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Phase boundary of Ising antiferromagnets near H -H, and T 0:
Results from hard-core lattice gas calculations
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Ising antilerromagnets in a near-critical magnetic field at low temperatures are equivalent to
hard-core lattice gases. Using this connection and the existing series-expansion results for
hard-core lattice gases, we determine the slope of the phase boundary at T =0 for the square

(sq), plane-triangular (pt), simple cubic (sc), and body-centered cubic (bcc) antiterromagnets.
The slope is negative for the sq and pt lattices and nearly zero for the sc case. For the bcc lat-

tice a positive slope is obtained, indicating that the phase boundary bulges above the zero-
temperature critical field. e also test Miiller-Hartmann and Zittarz's postulate tor the critical
curve of the sq Ising antif'erromagnet. A renormalization-group treatment of the hard-square
lattice gas yields a critical activity = =3.7959+0.0001, which is in agreement with series-

expansion and finite-lattice estimates but at variance with the postulated: =4. The same cal-

culation gives v =0.999+0.001 for the correlation-length exponent, thus supporting the conjec-
ture that the transition of the hard-square lattice gas belongs to the Ising universality class.

I. INTRODUCTION

The nearest-neighbor Ising antiferromagnet in a
magnetic field is an interesting model from both
theoretical and experimental points of view. In spite
of its simplicity, this model provides a reasonable
description for a variety of systems' like physisorbed
monolayer films, uniaxial antiferromagnets, and
binary alloys with variable composition.

Qualitatively, the phase diagram following from the
model is well understood {Fig. 1): there are two
phases (paramagnetic and antiferromagnetic) which
are separated by a critical line running from the Neel
temperature at zero field ( T = T~, H =0) to the crit-
ical field at zero temperature ( T =0, H = H, ). Since
the nature of the symmetry breaking is not affected
by the magnetic field, one expects that the transition
at finite field is of second order and belongs to the
same universality class as the zero-field Ising model.

The details of the shape of the phase boundary are
known less well. Molecular-field calculations"
resulted in curves bulging above the critical field
(Fig. 1, curve a), a feature which was believed to be
an artifact of the approximation. This belief was sup-
ported by Fisher's exact solution of a two-dimension-
al superexchange model yielding a curve similar to
that of b on Fig. 1, and also by series expansions
and renormalization-group calculations. 6 In contrad-
iction to this postulated shape, two independent
Monte Carlo calculations' showed clearly that in the
case of the bcc lattice there were two phase transi-
tions provided H was slightly above H, .

A recent development is Muller-Hartmann and
Zittarz's (MHZ) derivation of the critical line T,{H)
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FIG. 1. Phase diagram of Ising antiferromagnets in a

magnetic field: (a) molecular-f'ield theory (Ref. 2), (b)
Muller-Hartmann and Zittarz's approximation f'or the square
lattice (Ref. 9), and (c) Monte Carlo calculations for the bcc
lattice (Ref. 8).

for the sq lattice {Fig. 1, curve b). They use special
interface configurations for calculating the surface
tension of the system and then by setting it to zero,
T,(H) is obtained. Although their method is approx-
imate, it gives exact values for T, (0) and H„and the
small H expansion of T, (H) also agrees with series
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expansions combined with the smoothness postu-
late. ' Within their 5'k accuracy, subsequent Monte
Carlo" and renormalization-group" calculations con-
firmed the MHZ result; so it was conjectured to be
exact.

Baxter e(al. ' point out, however, that the above
conjecture can be checked at low temperatures, as
well, where the phase boundary has the form

H =H, +a'T

and the slope a" is related to the critical activity z' of
the hard-square lattice gas by

a = —- lnz
2

(2)

By extending the high-density series for the order
parameter of the lattice gas up to 24 terms, they ob-
tained z'=3.7962(1) with the estimated accuracy
given in parentheses in units of the last significant di-

git. This value of z was in agreement with earlier
work, ' ' but in conflict with the conjectured value
z'=4, so they concluded that although the MHZ
T, (H) was a good approximation, it was not exact.

Our aim with this paper is twofold. First (Sec. II),
the Baxter eI al. conc)usion is confirmed by deter-
mining z" from a renormalization-group calculation.
Using Nightingale's" phenomenological scaling
method in which the renormalization-group equation
is derived by comparing the correlation lengths of
finite width strips of the system, we obtain a series of
estimates for z' which converges rapidly as the width
of the strips increases. An extrapolation gives
z" =3.7959(1) in good agreement with the result of
Baxter eI al.

Secondly (Sec. III), we explore the implications of
the known nearest-neighbor exclusion lattice gas
results for Ising antiferromagnets on different lat-

tices. In particular, it is shown that, while for the
plane-triangular (pt) and sq lattices the phase boun-
dary at T =0 and H = H, starts with negative slope,
for the simple cubic (sc) lattice the phase boundary is

nearly horizontal, and for the bcc lattice the slope is

positive; i.e., if H is just above H„ then there are
two phase transitions as the temperature is increased.

As a by-product of our renormalization-group calcu-
lation, we obtained a series of estimates for the criti-
cal exponent of the correlation length of the hard-

square lattice gas. The estimates extrapolate to
v =0.999(1), indicating that v is equal to the Ising
value vi =1. This result, put together with the series
estimate of the order-parameter exponent"
P =0.1249(1) (P~ =0.125), sho~s that the hard-
square lattice gas belongs to the Ising universality
class. Although this is expected on the basis of
ground-state symmetry considerations, series expan-
sions had led to speculations about the possibility of
another set of exponents. '

II. RENORMALIZATION GROUP FOR THE
HARD-SQUARE LATTICE GAS

The hard-square lattice gas is defined as a collec-
tion of particles restricted to the sites of a square lat-
tice. Multiple occupancy of a site or simultaneous
occupancy of neighboring sites are prohibited and an
activity ." is assigned to each occupied site. Thus the
partition function of the system is given by

(3)

—,(,(x'}= —(L(x)1, 1

L
(4}

where x and x' are the values of a parameter along a
line in the space of coupling constants. In the sim-
plest case of the Ising model, x is the nearest-
neighbor coupling while in our case of hard-square
lattice gas x is the activity z.

Once the renormalization-group transformation
x'=R(x) is known from Eq. (4}, the calculation of
the critical point and critical indices follows standard
lines. "

The usefulness of Nightingale's method depends
on whether (L can be computed for large enough L's
so that the estimates of the critical parameters follow-

ing from Eq. (4) could be smoothly extrapolated to
the exact values at L, L' ~. A practical way of cal-
culating the correlation length of two-dimensional
systems is the transfer-matrix technique. ' The

where Ak is the number of ways k lattice sites can be
chosen so that none of them are nearest neighbors.
It can be easily shown that in the limit T 0, the
partition function of the square-lattice Ising antifer-
romagnet in a magnetic field H = H, + a T reduces to
Eq. (3) with the activity related to a by z =exp
x (—2a). It follows then that the approach of H,
along the critical line (a =a") corresponds to the
critical point (z =z') of the lattice gas [Eqs. (I) and
(2)].

The critical properties of the hard-square lattice gas
have been discussed in many works" ' '8 using vari-
ous analytical and numerical approaches. Here we
present the first renormalization-group treatment of
the system. Since our aim is the precise determina-
tion of z', we use Nightingale's method" which has
proved to be reliable and accurate in finding the criti-
cal point and the critical exponents of two-dimen-
sional systems like the Ising model" and its various

generalizations.
'

Nightingale's derivation of approximate renormal-
ization-group equations is phenomenological. The
critical properties of an infinite lattice are obtained
from the properties of finite lattices by calculating the
correlation lengths of strips of infinite length but fin-
ite width (say L and L' rows} and then relating them
according to the Kadanoff picture:
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eigenvalues of the transfer matrix which are the larg-

est (At) and second largest (A2) in absolute value
yield (L through"

( ' = In(A'"/i A)" i) (5)

and the calculation of At ' and A2
' is greatly simpli-

fied by decomposing the 2 x 2 transfer matrix into a

direct sum of submatrices and finding the largest
eigenvalues of only those submatrices which contain
Ai

' and A~q '. The decomposition of the transfer
matrix of the hard-square lattice gas is described in

great detail in Ref. 16. We mention only that for the
largest system we considered, a strip of 14 rows, At

and A2 are determined from two 49 x 49 matrices.
Thus the numerical part of our work is easily done by
a computer.

When deriving a renormalization-group transfor-
mation, care must be taken about preserving the
ground-state symmetry of the system, " In the high
activity (z ~) limit, the ground state of the hard-

square lattice gas is twofold degenerate: the particles
occupy one of the two interpenetrating square sublat-
tices into which the square lattice can be divided.
Since strips with periodic boundary conditions display
twofold-degenerate ground state only if they have an
even number of rows, L and L' in Eq. (4) must be
even numbers.

A further consideration for the choice of L and L'
comes from experience with the Ising model. " In

that case the best converging sequences of critical
parameters were obtained by proceeding towards an
infinitesimal transformation'. L and L' were in-
creased simultaneously while the difference L —L'
was kept minimal. Following this line, we considered
transformations with L' = L —2 and increased L from
4 to 14.

The results for the critical activity (z') and the
correlation-length exponent (v) are displayed in
Table I. Both sequences of estimates converge well
as the system size increases and a simple extrapola-
tion procedure can be designed" on the basis that in
the limit L —~ the deviations from the exact values
(z' —z ', v —v ) are expected to go as L ~. One
plots ln{z' —z ) and In(v —v ) against ln{L
+L' ') and those values of z' and v are chosen for
which the linearity of the plots becomes optimal.
This method gave extremely good results for the Is-
ing model" and the quality of the fit is very good in

our case as well (Fig. 2). A somewhat subjective as-
sessment of the accuracy of the extrapolation can be
obtained from the maximum changes induced in z'
and v by changing ln(L '+L' ') into lnL ' or
In[2/(L +L')] and leaving out one or two points
from the small-L region.

The extrapolated value of z' =3.7959(1) agrees
well with the series-expansion results"'" and with

the estimates from finite-size systems. "' Even if
much more conservative error estimates are made, all

TABLE 1. Critical activity (= ) and correlation-length ex-
ponent ( v) of' the hard-square lattice gas as calculated from
Nightingale's method using strips of' widths L and L'.
Results of' series expansions and extrapolations from finite-

size systems are also included. The estimated accuracy is in-

dicated between parentheses in units of the least signif'icant

digit.

L '/L

tn /q(

2/4
4/6
6/8
8/10
10/12
12/14

4.1010
3.8538
3.8166
3.8056
3.8014
3.7992

1.161
1.058
1.028
1.016
1.010
1.007

E xtrapolalion

Series
Ref. 14
Ref'. 13

Transfer matrix
Ref. 15
Ref. 16

3.7959(1)

3.80(2)
3.7962 (1)

3.80(4)
3.7966(3)

0.999{1) I

0

FIG. 2. Extrapolation ot' the critical activity (: ) and
correlation-length exponent (v) estimates obtained from
renormalization-group transformations involving strips of
widths L and L'. The limiting values = and v are chosen
t'rom the requirement that the mean-square deviation f'rom a
linear f'it would be minimal.
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these numbers are still in disagreement with the
MHZ value z" =4 indicating that the surface config-
urations they consider are not sufficient for an exact
evaluation of the surface tension of the square-lattice
Ising antiferromagnet in finite fields.

%'e note here that Nightingale's method has re-

cently been applied'2 to the square-lattice Ising anti-
ferromagnet in a magnetic field. In this case the
reduction of the transfer matrix is not very effective
so the calculation has been restricted to strips with

maximum width of eight rows. Although the esti-
mates of T, (H) approach a curve which is different
from the MHZ result (see Table I in Ref. 12), the
difference is small and Sneddon's conclusion is in

favor of the MHZ curve attributing the difference to
the uncertainties of the renormalization-group
method. In view of the lattice gas results, Sneddon's
conclusion should be reversed and the critical curve
obtained by him should be considered as the more
accurate one.

The order parameter of the hard-square lattice gas
is one dimensional (twofold-degenerate ground
state), and the interaction between the squares is of
short range. Accordingly, the phase transition should
be in the Ising universality class. Our results for the
correlation length exponent v =0.999(l ) (Table I)
supports this notion, especially if it is considered to-
gether with the very accurate value of the order-
pararneter exponent P =0.1249(1) determined from
high-density series" (the Isi»g values are vl =1 and

t

PI = —).
The result v = vi is in agreement with calculations

on finite-size systems" ' which show that, to a high
degree of accuracy, the maximum compressibility of
finite width strips is proportional to the logarithm of
the width; i.e., the compressibility has a logarithmic
singularity (a =0). Assuming scaling, this means
v= l.

On the other hand, the v = vl result is in disagree-
ment with series-expansion work, which, depending
on the length of the series and on the method of
their analysis, yield a nondiverging compressibility"
or a compressibility with singularity stronger than log-

arithmic. " In our view, the series are not long
enough to detect a logarithmic singularity reliably.

III. IMPLICATIONS OF THE HARD-CORE LATTICE
GAS RESULTS

and bcc lattices, they can be used to determine a' for
the corresponding antiferromagnets.

The results of translating z" into a' are displayed
in Table II. Besides a', we included there another
quantity of interest, the critical magnetization m,
which is the limiting value of the magnetization as
the T =0 and H = H, point is approached along the
critical line. It can be obtained from the critical den-
sity (p, ) of the lattice gas through

n~, =1 —2p, (6)

TABLE II. Slope of the phase boundary (o ) and critical
nlagnetization (nI, ) for the square (sq), plane-triangular

(pt), simple cubic (sc), and body-centered cubic (bcc) anti-
t'erromagnets at their zero-temperature critical point. The
estimates are f'rom series-expansion works on nearest-
neighbor exclusion Iattlce gases (Rcfs. 13, 14, and 24).

The following aspects of the results should be
remarked.

a. sq lattice. The slope of the phase boundary has
been discussed in detail in Sec. II. The value ot
n~, =0.264(2) is in good agreement with the esti-
mates from finite-size systems n~, =0.258(8) (Ref.
15) and m, =0.26448(1) (Ref. 16).

b. pj lattice. The pt Ising antiferromagnet does not
order in zero field ( T~ =0). Its finite field (0 ( H( H, ) ground state is threefold degenerate, and the
phase transition in finite field belongs to the same
universality class as the three-state Potts model. " In
contrast, the sq, sc, and bcc Ising antiferromagnets
have finite Neel temperature, display a doubly degen-
erate ground state, and consequently their phase
transition belongs to the Ising universality class. In
view of the above differences, it is not surprising that
the value of a' for the pt lattice does not fit into the
trend which can be seen for the other lattices, namely
that a' increases as the number of nearest neighbors
is increased.

The numerical values of both a' = —1.20(1) and
nt, =0.445(6) compare well with finite lattice"
ra'=1.205(5) and m, =0.442(10)] and Monte Car-
lo' estimates (a'=1.15) but they differ from the
renormalization-group result ' a'=0.91 and
m, =0.52.

c. sc lattice. The phase boundary near T =0 is al-
most horizontal [a'= —0.04(3)]. Although a" is

So far, we have discussed the square lattice. Equa-
tions (1) and (2), however, are not restricted to this
case. For any given lattice, the low-temperature
phase boundary [parameter a' in Eq. (1)] of the Is-
ing antiferromagnet in a magnetic field and the criti-
cal activity z' of the nearest-neighbor exclusion lat-

tice gas are related by Eq. (2). Since series-expansion
estimates of z' are available""' for the sq, pt, sc,

Lattice

sc
bcc

-0.66700 (2)
-1.20(1)
—0.04(3)

0.13(3)

I)ic

0.260(8)
0.445(S)
0.573 (20)
0.645 (20)
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determined with quite a large relative error, the nega-

tive value indicates that there is no bulge above H, .
This conclusion is supported by calculations of the
magnetization in the limit of a horizontal approach to
the zero-temperature critical point's (H = H, and
T 0). The resulting values of mp =0.62 (finite lat-

tice) and mp=0. 59 (Monte Carlo) are larger than the
critical magnetization m, =0.57(2), indicating that
the phase boundary near T =0 is below the critical
field (a'(0). It should be noted, however, that the
uncertainties in mp and m, are of the same order as
their difference, so the magnetization results present
only a weak case for a'(0.

d. bcc lattice. a' &0, so the phase boundary near
T =0 is above H, . While renormalization-group and

high-temperature series' calculations do not repro-
duce this feature of the phase diagram, the Monte
Car1o findings [a'=0.16(2) and m, =0.644(6)] are
in excellent agreement with our results [a'=0.13(3)
and m, =0.645(20) ).

The existence of the bulge is a "lattice effect. " For
H ) H, the ground state of the antiferromagnet is

ferromagnetic and the low-temperature excitations
are flips of an arbitrary number of non-neighboring
spins. Close to H„ the question of how many spins
are flipped and whether their density is sufficient for
their ordering on one of the sublattices is decided by

the combinatorics of the corresponding nearest-

neighbor exclusion lattice gas. The trend for two-
sublattice antiferromagnets (Table II) is that as the
coordination number of the lattice is increased the
transition occurs at lower and lower densities of
flipped spins, With the bcc lattice we arrive at high
enough coordination number so that the low-

temperature spin flips are numerous enough for anti-
ferromagnetic ordering to take place.

e. sq, sc, and bcc lattices. As the number of nearest
neighbors is increased, a' and m, tend towards their
molecular-field values" a'=+oo (H = H, ——, T
x ln T) and m, =1. This is in accord with the expec-
tation that the molecular-field theory becomes exact
as the coordination number goes to infinity.

In summary, we can see that the connection
between Ising antiferromagnets and hard-core lattice
gases is extremely useful for obtaining qualitative as
well as quantitative results about the low-temperature
ordering of Ising antiferromagnets in a magnetic
field.
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