type-III antifer-
romagnet indicate a first-order transition with strong
metastable states and pronounced discontinuity in en-
ergy. The sublattice magnetization is no longer a
suitable order parameter here as it equals zero even
in the ordered state. Calculations at o. = —0.05,
—0.15, —0.25, —0.40, and —0.45 show that the tran-
sition temperature gradually decreases as one goes

1
from a=0 to ——, , while the entropy discontinuity

LIES = DE/kT, increases, see Figs. 8(a), 8(b), and
Table I.

Comparison with CV results of de Fontaine and
Sanchez at a = —0.25 give excellent agreement for
the transition temperature and the energy change.
Figure 9 shows the plot of energy versus kT/J as ob-
tained from the CV and Monte Carlo methods.
Renormalization-group analysis for the n =6 com-
ponent system indicates the existence of a stable
fixed point which is however unreachable for a pure
type-III structure; hence the transition should be first
order.

d. e= —0.5. As a changes from a=0 to —0.45
the entropy discontinuity hE/kT, appears to go to-
wards a limiting value close to ——, ln2( =0.36)
{see Table I). This would suggest that the system at
e -—

2
is so highly degenerate as to have a finite en-

tropy at T-0. It can be shown, ' ho~ever, that this
1

is not the case. The ground state at n = —
2

has zero

entropy per site (in the infinite system) and the ther-

O Q76
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FIG. 8. (a) Plots of energy per site vs I.T/4J for
a = —0.05, —0.15, and —0.25 where the transitions are first
order. The discontinuities are shown by dotted lines and the
position of the transition shown by arrows. (b) Energy per
site vs I.T/4J for a = —0.4 and —0.45 with the respective
metastable states.

rnodynamic entropy must go to zero as T 0.
It required very extensive computations to see a

transition to the ordered structure which was a major-
ity A2B2 (type III) plus some type II. Since the tran-
sition takes place at very low temperature, the meta-
stable states are very long-lived, and we could not get
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TABLE I. Monte Carlo estimates of the transition temperatures and energy discontinuities for
different values of a. All data for L -8 lattice unless mentioned otherwise.

kT, /4J k&, /I EOI b EflkTc

6.0
1.0
0.445
0.25
0.167
0.05
0.0
0.0'

—0.05
—0.15
—0.25
-0.25b
—0.40
—0.45
—0.50
—0.55
—0.75
—1.0
—2.0'
+ oo

7.5758 +0.1420
1.7699 + 0.0150
1.0672 + 0.0029
0.8036 + 0.0032
0.6821 + 0.0023
0.5089 + 0.0013
0.4415 + 0.001
0.4733
0.433& + 0.0019
0.3964 + 0.0025
0.3578 + 0.0008
0.3750
0.2857 + 0.01
0.2560 + 0.0125
0.2084 + 0.04
0.2857 + 0.021
0.5952 + 0.008
0.9259 + 0.0128
2.1277 + 0.0453

1.5151 + 0.0284
1.4159 + 0.0120
1.2806 + 0.0035
1.1406 + 0.0047
1.0913 + 0.0037
0.9468 + 0.0024
0.8830 + 0.002
0.9466
0.8898 + 0.0039
0.8571 + 0.0035
0.8178 + 0.0018
0.8571
0.7163 + 0.025
0.6606 + 0.0323
0.55 + 0.107
0.6926 + 0.051
1.0582 + 0.0142
1.2345 + 0.017
1.4185 + 0.0302
1.5036

0
0
0
0
0.09
0.19
0.20
0.26
0.27
0.33
0.34
0.29

—0.34
—0.36
—0.33
—0.39

'References 2 and 3.
References 28 and 29.

'Data for L =14 lattice.
Reference 27.

a very accurate estimate of T, . Our best guess is
T, =(0.21+0.04)(4J/k). A plot of energy versus
temperature is given in Fig. 10.

e. a & —0.5. In this region there are two types of
ground states, type-II and type-IIb antiferromagnets
with the latter structure expected to dominate weakly
at low temperatures. We carried out simulations at
a= —0.55, —0.75, —1, and —2. The ordered states
we obtained by cooling from above T, were about
evenly divided between the two structures.
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FIG. 9. Comparison plot of energy/site vs kT/J at
a = —0.25 by Monte Carlo date (circles) and cluster-
variation data (solid line) (Ref. 29). The dashed lines indi-

cate the metastable regions.

O.IO 0 20
kT/4J

O. 30

FIG. 10. Energy per site vs kT/4J for a= —0.5. Cooling
from high temperature; only at one point did the system or-
der after long computation (shown by dashed arrow); also
the point where it went to disorder by heating from ordered
state is shown by similar dashed lines. The transition tem-
perature lies between the two dashed vertical lines.
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As mentioned in Sec. II renormalization-group
analysis predicts that for all a's less than —0.5 the
transition should be first order ' and only in the
limit a —~ should it go over to second order: Ex-
periments" on cerium monochalcogenides, which are
type-II antiferromagnets, on the other hand, show a
continuous transition.

Our simulations give a strong first-order transition
at a —0.55. As a becomes more negative, howev-

er, the transition temperature increases, and the
discontinuity in the energy becomes less and less pro-
nounced (see Figs. 11 and 12). Using an L =8 lat-

tice we did not observe any metastable states at
a ~ —0.75.

We then carried out computations at a = —0.75,
—1.0, and —2.0 on larger lattices L 10 {W=4000)
and L =14 (N =10976). While the energy versus
temperature curve does not change much with size
both larger lattices exhibit metastable states for
a —0.75 {Fig. 12) and a —1.0 (Fig. 13) indicating
a first-order transition. For a —2.0, however, even
the L =14 system did not exhibit any metastable
states (Fig. 14). While this suggests a changeover
from a first- to a second-order transition, one must
be cautious. The smooth appearance of the F. vs T
curve and the absence of metastable states may be
due to the decrease in hE/kT, which permits the sys-
tem to go back and forth between the two phases
across T, when the system is small. It is impossible
to decide unambiguously on the basis of computer
calculations whether for a & —1 the transition actual-

- I.OO—

-1.20-

0

p
O

—I.40-

E
NJ

-I 60.

—I.so-

e = -0.75
0 LR 10

0 L= I4

-2.00-

I

0.50
I

0.55 0.60
kT/4 J

I

0.65 0.70

FIG. 12. Energy per site vs kT/4J for e = —0.75 for
L =10 and 14 lattices.

-0.5

ly goes over from a first- to a second-order one.
Such an ambiguity might also exist for a )0 where
we had reported such a changeover. Here too we
could not detect any metastable states at a =6.0 even
for the L =14 lattice [Fig. 3(b)]. The question there-
fore remains open.

It is not clear at this time whether the existence of
the two types of ground states, with the dominance
of type IIb can affect the nature of the transition.
Renormalization-group analysis does not distinguish
between these two structures.

We should note here that as a decreases below
—0.5 the slope of E vs T sharply rises as T T, from
below. It is conceivable that, while the transition
remains first order for —~ ( a (—0.5, the specific
heat (and staggered susceptibility) might diverge for
sufficiently negative a as T T, .

-I 50"

E(T)

tg ~ -1.0
—l.o "

0

-I 40"
-2.0"

—I.SO. -

-I 80"
-3.0

0.6 O.7 0.8 0.9
kT
4J

1.0 l.3

0.2
4J

FIG. 11. Plot of energy per site vs k T/4J for o. = —0.55.
The metastable regions are shown.

FIG. 13. Energy per site vs kT/4J for a -—1.0 for L =8
and 10 lattices where the existence of metastable states
could still be detected for the latter although the energy
discontinuity is not very much evident.
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APPENDIX

As mentioned in the text, we monitored the varia-
tions in the energy H(t) as a function of time t fol-
lowing thermalization. The fluctuations of Hcom-
puted over a period of time v then approach as
v ~ the specific heat C given by Eq. {3.5). The C
computed this way should of course coincide with
that obtained from differentiation of the energy
E(,T). We found, that for the values of r we used,
there was indeed good agreement between C comput-
ed from the fluctuations and the numerical differen-
tiation of the E vs T curve. The agreement contin-
ued to be reasonable even in the vicinity of a
second-order transition (Fig. 15). In the neighbor-
hood of a first-order transition, however, we expect
for the reasons discussed in the text, that the energy
over the period 7 will be limited to the range of one
of the peaks; i.e., it would not jump from one peak
to another. Hence C given by Eq. {3.2) should be
close to the specific heat in each of the phases miss-

ing the jump in energy corresponding to a delta func-
tion singularity in the specific heat due to the transi-
tion (cf. Fig. 16). In that figure the specific heat is
continued into the metastable region and appears to
approach an infinite value at some spinodal line.
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