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Solitons in the linear-chain antiferromagnet
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We show that in quasi-one-dimensional antiferromagnets, sine-Gordon solitons should be
present as therma) excitations under a range of conditions outlined here. For a class of model
spin Hamiltonians which include the influence of a transverse Zeeman field and easy-plane an-

isotropy, we provide explanations for the soliton rest energy, and its limiting velocity. Also, we

examine the statistical mechanics of these systems with emphasis on the form of the soliton
contribution to the free energy.

I. INTRODUCTION

It is well known that in condensed-matter physics,
many properties of materials are explained simply by
the notion that small-amplitude waves (phonons, spin
waves, . . . ) are the fundamental entities that enter
the description of their thermodynamics, and of ex-
periments that probe their dynamical response. Re-
cently, Krumhansl and Schrieffer' have suggested
that in quasi-one-dimensional materials, solitons may
be present as thermal excitations, in addition to the
spatially extended, wavelike modes. This question is
explored in a number of subsequent theoretical pa-
pers. '

The nonlinear field theories that enter the descrip-
tion of quasi-one-dimensional solids may be applied
also to more nearly isotropic materials. The solitons
or solitary waves of interest in one-dimensional phys-
ics become domain walls in three dimensions. Since
the latter have macroscopically large area, they fail to
contribute to the partition function in the thermo-
dynamic limit. Thus, in the absence of spatially lo-
calized solutions to the nonlinear field equations in

spaces of dimension higher than one, solitons occur
as thermal excitations only in the quasi-one-
dimensional solid.

Mikeska' has pointed out that in one-dimensional
systems of spins with ferromagnetic exchange cou-
pling between neighbors, solitons of sine-Gordon
form should be present in the appropriate range of
temperature and magnetic field. Mikeska supposes a
Zeeman field Ho is applied perpendicular to the axis x
of the line of spins, and in the analysis strong aniso-
tropy, with x a hard axis, keeps the spins nearly con-
fined to the yz plane. Mikeska suggests that CsNiF3
should be a material where these entities can be ob-

served by thermal neutron scattering, and subsequent
experimental work by Kjems and Steiner provides
direct evidence for their existence, with excitation en-
ergy in accord with that predicted from the known
parameters in the spin Hamiltonian of CsNiF3. As
far as we know, this is the only published report of
direct observation of solitons present as thermal exci-
tations in a quasi-one-dimensional solid.

The purpose of this paper is to discuss the ex-
istence and properties of sine-Gordon solitons in
one-dimensional spin systems with antiferromagnetic
coupling rather than ferromagnetic coupling between
the spins. Earlier discussions of the surface spin-flop
transition' and of domain walls in three-dimensional
antiferromagnets suggest strongly that solitons should
be present in one-dimensional antiferromagnetically
coupled spin arrays, though none of these earlier dis-
cussions address the case of easy-plane anisotropy en-
countered predominantly in the one-dimensional ma-
terials. Here we examine the linear antiferromagnet
to find sine-Gordon solitons under a variety of condi-
tions, including the easy-plane case. e note that
Mikeska' has discussed some properties of solitons in
antiferromagnetically coupled lines of spins, though
his attention is directed to the easy-axis case. In the
easy-plane case we are able systematically to categor-
ize dynamical quantities by order of magnitude of
smallness in a natural parameter of the theory and to
establish the existence of stable sine-Gordon solitons
under appropriate conditions.

Solitons in quasi-one-dimensional antiferromagnets
are of interest for several reasons. First of all, in
most one-dimensional magnetic salts, the exchange
coupling is antiferromagnetic; CsNiF3 is an excep-
tional case. Thus, through study of solitons in anti-
ferromagnets, one has the possibility of exploring
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their properties in a number of materials with a wide
range of physical parameters. %'e shall also see that
the solitons in ferromagnetically coupled spin systems
and antiferromagnetic ones have very different prop-
erties, so different experimental methods may possi-
bly be used to explore them in the two cases.

These differences may be appreciated by a simple
physical argument which we give here. A soliton at
rest in an easy-plane ferromagnet in a transverse Zee-
man field Hp consists of a 2m rotation of the spins,
with the motion of spins largely in the plane perpen-
dicular to the hard axis. If there are N spins in the
soliton, its formation has a cost in Zeeman energy of
roughly p, HpNS, while the cost in exchange energy is
JS N(b, 8)', with 58 the angle between adjacent spins
and J the ferromagnetic exchange interaction between
nearest neighbors. With 58 = 2rr/N, the energy of
the soliton is minimized when N =2rr(JS/@Ho)'r'
This simple argument, familiar from the theory of
domain walls in ferromagnets, ' provides a measure of
the size and rest energy of the soliton identical to
Mikeska's result, save for numerical prefactors. In
CsNiF3 with Hp = 5 kG, the soliton extends over
about five lattice constants, and its rest energy is ap-
proximately 30 K.

In the antiferromagnet, with JS )) p, Hp, pairs of
adjacent spins are nearly antiparallel. The cost in

Zeeman energy per pair of spins is now on the aver-
age approximately p HOS(y Ho/2 JS), very much
smaller than p, Hp because of the near cancellation of
the contribution of the two almost antiparallel spins.
A spin on a given sublattice rotates through an angle
n rather than 2m as one passes through the soliton
(see Fig. l), so the exchange energy per pair is
JS'(w/N)' (we take J to be a positive number). The
number of pairs of spins in the wall is now of order
JS/WHO , the wall is thu.s very much thicker than in
the ferromagnet. The energy of formation of the an-
tiferromagnetic soliton is then of order p, HpS, a value
much smaller than in the ferromagnetic case in the
limit IJt.Hp ((JS often encountered in experiments.
'When the antiferromagnet and the ferromagnet are
compared, much larger magnetic fields are required
to drive the antiferromagnet into the regime where
the soliton rest energy is large compared to k&T and
the solitons form a dilute gas of noninteracting ele-
rnentary excitations. At lower fields, one may be
able to study solitons in antiferromagnets under con-
ditions where soliton-soliton interactions play an im-
portant role,

By far the simplest example of a one-dimensional
SG (sine-Gordon) system is that of a chain of cou-
pled torsional pendula in a weak gravitational field.
In this case the motions are totally restricted to lie in
a plane by assumption, and the gravitational field acts
as a weak barrier to hinder larger scale rotations of
the pendula. From this simple example, one expects
that in order for a spin system to satisfy SG dynamics
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FIG. 1. Position of the spins associated with a single soli-

ton excitation in the linear antiferromagnet. The easy plane

is xy, with x the easiest direction in that plane, the two sub-
lattices (alternating sites) are labeled A and B, and we have
illustrated the situation for the chain direction along each of
the coordinate axes. In each case the spins on a given sub-

lattice rotate through an angle ~, interchanging the roles of
the sublattices at the opposite ends of the soliton. In draw-

ing the figure we have neglected any canting, and b, in Eq.
(2.15) has been taken to be zero.

two general criteria must be met —namely, the pres-
ence of some kind of plane to which spin motions are
largely confined, and the existence of a weak force
which slightly hinders rotations in that plane. For the
antiferromagnet the hard axis can be established ei-
ther by single-ion anisotropy, of crystal-field origin,
or by exchange. The second criterion can be met
with an external magnetic field, single-ion easy axis
anisotropies, or exchange anisotropies in the plane of
spin rotations.

As will be shown later, the SG soliton here corre-
sponds to spin rotation of m and so interchanges the
two sublattices of the antiferromagnet. There is an
analogy between this spin structure, shown in Fig. 1,
and the sequence of alternating single and double
bonds between carbon atoms in polyacetelyne, near
the soliton structures described recently by Su,
Schrieffer, and Heeger. 9 In our example, in the lim-
its described below, we have solitons described by the
sine-Gordon equation, while it is not clear if such a

simple mathematical description can be applied to the
solitons in polyacetelyne.

In Sec. II, we write down the classical equations of
motion for a line of spins with antiferromagnetic cou-
pling in a transverse magnetic field, with easy-plane
anisotropy. The model is rather general, including
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exchange as well as single-ion anisotropy, within the
easy plane as well as normal to it. This is of interest,
e.g. , if the anisotropy is of dipolar origin, and the
plane within which the spins rotate contains the axis
along which the spins are arranged. Section III is de-
voted to the statistical mechanics of the system, in-
cluding the identification of soliton contributions to
the free energy, as determined by transfer operator

techniques. Section IV summarizes our principa1
conclusions, and discusses their implications.

II. EQUATIONS OF MOTION

We introduce superscripts A and 8 to denote the
two sublattices of the antiferromagnet and assume in
general a model Hamiltonian of the form

X= X3CI,

X, = Xj [S,'(i) S,'(i) + S,"(i)S,'(i+ l) ] + D, [S,"(i)'+S,s(i)']
I

D.[s-."(0'+S.'(0'1 gg s-H„[S„"(i)+S„'(i)] gys-ey [Sy(i) + Sy'(i) ]

(2.1)

(2.2)

S (I) = S(sinaI cosg~, sinaI sin(I, cosaI), (2.3a)

8 (I) = S(sinPI cospl, sinPt sing~, cosPI) (2.3b)

and substitute to obtain four equations of motion at
each unit cell I for the angles a, P, (, and @. It is
convenient further to introduce linear combinations
of these angles which will be of more immediate
physical relevance in discussing the excitations:

Ifl=-, (I+VI . l=4I-II-~
]

25I = al +pl —7F, yI aI ——
VT

(2.4)

with i summed over x, y, and z. All coupling param-
eters here are assumed non-negative, and J, is no
larger than J„or J„. Thus, z is a hard axis and the
magnetic fields and/or D„ introduce anisotropy into
the easy xy plane. This is the standard configuration
for which one might anticipate solitons governed by a
sine-Gordon or similar equation —namely, motion
largely confined to a plane, within which there is a
preferred direction and, therefore, an energy barrier
to be climbed. We point out that the hard axis may
result from either exchange or single-ion anisotropy.
It cannot, of course, be established by an external
field. On the other hand, the anisotropy within the
plane can arise from any one (or a combination) of
these three sources. We note, however, that the
magnetic field source has the characteristic difference
of distinguishing between the two senses of the spe-
cial axis within the easy plane, which ultimately af-
fects the nature of the nonlinear excitations. We will

discuss various cases of interest below.
After finding the equations of motion for the

spins, iS = [S,JC], we treat the spins as classical vec-
tors, with spherical components

I

Thus P~ represents the average azimuthal angle of
two adjacent spins, whose rotation along the chain
through an angle of rr (effectively interchanging the
roles of the two sublattices) corresponds to an ele-
mentary soliton, or "domain wall" or "kink. " The oth-
er three angles are expected to be small for system
parameters in the range which will be of interest to
us here, with yI indicating motion out of the xy plane
and ~1 and 5~ deviations from antiparallelism of adja-
cent spins. At sufficiently low temperatures
(kT && JS~) the spins will align in a "flopped"
configuration —i.e., with nearest neighbors nearly an-
tiparallel and (if there is an external field Hp) a small
net moment along Ho (we assume g p.~Ho «JS).
Then we can expect e~ and SI, which represent devia-
tions from perfect antiferromagnetic alignment, to be
small. Moreover, the directions of the spins on a
given sublattice should vary substantially only over
distances large compared to a lattice constant, as long
as kT is small compared to exchange energies. This
justifies the use of a continuum approximation,
where we can replace pl+], e.g. , by the first few terms
of its Taylor-series expansion about p~. We will as-
sume, and later verify, that ~1, 5I, and pl' are all of
the same order in a suitably defined small parameter
I, basically a measure of the ratio of the in-plane an-
isotropy to exchange energies. Then ~1 5/

where the prime denotes spatial differentiation with
respect to I, now taken to be a continuous variable.
Similarly, time derivatives of these quantities will be
one order of r smaller than the quantities themselves,
since the characteristic velocity divided by the lattice
constant is of the order of an exchange frequency.
The equations of motion in terms of the angles be-
come

cos(25I —yI) (j~ sine~ —j sin2$1)

+cos(28(~t —yt+t) [j+sin[ &I —$1+~ + —, ( a~ + el+~ ) ] —j sin[ QI + $1+t + , (el —ai+i )—]]1 ]

dz cosyI sin(2 $1 + el ) —hz cos( QI + —,eI ) —
hy sin( $1 +

~
61)

1 . 1

(2.5a)
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$( = —tan y( cos(25( —y() (j+cos«( —j cos2$()
I 1—tany(cos(25(+( —y(+() [j+cos[(]((—Q(+(+ —,(«(+ «(+() ] j—cos[(1((+Q(+( + t («( —«(+() ] [

—j, [sin(25( —y() +sin(25(+( —y(+(}]—2d, siny(sin ((]((+ t «()

—2d, siny(+ h» tany(cos((i((+ —, «() —h tany (si n( (1((+ —,«(}
] l

4

with corresponding forms for PI and qual on the other sublattice. The energies introduced here are defined as

d;
—= D;S, h; —= gIj/. gH)

(2.5b)

(2.6)

%e can immediately obtain the equation for ~I = )I —p~. The Eqs. (2.5) are exact, but we now make use of the
smallness of h;/j, «(, 5(, and y( to obtain a more tractable form valid to order r'

«( —4[(j + —j,) jcos2—&( + d, sin'(](( + d, ] (5( cosy( —siny() (2.7)

= —2SI(j+—j cos241 +jz + d„sin QI + d, ) (2.S)

or

As we have already stated, the left-hand side is to be
shown below to be self-consistently of order r',
where SI, yI, and ~& are of order r, a small parameter
of the theory. The factor within square brackets is a

sum of terms, each of which describes anisotropy, ei-
ther between the hard axis and easy plane or within
the easy plane. If this factor is of order r, as we
would expect in general for (j —i+) +d, (the tilde
will henceforth be used to denote energies in units of
the largest of the j,) then (5(cosy( —siny() —0 (rt).
If, on the other hand, the relative hard-axis anisotro-

py is only of order r, then the remaining f'actor,

(Slcosy~ —sinyI), must also be of order r, like its
separate terms. Under either of these conditions we
must have y~

—O(r), and to terms of order r we
have

2S~ =j+(~I' —pl") —2(2j +d„) sin2&~

+ «((5» sin(](( 5( cosp() (2.II)

The corresponding equation for yI is

the motion is going to be confined largely to the
neighborhood of the easy plane. The magnetic field,
although it also gives anisotropy in the plane, has a
weaker influence than the exchange or single-ion an-
isotropies, j and d, . As pointed out in the introduc-
tion, there is substantial cancellation of its effects
between the two sublattices; the Zeernan energy of
truly antiparallel spins is independent of the align-
ment of their common axis with the magnetic field.
The actual canting angle SI of the spins in the plane
response to the field is of order (h/J), a familiar
result from the standard analysis of spin flop; S~ is in

general of order r. Thus S~ should be of order r', ex-
plicit calculation from the above equations of motion
gives to this order

(]((=—25((j++j, +d, ), j,d„» O(r) (2.9)

This last condition refers to the size of the in-plane
anisotropy. In fact we use this condition to define r

yI = nI =j+(2~~ —$1') —(2j + d„) sin2&1

—h„cosQ~
—

h& s in 1[1)fl (2.12)

r'= a m(jx, d„I)( (2.IO)

and the reduction of the theory to a sine-Gordon
equation (for (1() will depend on r being small —i.e. ,
on the largest in-plane anisotropy energy being small
compared to the largest of the exchange energies j;.
This is certainly a reasonable physical requirement if

But this must be of order r', which gives immediately

«( —
) (1(( + (h„cosy(+ hy sin(](()/2j+ . (2.13)

If we use these results in the time derivative of Eq,
(2.9) for P&, we obtain finally the dynamical equation
for pl

This is a sine-Gordon equation for the quantity 2pf + 5:
2J+

(2.14)
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where

2h„hy5 =tan
8j+(2j +d.)+a,'-l„' (2.16)

and the velocity c and mass m are given by

e'- —,
' a'j~(j~+ j, + d, )

mt [[Sj+(2j +d, ) +h» —h, ]2

+(2h, h») }' /(a2j )

(2.17)

(2.18)

It will be useful in the following section, in deriving
the statistical mechanics, to take advantage of an al-
ternate approach to this result. %'e can write the
Hamiltonian to order r2 as

(h, cosP~+ h» sing~)

4i+

Xi 41 i+(Al ) '
+ +(2j +d„) cos2ylS 2(j++j, +d,

The soliton solutions to the sine-Gordon equation
(2.15) are by now well known. %'e restate them here
for use later in the paper

.1, ([) + g 2 tan-le+my(l-ut)Vl

p
(2) + & g 2 tan-le+ffsy((-Nf) +

2

(2.24a)

(2.24b)

Here the velocity u is the soliton velocity —c ~ u ~ c
and y is the Lorentz factor y - (1 —u2/c') 'r'.

There are two types of soliton because of the two

sublattices in the antiferromagnet; the difference
between PI

' and P~
' lies only in the boundary con-

ditions imposed (spins on the sublattice labeled A

"up" or "down" as l —~). e point out that pl
has been defined so that its meaningful range ex-
tends from 0 to 2m. Because of the factor of 2 in
front of Pl in the argument of the sine potential in

Eq. (2.15), the soliton corresponds to a rotation of a.
for the spins of either sublattice; the roles of the sub-
lattices are interchanged as we pass through the soli-
ton, The soliton energy is given by

$1 ( Az cosl/ll + Ay sing] ) (2.19)
E~[= Sj+ma (2.25)

which yields Eq. (2.15) as the field equation for Pl.
Let us consider the special case of isotropic ex-

change (j;-j) and h»-0, so that anisotropy in the
plane is associated with the unique x axis (but is in

general due both to the external field h„and to the
single-ion anisotropy d„). Then the equation of mo-
tion (2.15) for Pl becomes

P&" —P&/c'= —,(aj) (8jd„—h,') sin(2&I)

If h„& 8jd„ then we can write
~ ~

4I' —41/c =m sin@1

m = (8jd, —h )/(aj), 4&1=—2$1

(2.20)

(2.21)

(2.22)

The boundary condition for these weak magnetic
fields is sin@1=0 as (I( ~, or (~=0, n and Pl =vr,
0, so that the spins lie along the +x axis far from the
kink. On the other hand, if h„& 8jd„ the equation
takes the same form, but

mt = (h~ —8jd, )/(aj)2, 4~ =2&1 —w (2.23)

and the boundary condition sind&&=0 as ~l~ ~ now
1

corresponds to fl =+-, n and QI =+—,m so that the

spins lie along the +y axis. The passage, with
m' 0, from one regime to the other is just the
phenomenon of spin flop, at the usual critical field
value of h,2=8jd„. Of course, our derivation
throughout has assumed h, ((j, so the result [Eq.
(2.23) I is confined to the region not too far above
spin flop, where neighboring spins are still very near-

ly antiparallel.

where ma is given by Eq. (2.18).

III. STATISTICAL MECHANICS

In this section we briefly discuss the classical sta-
tistical mechanics of the planar antiferromagnetic
chain, with the objective of identifying soliton contri-
butions to the thermodynamic functions such as the
free energy. Two different approaches are considered
which lead to essentially 'the same results in appropri-
ate limits. In the first approach, we do not make any
a priori decomposition of the spin chain into two sub-
lattices. As a result the degeneracy of the ground
state (interchange of sublattices) is automatically tak-

en into account in integrating over all the spin de-
grees of freedom. In the second approach we start
directly with the approximate Hamiltonian (2.19) and
show that it can be mapped onto the canonical sine-
Gordon problem considered previously by Currie
et al. ' Although this second approach has the disad-

vantage of requiring a reinstatement of the degrees of
freedom suppressed in obtaining Eq. (2.19), it has
the advantage of applicability to the general case
described in Sec. II, whereas the first approach can
only be applied (simply) to the special case of isotro-
pic exchange. These points are discussed further at
the end of this section.

In the first approach, we employ a method similar
to that of Riseborough and Trullinger, ' which was

developed for the case of a planar ferromagnetic chain
in an external transverse magnetic field, to consider
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the special case of isotropic exchange (J„=.J~ = J, ) and D~ =0, with the Zeernan field oriented along x. Using

spherical coordinates

[ S; = S (sin8; cosdh;. sin8; sindt;, cos8;) ]

we may write the Hamiltonian in this case as

& = JS g [sin8; sin8;d[cos($;+[ —(t[;) +cos8; cos8+[] —hS gsin8;cos$;+ DS gens 8; (3.I)

where h =g p, ~H„and D -D, . The partition function is given by

(3.3)

[
N 2'

Z= rt f dd;siee; f dd, exp[ —PH(lll), Id)[l . (3.2)
i 1

i

In the nearly planar limit where /3DS » I, the integrations over [8;}are dominated by values close to
2

w, so

that the contribution from DS cos8i can be integrated separately and 8; set equal to
2

m in the exchange and Zee-

man terms. Thus,
N 2~ N N

Z =—[(w/PDS')[ terf(PDS')['] g d$& exp —PJS' Xcos((tp; [ —$) +PhS Xcos(h;
Jm1 i 1 i 1

i (

where erf (x) is the error function. "
The remaining integrations over the [$;}may be

carried out using the transfer-integral technique' '
yielding

Z =—[(rr/PDS2)[r&erf(PDS&)[rt]P[ge 'P
(3 4)

where ~„are the eigenvalues of the transfer-integral
operator:

Jt ddip; exp [ /3JS'cos(d/—p;+[ —P;)

+PhS cos44}t;,]+„($;)= q "+„(pi,)
(3.S)

In this expression 0'„ is the eigenfunction associated
with the eigenvalue e„. We note that in the thermo-
dynamic limit (N ~) only the lowest eigenvalue eo

is important in the free energy per spin

ATf= — lnZ
N

= —ksTln[(m/PDS')' 'erf(PDS')' ]+a[[ . (3.6)

As we shall see, e0 contains a portion which can be
attributed to the solitons discussed in Sec. II.

Although Eq. (3.5} can be converted[a [3 to a ma-
trix eigenvalue problem by Fourier transformation,
this approach is not particularly useful for obtaining
an analytic approximation to ~0. Instead we proceed
in a more direct fashion by converting Eq. (3.5) into
a differential equation for qd„((tp). We first note that
ail solutions 9'„of Eq. (3.5) are periodic with period
2m. This property of the solutions will be used re-
peatedly. We can put Eq. (3.5) in a more convenient
form by first shifting qb;+1 by ~

~ p( —Pedcosd, , ) f dd, exp[Pdd'cos(P, , —P, )le„(d) =s "'P„(d, , +

Next, we make use of the fact that the integration on @; covers a full period of the integrand. Thus, we may
shift the limits

(3.7}

(3.8)
e+

exp( —[BhS cosdtp(+[) d4t[exp[PJS cos(dh;+[ —(tp;) ] qd„((h;) = e "qdp((tp[+[ + rr)
i+1

The exponential in the integrand is sharply peaked about p;+1 when pJS' is large. We are thus motivated to Tay-
lor expand O„($;) about qh; =$;+1'.

@ (~) x h( dip[(+[
' d'

@ (~
—

)
I 0 d $;+1

(3.9)

qd„((tp; ) = e "qd„((tp; + pr) . (3.10)

Substitution of Eq. (3.9) into Eq. (3.8), approximation of cos($;+[ —Q;) by I ——(dh;+[ —(h, ), and extension of
the limits to infinity yields simple Gaussian moment integrals with the result

2 1 d2
exp (PJS') exp ( —PhS cos$;+[)

PJS [-o /[(2PJS')', ddt'+[
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The quantity in square brackets is just the Taylor representation of the operator exp [(I/2pJS') (d'/dp +() ].
Thus, dropping the subscript i+1, we have

1 d2 -p»„
exp ( —PhS cos$) exp, 'P„(@)= e "4„(@+ )

,
2IBJS2 d@2

where

s„—= a„+JS +P ' ln (2m/PJS )'~

(3.i i)

(3.i2)

Equation (3.11) does not yet have the form of a differential equation for V„((h) since O„((h+rr) appears on
the right-hand side. This can be remedied by iterating the operator once and using the periodicity of 0'„(@):

( 1

1 d 1 d'
ePhS cost]]]eXp PCS cosine xp ~.(y) =e "~.(y) .

2PJS' dy2 2pJS' d$'

We can symmetrize the operator on the left-hand side by rewriting Eq. (3.13) as an eigenvalue equation for

4„($)—= exp( —
—,
'

PhS cos$) V„($)

(3.13)

eA(k)eA( h) P((-d) p
s n(P (d)

where
1

e ' '=—exp( —PhScos@) expw (h) 1 d2 I

2 2PJS' dy2
exp( ——PhS cos@)

(

d2
M 2PJS A (h) = + ( —

PhS ) 2 sin P +PhS —cos$ + sing
dg2 2 2 d$

(3.14a)

(3.14b)

(3.i4c)

The last term in A (h), odd in h, is of order (h/JS) « 1. It is a measure of the canting of the spins along the
field direction in the ground state, and it can be treated perturbatively. The resultant power series in (h/JS) for
the eigenvalue will contain only even powers, since the eigenvalue must be independent of the sign of the field.
In particular, the linear terms from the expansion of A (h) and 3 (—h) are readily seen to cancel, and

a„(h) =a„a((h () +(h/JS) a„((]h )) +

Here we will keep only the leading term; then A (h) = A (—h) and the exponents in Eq. (3.14a) can be added,
giving the approximate eigenvalue equation

d' Ph'
]0JS2 d@, + (1 —cos2@) 4„(P)= —2P4„4„(@)

which is the Mathieu equation, " given in standard form as

[d'/d$'+ (a —2q cos2$) ]@„(4) =0

a =—2P JS (a, +h /16J), q —= (/3hS/4)

(3.is)

(3.i6a)

(3.i6b)

From the asymptotic formulas" for the lowest characteristic Mathieu value (eigenvalue) a = ap, we have for
large q

' [/2
3/2

6p = —JS —P ln (2m/PJS ) ——+2 —1 h h 2 (hS) e ~ (PhS && 1)
8J 4PJS ~ P'/'JS'

(3.»)

Here and below the symbol h is intrinsically «0:h —= ~h ~. We note that —JS —h /8 J =Ea is just the ground-state
energy per spin, and that hS =—E„]is the creation energy of the soliton excitation (Sec. II). Using Eq. (3.6) and
the asymptotic form" of erf (x) for large x, we finally obtain the low-temperature free energy per spin

f —Ep = kBT +ln s e %I B

4JS mkBT m JS kBT
(3.18)
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The first two terms give precisely the contribution ex-
pected' from classical spin waves in the absence of
solitons, while the last term is interpreted' as the sol-
iton contribution

For a linear chain governed by the above Hamil-
tonian, Currie er al. 2 have used the transfer operator
technique to obtain the following free energy (per
spin pair):

f Eo = fspin wave kB Tnso] (3.19) Ao)f =
2

kB Tma + kB T ln
kB Tma

Here n,",l' is the density of solitons plus antisolitons
i 1/2 r ~ 1/2

EsQI Eso]/kB
n tot e

dsol m kB T
(3.20)

(k, T «E...),

+(2j +d„)cos2$(
—(1/4j+) (h„cospl + h» sing~)']

(3.21)

We have omitted the last term in the Hamiltonian
density (2.19), because it is a perfect derivative with

respect to x of a function of ltI, and it therefore van-
ishes identically upon integration of Xover x when
periodic boundary conditions [P(~) = P( —~)] are
imposed. In the discrete lattice form (if the continu-
ous limit is not taken), it contributes only to higher
order in h/J and can still be neglected. Equation
(3.21) can be put in the form considered by Currie
et al. 2

N/2

3C= ga»t [—,
'

xI + —,
' (c'/a')(x(, t

—xj)'
( 1

+ (u'(1 —cosx~) ]

where

(3.22)

where d„~ —= 2JS/h is the characteristic soliton width

(in units of the lattice constant, —,a).1

We now turn to the second approach to calculating
thermodynamic quantities. In this method we start
directly from the approximate Hamiltonian {2.19) in

discrete form

N/2

3C = S g [ z j+(Q~+~
—

Ql ) +
2 (j++j, + d, )

»/2 t 1/2

—kB T2ma — "
e " . (3.25)

' Esol -E /kB T

m kBT

In this expression E„l is the soliton rest energy given
by Eq. (2.25).

In the special case of isotropic exchange and d„=0,
hy =0 Eq ~ (3.25) reduces to

f =kBT +lnh JS2
2JS kB T

' 1/2 t
' 1/2

—2—2 h Esol sol/ Be "' .(3.26)
m JS kB T

If we compare Eq. (3.26) with Eq. {3.18) (setting
ED=0), we note two differences. A trivial discrepan-
cy exists between the arguments of the logarithms.
This is due to the different phase space normalization
employed in Ref. 2. A more subtle difference be-
comes evident when we recall that f is the free-
energy per spin pair, whereas .f is the free-energy per
spin. If f is divided by two to give the free-energy
per spin, we see that it is, apart from the logarithmic
term, the result obtained via the first approach [Eq.
(3.18)]. We should make one more logarithmic
modification. In the second approach we singled out
one of the two possible equilibrium configurations
and considered excitations with respect to that confi-
guration alone. The partition function should be
doubled, and a term —kT ln2 added to the free ener-

We thus arrive at a result for the free-energy per
spin in the general case at low temperatures

r

1 1 J+(J++Jz + dz)f = —kBTma+ —kBT ln4 4 2(k, T)'
—kB Tn,',,'l'

X( —=2f(+ A, (3.23) (3.27)

and

S~ —=
4

(J++J'+d, ) ', co=me
4a (3.24)

The constants 4, c, and m are given by Eqs. (2.16),
(2.17), and (2.18), respectively. The constant A sets
the energy scale, c is the limiting velocity of the soli-
ton, and co is a characteristic oscillation frequency
(k =0 spin-wave frequency). The "width" of the soli-
ton is d, = c/co = m '. We have added a constant to
3/so that the ground-state configuration (X( =0) has
zero energy.

where the density of solitons plus antisolitons (per
spin) is given by

1/2 r

n"' = ma—2sol
w kBT

' 1/2 —E l/kB T
sol B (3.28)

{kBT«E„l)
It should be noted that Eq. (3.27) for the free-

energy density is valid only at temperatures low com-
pared to the soliton activation energy, E„l, (and high
compared to the k =0 spin-wave energy in order for
quantum corrections' " to be small) so that the soli-
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ton density is low. Indeed, Currie et aI.' were able to
show that in a phenomenology which regards the sol-
itons as an "ideal gas, " the precise form of the free
energy could be reproduced, but only in the asymp-
totic low-temperature limit (t«« ks T « E«,).
Although the exact classical free energy is in principle
obtainable at all temperatures via the transfer opera-
tor technique, there is as yet no comparison phenom-
enology for higher temperatures where, for example,
"virial corrections" to the ideal-gas picture are expect-
ed to become important.

If one wishes to interpret experimental results,
therefore, in terms of a soliton ideal gas, one must be
sure that k~ T is small compared to E„[. This is par-
ticularly important for those planar antiferromagnets
where the anisotropy in the easy plane is due solely
to the applied magnetic field H ( i.e., J„=J»- J, ,

D„=O). Recall that in this case the antiferromagnet-
ic (AF) soliton energy is E,",~" =gp, ~HS, whereas the
analogous soliton energy in planar ferromagnets ' is
E"[=8 (gp, ~HJS )' '. For a 5-kG field applied to
the ferromagnet CsNiF3 the soliton energy is
E [ 34 K, whereas a 5-kG field applied to the anti-
ferromagnet TMMC' [(CD3)4NMnC13] yields a soli-
ton energy of only E,",

[
=—1.'7 K. Thus, to be in a di-

lute gas situation in TMMC, one should use either
higher fields or lower temperatures than for CsNiF3.

We emphasize, however, that the low activation
energy of the antiferromagnetic soliton, and particu-
larly its linear (instead of square root) dependence on
the applied field, can be regarded as an attractive
feature in the sense that the antiferromagnetic chain
systems could provide an ideal testing ground for fu-
ture developments in the statistical mechanics of
nonideal soliton gases, since the soliton density could
be varied over a wide range using applied fields
which are easily produced in the laboratory.

IV. DISCUSSION AND CONCLUSIONS

We have shown in Sec. II that under appropriate
circumstances, the rather general Hamiltonian (2.1)
and (2.2) of an antiferromagnetic linear chain, bilin-
ear in the spin operators, can be reduced approxi-
mately to a simple sine-Gordon form [Eq. (2.15)].
We collect and reiterate here the conditions necessary
for this to be a valid approximation and explore the
utility of our approach to the particular quasi-one-
dimensional antiferromagnet (CD3)4NMnCI3, usually
referred to as TMMC.

For the sine-Gordon equation both the spin-wave
solutions of the linearized equation and the soliton
solutions of the full nonlinear equation are well

known. The soliton solutions, given in Eq. (2.24),
have spatial logarithmic derivatives of order my. In
order for the continuum approximation used in the
derivation of the sine-Gordon equation to be valid,

these logarithmic derivatives must be small compared
to the inverse lattice constant: amy (( 1. But for
the soliton velocity u sufficiently close to the charac-
teristic velocity c [Eq. (2.17)] the factor y becomes
arbitrarily large, and the condition is violated as the
soliton length Lorentz contracts to a size of the order
of a single lattice spacing. In practice, at sufficiently
low temperatures, there are statistically few solitons
with u = e, since their energies are proportional to
my. Moreover, these solitons are expected to slow
down as they interact with the discrete lattice and
lose energy by radiation of spin waves. (However,
their existence can have a significant effect, e.g. , on
the line shapes of neutron inelastic scattering experi-
ments. ")

Then the demand of gradual spatial variations on
the scale of a few lattice constants requires that ma
[or r; compare Eqs. (2.10) and (2.18)] must be
small; this is, in fact, the single small parameter of
the sine-Gordon theory, as discussed in detail in Sec.
II ~ The need for a sufficiently easy plane further re-
quires that j» —j, and/or d, must not be smaller than
order ma. In examining the applicability of the
theory to a given material, we must be somewhat
more careful, taking account of numerical factors in

the equations, some as large as 8.
We turn next then, to an explicit discussion of the

antiferromagnet TMMC, the most nearly magnetical-

ly one-dimensional of the multitude of magnetic
linear-chain compounds known. ' Furthermore, the
large spin ( —, ) of the magnetic ions, Mn++, can be

5

treated classically to a very good approximation. The
effective magnetic interaction between these orbital
S-state ions is well described by isotropic Heisenberg
exchange; anisotropy is provided almost entirely by
the magnetic dipole-dipole interactions. If the latter
are truncated beyond the dominant nearest-neighbor
interactions, then TMMC can be described by the
Hamiltonian in Eqs. (2.1) and (2.2) with J„=J» ) J,
and D„=D, =0. Such a model has proved highly
successful in describing both static and dynamic prop-
erties' of TMMC. Although the anisotropy is small,
(J» —J,)/J„=0.016, the development of substantial
short-range order with decreasing temperature ampli-
fies its effectiveness, so that the behavior of TMMC
turns from isotropic to planar (XY) in character. ' '
Is it enough to lead to well-defined sine-Gordon soli-
tons? Without loss of generality we can take the
external field to be in the y direction. Then Eq.
(2.28) gives ma =g ysH/JS; for TMMC with &=15
koe this gives ma =0.1. Equations (2.11) and
(2.13) imply that SI and el are of order ma, and from
Eq. (2.'7) we have

(g~ —yI) = (ma ) /4( j —j,) =0.16

so yI is also of order ma. For ~I and 81, which by de-
finition describe deviations from antiparallelism of
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adjacent spins, this result is hardly surprising (the
canting is expected to be of order g peHl JS = ma ).
But yt describes motion out of the easy plane; it is
small not because of the small anisotropy energy of a
single spin, but because one must simultaneously tip
out of the plane about the number of spins needed to
form a soliton —which is of length —m ', so the
number of spins is of order (ma) '. Then, since ma
is linear in the field, at low temperature (well
developed short-range order) we expect our theory to
be applicable to TMMC for external fields less than a
few tens of kilo-oersteds.

There remains the question of the existence of a
suitable range of temperature —on the one hand
above the three-dimensional antiferromagnetic
ordering temperature' of about 1 K, where the start-
ing linear-chain Hamiltonian ceases to be applicable,
and on the other hand low enough so that the
soliton density is sufficiently low to form an approxi-
mately ideal gas. The latter demand requires
T « gal, sHS/ks', for TMMC the right-hand side is
approximately 10 K for H =25 kOe. Thus there is a
limited accessible range of temperature and magnetic
field (approximately 1 K & T & 4 K for H -20 kOe)
where we would expect to find simple independent
soliton behavior at TMMC. At lower fields we would
expect to be able to study the effects of soliton in-
teractions as their density increases (while the tem-
perature is still low enough —below 10 K—for the
planar anisotropy to be well developed).

Perhaps the most obvious place to look for experi-

mental evidence of solitons in linear-chain antifer-
rornagnets is in the neutron scattering cross section.
This was where the corresponding ferromagnetic
phenomenon was first experimentally observed, and
we have recently become aware of some as yet un-
published results ' of Boucher et al. in TMMC. The
model developed here can readily be used to calculate
dynamical correlation functions (as Mikeska has
done' for the ferromagnet) appropriate to the neu-
tron scattering cross sections, at least in the ideal-
soliton-gas limit. We also intend to examine the light
scattering by spin fluctuations associated with these
solitons, an approach which appears promising in the
ferromagnetic case,"and the solitons may manifest
themselves in magnetic resonance phenomena. Fi-
nally, we mention our interest in extending these
results from the classical spin to the quantum
mechanical regime, which is presumably essential in
describing spin-

2
linear-chain magnets.
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