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The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term
that allows for three minima is analyzed using an approximate position-space renormatization-
group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram
shows a tricritical point separating a critical line from a line of first-order transitions. Other criti-
cal properties are examined, and good agreement is found with results on classical spin models

belonging to the same universality class.

I. INTRODUCTION

Problems associated with phase transitions in two-
dimensional field theories are currently being actively
investigated. As one knows, these problems are
directly linked by the transfer matrix! to correspond-
ing field theories in one space and one time dimen-
sion. Thus insight gained from statistical mechanics
regarding broken symmetries and correlations can
provide a deeper understanding of the ground-state
properties of the field theory. Alternatively, pro-
cedures for treating the quantum field theories give
information on two-dimensional phase transitions.

In this paper we study a model whose degrees of
freedom are described by a real scalar local field
¢(x). The action of a given field configuration has
the usual ¢* form with a ¢° term added to it. This
allows for a situation in which the coefficient of the
quartic term in the potential becomes zero or nega-
tive leading to three instead of two minimum energy
configurations for the field. For such a ¢ theory,
mean-field theory predicts the existence of a tricritical
point separating a critical line from a line of first-
order transitions.? Here, we explore the properties of
this ¢° model using methods similar to those
developed in treating the ¢* problem.?

In Sec. II, the transfer Hamiltonian for the ¢°
problem is obtained. The theory is put on a one-
dimensional lattice, keeping the Euclidean time direc-
tion continuous. While this clearly breaks the Eu-
clidean covariance of the theory, one believes that it
will be restored in the critical region, where the
length scale is set by a diverging correlation length
and the ultraviolet cutoff due to the finite lattice
spacing is immaterial as far as the low-momentum
properties of the system are concerned.* The associ-
ated Hamiltonian defining the lattice theory splits
into two parts, one describing the single-site problem
and the other associated with the intersite coupling
arising from the gradient term. Here we consider the
situation in which the three localized states associated
with the three minima of the potential will at a given
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site provide a sufficient basis to describe the wave
function at that site. Once the intersite coupling is
also expressed in this truncated basis the Hamiltonian
can be expressed as a one-dimensional spin-1 chain
and the expectation values of monomials of the field
are related to expectation values of powers of a spin
matrix s;.

In Sec. III, known results for various limiting cases
of the spin-1 chain are discussed and a simple varia-
tional calculation for the ground state is carried out.
This is equivalent to a mean-field treatment of the
original statistical-mechanics problem. From the
variational calculation a phase diagram is constructed.
This phase diagram exhibits a tricritical point separat-
ing a critical line from a line of first-order transitions
across which the expectation value of the order
parameter changes discontinuously. By definition, at
the tricritical point there is no effective four-point in-
teraction and power counting shows that the most
singular terms in a perturbation expansion around
mean-field theory are generated by the ¢° interaction,
whose critical dimension is three. Therefore below
three dimensions mean-field theory does not predict
the right singular behavior as the critical points are
approached.’

In order to study the modifications of the mean-
field picture produced by the strong long-wavelength
fluctuations an approximate renormalization-group
analysis is carried out in Sec. IV. Here we study suc-
cessive spin-1 chain Hamiltonians obtained by group-
ing two neighboring sites together, diagonalizing this
two-site Hamiltonian and using its three lowest states
to construct a new Hamiltonian describing a chain of
coupled two-site blocks. This is similar to procedures
previously developed for the spin-% representation of
a ¢* theory.® In Sec. VI this procedure is extended to
blocks containing three sites. The results of the
renormalization-group analysis are discussed in
Sec. V.

We find a total of five fixed points leading to first-
and second-order phase boundaries. The global
phase diagram is determined by the topology of the
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renormalization-group flows connecting the various
fixed points. The critical exponents are obtained in
the usual way by linearizing the renormalization-
group equations in the neighborhood of the fixed
points. These results are then compared with those
derived in different classical spin models in two di-
mensions that belong to the same universality class
and are believed to be represented by the same Eu-
clidean action functional.

In Appendix A we show by using the transfer ma-
trix technique how a class of classical spin models
[the Blume-Emery-Griffiths (BEG) model’ for heli-
um isotope mixtures in particular] is equivalent to
our model which arose from the continuum-field
theory. Appendix B contains the explicit derivation
of the renormalization-group transformation.

II. THE MODEL

We consider an action functional for the real field
¢ (xg,x1) of the form

161=1 [ @x13(ve)+3a(ved?+ U@

Q.1
with
U(@) =aod? +bod* +coe® . (2.2)

In a field theory the real coefficients ag, bo, co > 0, do
are the bare parameters and / =%, while for a
statistical-mechanical system the parameters will be
functions of the temperature and /is k7. The gen-
erating or partition function is then given by the path
integral

z=[Dgette 2.3)

where D ¢ is a functional measure and the intergra-
tion extends over all possible classical field configura-
tions.

We now treat one direction as Euclidean time
(xo=7, x;=x) and construct the equivalent Hamil-
tonian H. We introduce the momentum conjugate to
the field ¢

m(x) = i%f_l 2.4)
and get

H= [ ax3ex) @.5)

H(x) = 37x) +5(8:)1+ U(9) . 2.6)

The fields now obey equal time canonical commuta-
tion relations

[¢p(x,7), m(x",T)]=id(x—x") .

In going to the lattice we allow for the space variable
x to become discrete and take the values x;=i/A
where 1/A =a is the lattice spacing and i is an integer
running from 1 to N. The length of the lattice is
then L =N/A. To define the theory on the lattice
we also make the replacements

d(x) =i, m(x)—Ap , 2.7
3d = A(di—bi-1) , (2.8)

Jax—na13 29)
i

[where ¢;=¢(x;) etc.] and obtain the lattice Hamil-
tonian in terms of the canonical lattice variables

N
—‘A—H= S (+p2+ad? +bo} +cdf)
=]

N N
- 21 bibiv1—d 21 o . (2.10)

Here a =A2ay+1, b=A"2(by+dy), c = A%cy, and
d = dj are dimensionless. We will mainly study the
case d =0.

As a next step we consider the single-site
Schrodinger problem with the Hamiltonian

H,‘=—;-p2-!—axz-+-bx“+cx6 . 2.11)

For a, ¢ > 0 and b= 0 some of the possible potential
configurations are shown in Fig. 1. When the poten-
tial barriers separating the three minima are large
enough so that the tunneling matrix elements among
the localized ground states of the separate wells are
small, these localized states form a useful basis set
for a description of the problem. Under the same
conditions higher excitations at each lattice site can
be neglected.® In the Hilbert subspace spanned by
these three states the Hamiltonian has the truncated
matrix representation

€ W o

H=lo ¢ o] . (2.12)
[0] (0' €]

'E

410

E@_m_ —l,
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t=06 1=0.75 t=0.8

FIG. 1. Three possible configurations for the single-site
potential, according to the value of ¢ =3ac/b? with

1 . .
b=—4and c= 7 - The corresponding three lowest lying en-
ergy levels are shown in each case.
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Here € and ¢ are the ground-state energies of the
separate inner and outer well, respectively. The tun-
neling matrix element between the two outer wells o’
is much smaller than the tunneling matrix element
between adjacent wells: o' ~ w? << 1; » depends ex-
ponentially on ba'?/c

|w| = a exp(—const X ba'?/c) .

If we call the localized states |+), |0), and |-), the
eigenvalues and eigenvectors of H; have definite re-
flection symmetry, separating into two even-parity
states

W) =y 759+ +esle]
(2.13)
bt=—(2\/§w)_’{e1—-eo+w'
Flle—e+0)?+8w?]?) |
(2.14)

with energy eigenvalues
Ae= % leyteg+o (e +o —e)?+ 80?12} (2.15)

and an odd-parity state
1
=—((v-1-)) , 16

with eigenvalue
h0=€1—-m' . (217)

These eigenvalues are plotted in Fig. 2. As can be
seen the odd-parity eigenvalue stays between the two
even-parity ones (A4 =XAg=A\_).

The single-site truncated Hamiltonian can now be
rewritten in terms of spin-1 matrices with the up,
down, and sideways states corresponding to the three
retained states

A+ 0 0
H=|0 x» 0 =)\ol+eSzi+e'S,f , (2.18)

0 0 A

where '
e=3(A—A) (2.19)
€=3(+r) =) . (2.20)

The gradient term induces mixing between states of
different parity, which is given in our approximation
by the matrix elements

(Wl dilwo) = (woldilws)

d’ , 172
~75 1—%] =35, , (2.21)

(W=l il o) = (Wol bilw-)

] €
— +_
v

1/2

=5_, (2.22)

=15 1 1 1 L]

0.5 06 o7 0.8 0.9
t

FIG. 2. Three lowest-energy levels A, Ao, and A_ for the
potential of Fig. 1 as a function of .

where
¢=(+ail+) == (=il . (2.23)

The Hamiltonian describing the bilinear interaction
between lattice sites takes on the form

Hi=—3 44+ , 2.24)
where I
0 8+ O
A;=18: 0 3| . (2.25)

0 5. 0],

The interaction term biquadratic in the fields
—doidl (2.26)

can also be easily written in matrix form in the trun-
cated (definite parity) basis

"d EBI'BI:H y (227)
where
n+ 0 J
Bi=]0 6 0 (2.28)
J 0 m-
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and
m=ﬁ1x§ , (2.29)
b (-2 | (2.30)
2e
0= (+ o+ = (=lo?-) . (2.31)

In conclusion we have derived a matrix representa-
tion for the lattice Hamiltonian which is given by

—jl\—H = 2 (eS,i + e'Szf )
- E_AiAi'H —-d ZB,'B,'.H . (232)

Here we have dropped the c-number term )\02,- 1,
After reducing the interaction terms to diagonal
form the Hamiltonian can also be written

—IA—H = ‘2 (elel +€2Sx2i +€3Szf )

- _ 202
A;S‘i&m k;‘g‘is‘iﬂ ’ (2.33)

with
A=38%+82=¢? el=—2Ais+8_ ,

k=de’, €= £ (8%—28%) +¢ , (2.34)
2e 2 2
=== -8%) ,
€3 \ (8% )

or equivalently
€|=\/§w, e2=2w', €3=€1—€0+w' . (235)

Again a constant —e; 2:‘ 1; was dropped. We define
the two order parameters of the model to be

M=(S,), 0=(S? . (2.36)

The spin Hamiltonian was derived for the case in
which the tunneling matrix element  is small. Thus
o' ~ o? << 1. For consistency we will therefore be
mainly interested in the case €; << 1. Furthermore
the associated operator S essentially duplicates the
effect of the €S, term.

H describes a one-dimensional array of quantum
spin-1 objects coupled to each other by bilinear and
biquadratic exchange terms and interacting with
external transverse (€;) and crystal (e, €3) fields.
The Hamiltonian has the global symmetry with
respect to S,’ —'—Sz’, at each site. The local symmetry

of the single-site Hamiltonian is a consequence of the
reflection symmetry of the potential U(¢). Both
symmetries will be naturally preserved by the
renormalization-group transformation described in
Sec. IV.

III. CRITICAL BEHAVIOR IN
MEAN-FIELD THEORY

From the considerations of Sec. II we are led to
study the critical behavior of the truncated Hamil-
tonian

H= E(xSxi +yS,f +sz2’,)

- _ 202
35,8y, ~w 28380, 3.1
with
x=¢/A, z=e€/A ,

(3.2)
y=e3/A, W=k/A .

Here we have rescaled the energy by A, since the
critical properties depend only on the ratios of the
original parameters. Then we have also absorbed the
constant (AA)~! into the definition of H. Unless
otherwise stated we will be concerned here with the
case w =0, corresponding to do=0 in the original
partition function. Also, since we are mainly in-
terested in z << 1, we will take z to be zero in the
following. In this section we will first present some
qualitative considerations regarding the possible
phases of the Hamiltonian (3.1). We will then dis-
cuss some exact results concerning asymptotic forms
of H and finally use a variational method to extract
the mean-field critical properties.

We recall that the two order parameters are
M =(S;) and Q = (S?), where (O) denotes the
ground-state expectation value of the operator O.
Qualitatively we can discern three limiting cases and
their associated phases: (i) x,y >> 1: In this phase
M =0, Q —0, and the system is disordered. We will
call this phase "para-0"; (i) x,|y| >>1, y <0: In
this phase M is still zero but Q ~1. The system is
partially ordered and we call the corresponding phase
“para-1"; (iii) x, | y| << 1: This is the weak-coupling
region corresponding to the ordered phase with
M ~ Q ~1. This is the ferromagnetic ("ferro")
phase in which the reflection symmetry S, —— 3, is
spontaneously broken. It will be shown in the fol-
lowing that (for small zand w=0) no phase boun-
dary separates the para-1 and para-0 phase and that
they are therefore part of a single paramagnetic
phase. This is not expected to be the case in general.
It should be pointed out that for x =0 (besides
z=w=J) the model becomes classical since all
dynamical variables then commute.

It is easy to derive some simple limiting forms of
the spin model. In an asymptotic region to be speci-
fied below, the w =0 Hamiltonian reduces to a pure
spin-% Ising model in a transverse field.® In order to

see this we consider the first matrix form for H
2.32)

%H= 2 (GSZ,' +€’Sz%) - ZAI'AH-\ . (33)
i i
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For € — €' << 1 we have 8, ~0 and 8-~ ¢ and 4;
becomes

000
Ai=¢0 0 1] . 3.4
0 1 0),

The upper state |y4) decouples and the Hamiltonian
becomes (up to a constant)

1

AH=E%(E_€')0’11—¢220’”0;;1+1 , (3.5)
; -

l

where o, and o, are the usual Pauli matrices. The
spin--;- quantum Ising model is known to undergo a
second-order phase transition at

Tle—€)=¢7 . (3.6)

We therefore expect a second-order phase transition
in the spin-1 model at

%x2~ly|, y <<0 . 3.7

Furthermore it is possible to show that the model
for w#0, z=A=0, also reduces to a spin-% quan-
tum Ising model, but this time with an explicit sym-
metry breaking field. This circumstance is known in
related spin models as Griffiths symmetry.!® To
show this we consider again the first form for the
spin Hamiltonian (2.32)

H=3(Su+éSH-dSBBw . (8
i i

We can write B;

7)4."0 0 J
J 0 n_—9 .

Now we note that if we absorb the cross terms of
B,B,4, in the single-site Hamiltonian, we achieve a
decoupling of the central (|y)) state. Diagonalizing
the interaction term and dropping constants yields
%H= S (E-e) 20, +(k/2—€) o]
i

‘“%k 2021021+] . (310)

As anticipated, this is a spin-% quantum Ising model
in a transverse field (e2— €'2)!/2 and a longitudinal
field %k —¢€'. The critical point corresponds to
Thk—€=0and (&-€) =1k

In order to get some more detailed quantitative in-
formation about the possible phases of the system we

proceed to apply mean-field theory to the spin Hamil-
tonian, for the case w=0. This information will later

be used for comparison with the phase diagram ob-
tained from the renormalization-group analysis. In
mean-field theory every spin feels only the average
field due to neighboring fields and fluctuations are ig-
nored. Within the Hamiltonian formulation of this
problem, a mean-field-like solution is obtained by us-
ing a variationally determined wave function. For
the normalized ground state that wave function is
taken to be the product of N copies qf the same
single-site state

sin¢ siné
lv) =TTlvs), =] cos¢ | . (3.11)
i sing cosé};
We proceed by minimizing the energy per site
-}V(lelw) =E(0,¢) , (3.12)
where

E(6, ¢) =2 x sin¢ cos¢(sin8 +cos)
+y sin2¢ —sin*¢ (1 —2cos26)? . (3.13)

The variational equations that one needs to solve for
all xand y are

0=2E_ —\% sin2¢(cos® —sind)

+%(1 —cos2¢)?sindd , (3.14a)

0= -g% =V2x cos2¢(sind +cosd) +y sin2é

— 5 5in2¢(1 —cos2¢) (1 +cosdd) , (3.14b)

supplemented by the condition that the solutions of
these coupled equations actually minimize E(6, ¢).
The two order parameters are then

M =sin¢(sin?0 —cos?6) , (3.15a)
Q =sin%¢ . (3.15b)

It is possible to derive the equation for the second-
order phase transition line analytically. The reason
for this is that along the critical line M is vanishingly
small. After some algebra one gets

2=2-2y -2 £[(2-2y —+y)2= Y12 | (3.16)
For y << 0 it assumes the limiting form

Xt = 4-y+d)+oUly) 317

in agreement with the mean-field prediction for the
Ising model critical point. It can be seen immediately
that for x =0 the system undergoes a first-order
phase transition at y =1 with a discontinuity of exact-
ly 1 in both M and Q. Finally we observe that in the
paramagnetic phase (M =0) Q is continuous and has
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the following functional dependence on x and y:
Q=1l-sgn(P1+2(x/»)1712) . (3.18)

A numerical solution of the mean-field equations
gives the phase diagrams shown in Figs. 4 and 5. As
anticipated, there is only one paramagnetic phase, in
agreement with results on related models.” The sys-
tem undergoes both first-order and second-order
phase transitions. Because of the double valuedness
of Q one gets two branches in the Q-x phase diagram
(Fig. 5). The first-order line has become two phase-
coexistence lines. The first-order line terminates at
the tricritical point where it goes over into a critical
line. M goes continuously to zero as the line is ap-
proached from the weak-coupling (or low-temper-
ature) region. Q is continuous across this line and
has the values given by the above analytical expres-
sion.

We have also studied the case z #0. The overall
features of the phase diagrams are unchanged. For
small positive z the phase transition lines move
slightly into the paramagnetic region. In Secs.
IV—VI, we will analyze how these results change
when the renormalization-group analysis is per-
formed.

IV. RENORMALIZATION-GROUP
TRANSFORMATION

In this section we analyze the low-momentum
behavior of the system by means of a position-space
renormalization-group transformation. The pro-
cedure, briefly outlined in the Introduction, is charac-
terized by the following steps: (i) A few neighboring
lattice sites are grouped into blocks. (ii) The Hamil-
tonian associated with this few-site problem is diago-
nalized, neglecting the interaction between sites be-
longing to different blocks. (iii) A subset of the
lowest lying states of the block Hamiltonian are re-
tained to be used as a new truncated basis set. The
prescription for the choice of the lowest-lying states is
dictated by the requirement that the block Hamiltoni-
an assumes the same form as the site Hamiltonian.
For example, if H is to be represented in terms of
spin s matrices, a necessary but not sufficient condi-
tion for preserving the form of H is to keep the
2s +1 lowest states. By this procedure we eliminate
higher-momentum states from the problem. (iv) The
matrix elements of the interaction terms between
blocks in the new truncated basis are evaluated. This
will generate effective block-block interactions, which
will stil] be nearest neighbor only. If the block Ham-
iltonian describes the same problem as the original
Hamiltonian (i.e., same lattice type, spin kinematics,
and functional form), then one has managed to
change the length scale of the problem (by an
amount that depends on the procedure one uses to

group sites into blocks) replacing at the same time
the initial parameters in H by corresponding renor-
malized ones. In this way an approximate
renormalization-group transformation is generated.!!
Once one has associated with every Hamiltonian the
vector of its parameters, then each renormalization-
group transformation can be thought of as a discrete
jump of H in the parameter space. The succession of
these jumps, obtained when the transformation is
iterated, define the renormalization- group "trajec-
tories" or "flows". From these the critical properties
of the system can be read off.

Starting from general considerations it is possible
to see under which conditions the spin Hamiltonian
of Sec. III maintains its structure.

We first observe that the operator S, is multiplica-
tively renormalizable. Since the matrices A4; (that ap-
pear when H is expressed in the definite parity basis)
describing the intersite coupling mix even- and odd-
parity states, they will have only nonzero matrix ele-
ments between states of different parity. This is be-
cause the block Hamiltonian is, as the site Hamiltoni-
an, parity conserving. Therefore, if the ordering of
the block energy levels starts with even-odd-even
parity, then the symmetry of the truncated block
states is the same as the symmetry of the single-site
states, and A; goes over into a matrix with the same
structure. The change of basis that brought A4; into
S,i will bring the new truncated matrix 4; into Szi up

to a renormalization constant. We can therefore con-
clude that S, is multiplicatively renormalizable.

On the contrary, S is in general not expected to
be multiplicatively renormalizable, and in fact it is
not (see Sec. V). This implies that one should always
add a term zES}l_ to the single-site part of the Hamil-

tonian in order to preserve its form under the renor-
malization group. Furthermore, the biquadratic ex-
change term —w 3, S,?'S,f+1 is also not expected to

transform into itself (up to a multiplicative constant).
Therefore the case w #0 leads to a further enlarge-
ment of the parameter space. In the following we
will study only the case w=0.

We now construct a renormalization-group
transformation. Following the above prescriptions we
group two neighboring lattice points into a block.

The Hamiltonian for the coupled two-site problem in
the block b is

H,,=x(S,,l +S"2) +z(S,(2l +Sx22)

+y(S2 +82) =58, . @.1)

The full lattice Hamiltonian (3.1) can now be written
as made out of two parts, one describing the uncou-

pled blocks themselves (H;) and the other their in-

teractions (H;)

H=2Hb +H] . (42)
b
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Since we have grouped two lattice sites together in a
block, we have 32=9 states. We denote the states by
I - - - 1.

H, is reflection symmetric and symmetric under
site interchange (1 =2), and we therefore expect the
eigenstates of H to share this symmetry. If we reex-
press H in the basis of set of states that have definite
transformation properties under these two symmetry
operations, we see that H, becomes block diagonal.
The two invariant subspaces are the five-dimensional
even-parity and the four-dimensional odd-parity sub-
space. The explicit form for the eigenvalues and
eigenvectors is derived in Appendix B, together with
the construction of the renormalization-group
transformation.

When the three lower states alternate in parity
(with an even state lying lowest), the functional form
of the Hamiltonian is preserved when the blocks re-
place the sites. This condition is actually fulfilled in a
reasonably large neighborhood of the tricritical region
(see below). The recursion relation for the three
parameters of H can be written, in general,

(Xn+1,n+1,Zn41) = R (X, Yn,20) . 4.3)

The change of scale at every step is here equal to 2,
so that the nth iterate of H describes an effective
Hamiltonian measured on a scale a X 2", where a is
the lattice spacing.

It is useful to look for the fixed points of R satisfy-
ing the property

R(x*y*2*) = (x*y*2*) . 4.9)

At these points the Hamiltonian reproduces itself up
to an additive constant. This signals the scale invari-
ance of the theory: The correlation length is either
infinite or zero. It is possible to find a subset of the
fixed points of the recursion relations analytically.
This is also shown in Appendix B. But in order to
extract all the information available, the recursion re-
lation must be studied numerically. Some of the re-
normalization-group flows obtained in this way are
shown schematically in Fig. 3.

A detailed study of the recursion relations leads to
a set of three fixed points which are inside the region
of validity of our approximate truncation procedure
(i.e., where the ordering of the three lowest energy
states is of the form even-odd-even parity). The
trivial fixed point Fe* constitutes the sink for the fer-
romagnetic phase. It is a stable fixed point, and the
correlation length there is zero. D* is the discon-
tinuity fixed point and satisfies the Nauenberg-
Nienhuis criterion!? for seeing a first-order phase
transition in renormalization theory. T * is the tricriti-
cal fixed point into which the tricritical point T of the
z =0 theory is mapped, together with all the tricritical
points for z # 0 lying on the line joining Tand T *.
We are mainly interested, as stressed in Sec. III, in

05|

/\l\

o

05 1.0 1.5
y
FIG. 3. Some renormalization-group flows are shown
schematically in this figure. All the initial points are in the
z=0 plane. The z direction is out of this plane.

the case z << 1. At the tricritical point the first-
order phase transition line goes over into a continu-
ous one. The first-order line constitutes the domain
of attraction for the point D*, whereas all points on
the second-order line flow towards a critical fixed
point.

Since our model reduces to the spin-% Ising model

for certain values of the parameters, (see Sec. III) we
would expect to find a critical fixed point at a location
corresponding to the critical point of the Ising model,
if our renormalization-group transformation were ex-
act. Because of the truncation procedure adopted, a
crossing between the third and fourth level prevents
us from solving the recursion relations in this asymp-
totic region. The same circumstance applies to the
point in parameter space that acts as a sink for the
paramagnetic phase.

The problems associated with the crossing of the
energy levels could in principle be avoided in our
framework by keeping more states at each site. This
would destroy the simple form of the model and
crossing between the fourth and fifth level is to be
expected, but one might argue that by keeping more
states one may progressively improve on the results.
This has been shown for the spin-% Ising model in a

transverse field'®> where it appears that the exact
answer can be approached arbitrarily close if enough
states are retained and blocks of more than two sites
are used (see also Sec. V).

The critical exponents are obtained, as usual, by
linearizing the recursion relation at the fixed point
whose domain of attraction contains the transition
point of interest. In our case the relation

K=R(K), K=(xy2) 4.5)
yields
ka— ki =Tag(kg—kg) 4.6)
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with

k.
Ta =lm]?_?. . (47)

The eigenvalues A\, of the matrix T,g are related to
the exponents y, by

.=b7 a=1,23, (4.8)

where b =2 is the length rescaling factor. The
relevant eigenvalues A, > 1 give critical and tricritical
exponents, and the results will be shown in Sec. V.
Irrelevant eigenvalues give correction-to-scaling ex-
ponents.

V. RESULTS

The positions of the fixed points discussed in Sec.
IV are listed in Table I, together with the coordinates
of the tricritical point in the z =0 plane (7). The
fixed points D* and Fe* are analytic results derived in
Appendix B. The point C*, and the fixed point that
acts as a sink for the paramagnetic phase, lay outside
the region of validity of our recursion relations be-
cause of crossing between the third and fourth energy
level and its positions can be inferred from the
renormalization-group flows in the region where our
approximation is trustworthy. The phase diagram in
the x-y plane (for z=0) that we obtain is shown in
Fig. 4, together with the mean-field prediction. The
slope of the critical line coincides with that of the
first-order line at the tricritical point.

The order parameters M and Q are easily comput-
ed. M is evaluated by observing how the operator S,
gets renormalized after every iteration of the
transformation. Since S, is multiplicatively renormal-
izable, its renormalization constant is given at every
step by (A,41/4,)"?

A 1/2
(S,)r= —A’!i‘-] S, . 5.1

n

TABLE 1. Fixed points and the tricritical point in the
z=0 plane, for b =2. Note that z* differs from x*2 by less
than 10% for T*.

Fixed point Type RG location (x,y,z), b=2
T* Tricritical 0.291 24,0.894 46,0.068 64
D* Discontinuity 0,1,0
Fe* Sink for ferro phase 0,-2,0

T Tricritical point for z =0 0.3234,0.8338,0

2 T T
MFA
x RG
|- -
\
\
- -
\
\
0] ] ] N
-0.5 0] 05 1.0
y

FIG. 4. Phase diagram in the x-y plane for z =0 as ob-
tained from our renormalization-group analysis (RG). The
result is compared with the mean-field (MFA) prediction.
The tricritical point (V) separates the first-order line
(dashed) from the critical line (continuous).

Therefore M itself is given by
12

M= lim ﬁ Arn
n—e i | A

12
A
= lim |- . 5.2
LA [ A ] 62
Knowledge of M around T * can be used to determine
the exponent B directly. Q can be evaluated by an
analogous procedure. As stated before, S7? is not
multiplicatively renormalizable

(SHr=Z"S2+Z{"S +Z"S2+2ZP1 . (5.3)

But we observe that after many (~20) iterations
the operator S is renormalized to a fixed matrix
form, from which the value of Q can be read off. In
our calculations the fixed form is always diagonal and
either 1 or S2.

Therefore we have the two possibilities

0= nll_r.n” zm (5.4
or
Q=lim Z{" . (5.5

n—*oo

The first choice is pertinent to the ordered phase,
where the effective spins are all aligned either up or
down. The phase diagram in the Q-x phase, as ob-
tained from our recursion relation, is shown in Fig. 5.
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FIG. 5. Phase diagram for the theory in the Q-x plane in
renormalization-group theory for z =0. The dashed line
represents the mean-field result. The critical line terminates
at the tricritical point (V). The two lower lines going down
to x =0 are coexistence curves bounding the two-phase re-
gion.

A direct quantitative comparison of our results with
the results from the BEG model’ is not possible be-
cause of the ambiguity in identifying the temperature
in the quantum spin model.

The results for the tricritical exponents are summa-
rized in Table II, together with the exponents ob-
tained from other models using different truncation
procedures, which nevertheless should belong to the
same universality class. We quote our results for the
eigenvalues both for two-site (b =2) and three-site
(b =3) blocks (see Sec. VI). The results for the
latter case, which we expect to be more accurate,
compare remarkably well with the results obtained
from quite different models (although related by
universality) to which an entirely different truncation
procedure was applied (the agreement with the

results of Ref. 14 is better than 2%). We regard our
results at roughly the same level of accuracy as the
results for the ¢* theory and the spin-% Ising model
in a transverse field. In the third column we list the
results obtained from a renormalization-group
analysis applied to the classical two-dimensional BEG
model,'* whose relation to our model is shown in
Appendix A. The fourth column contains the results
for the classical spin-% Ising antiferromagnet (with
antiferromagnetic nearest-neighbor coupling and fer-
romagnetic next-to-nearest-neighbor coupling) also in
two dimensions.!* We also compare with the predic-
tions of the € expansion'® (where e=3—dand n=1
here) and with numerical (Monte Carlo) results.!”

VI. IMPROVING THE ALGORITHM

In order to study the dependence of our results on
the truncation procedure, we can resort to different
methods. One possibility would be to retain more
states in the truncation. This would of course lead to
a block Hamiltonian which could not be written down
in terms of spin-1 matrices. Nevertheless, one could
study the problem in this larger basis in a similar
manner. Clearly this would lead to an enlargement
of the parameter space. Alternatively, one can group
more lattice sites together in a block, keeping then
only the three lowest lying states at every iteration.
In this way the original form of H is preserved. If
one uses both methods concurrently, one can achieve
definite quantitative improvements in more simple
models.

We now dissect the lattice into blocks of three sites
and solve the uncoupled single-block Hamiltonian ex-
actly, and construct then a renormalization-group
transformation in a way that is completely analogous
to what was done in Secs. I-V. In this case the
length recalling factor is 5 =3. The jumps of the
Hamiltonian in parameter space under the
renormalization-group transformation are now com-

TABLE II. Tricritical eigenvalues and crossover exponent ¢r.

s= -;- e=3—d Monte
b=2 b=3 BEG? Ising® expansion® Carlod MFA
yar 1.6613 1.8168 1.8373 1.825 1.968 1.36 £0.14 2
yar 0.6345 0.9321 0.9181 0.652 1.2 1.10 £0.22 1
Yer —0.8935 —0.6986 s .- < <.
o7 0.3819 0.5131 0.4997 0.357 0.6 0.81 £0.24 %

aReference 14. RG on the classical 2-D BEG model.

bReference 15. RG on the classical 2-D spin—% Ising antiferromagnet, related by universality.

‘Reference 16. € expansion on the continuum-field theory, downwards from d =3.
‘Reference 17. Monte Carlo study of the classical spin-5 Ising antiferromagnet in two dimensions.
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FIG. 6. x-y boundaries for initial values of z =0 (right
curve) and z =0.1 (left curve) obtained from the three-site-
block calculation. Around the tricritical point the agreement
between the two-block (see Fig. 4) and the three-block pre-
diction is equal to or less than 5%.

paratively bigger, for the same initial distance from
the critical point.

The phase diagram that we compute in this case is
shown in Fig. 6. When we compare the positions of
the phase transition lines for z=0 in the b =2 and
b =3 cases, we see that the agreement between the
position of the two lines is better than 5% in the re-
gion shown. If the graph for b =2 and the one for
b =3 were superimposed, the differences would hard-
ly be notable on the scale chosen. In Table II we re-
port the critical exponent as obtained in this case.
The agreement with other calculations is, as men-
tioned before, quite encouraging.
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APPENDIX A:
RELATION TO THE BEG MODEL

We consider the Blume-Emery-Griffiths (BEG)
model on the square lattice (d =2). It is a spin-1

classical Ising model with the Hamiltonian

(K2 =p[~1 355-K 35757
(o) (i)

+Z(eS,»+qS,~2) . (A1)

Originally it was introduced to describe phase separa-
tion and superfluid ordering in *He-*He mixtures.
The partition function is given by

Z= 3 e, (A2)
configurations

Our aim is now to construct the associated quantum-
mechanical Hamiltonian, by using the transfer matrix
technique. For this purpose we identify one lattice
direction as the (Euclidean) time axis. By an ap-
propriate limiting procedure we will regard this direc-
tion as continuous and subsequently derive a class of
models closely related to the one studied in Secs.
I—-VI of this paper.

We rewrite the above Hamiltonian in a form that
will prove more convenient

3C=B[12(S,<—S,)’+£ (S2—S7)?
2 @ 2 3
+3,(hS;+q'SH| . (A3)
i
with

We now consider two neighboring rows of spins; the
spins on the two rows will be denoted by S, and o,,.
The transfer matrix will be defined as the quantum-
mechanical imaginary-time evolution operator that
carries information from one row to the next. The
Hamiltonian for the two rows is

(s, o) =B.[3(S) +3(a)]

+8:

7’2(5"—0,)%7" 3 (S2—02)?

(AS)

and B,3C(S) is the Hamiltonian for a single chain

B.3(S) =B,[7J 3 (S, —8,1)? +—§- 3 (SF-85%)?

+3 (hS,+q'SH| . (A6)

We also have allowed for different couplings in the
space (B,) and time (B,) directions.
It is easy to show that the partition function is the
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trace of the Nth power of a transfer matrix 7, where
the rows are labeled by the spin configuration of the
first chain and the columns by those of the second
neighboring chain. For N spins in a chain, there are
3% possible spin configurations and therefore T has
dimension 3%

The diagonal matrix elements of T are obtained by
setting S, = o, for each n. Therefore

-28,30(5) (A7)

Tdiagonal =e

The off-diagonal elements of T can be classified ac-
cording to the amount of spins flipped. For n, spin
flips with AS =1 and n; with AS =2 the matrix ele-
ment of Tis

-pzs(s,a)e—ﬁ,lnlu+l()+4n21]/2

Tan,=e , (A8)

E(S,a)=3(S) +3(a) . (A9)

We now consider the limit of a highly anisotropic
coupling
Bi— o,
' (A10)
%B, —Ae =7,

with A any real constant.

The limiting form for 7 becomes, when we neglect
two spin flips with respect to one flip of either AS =1
or AS=2 (n,n;=0,1but not n;=ny,=1)

Tdiagonal =1+ 2,3;3(:(5) , (Alla)

-8,(J+K)2  -2BJ
0 e ! e !
-B,(J+K)/2 B,(J+K)/2
Toff—diagonal =le ! 0 e’ >
-28,J -B,(J+K)/2
e ! e ! 0
(Allb)

where we have neglected terms O(8;).
It is now possible to write 7 in terms of an infini-
tesimal generator H

T=1+tH+0(s?) , (A12)

. . . —4JB . .
where we identify 7 with e ! the infinitesimal lat-
tice spacing along the Euclidean time direction. We
get

H=33005) + 3 (2", 16 L (A1)
n
with
o
Se=—f101 (Al4a)
Y210 1 0
and
001
c=looo (Al4b)
100

The coefficient in front of Sx can be written

K—3J
4

Therefore, for a« > 0 or K > 3J we can drop the S,
term in H as r —0. For K =3J we keep it together
with the other off-diagonal part given by C,, and fi-
nally for @ <0 or K < 3J we redefine our limiting
procedure as

Bt—.oo ’

V27e, with a= (Al4c)

?Jﬂz e B (A15)
As a result we get that in this case we can neglect the
C, term in Has 7 —0.

We conclude therefore that we get three slightly
different models, depending on whether 3/ = K.
When H is written entirely in terms of spin-1 ma-
trices we have

H= 2 (€1Sx1+€2S)%i +€3Sz%)
i

—-A 2 SziSzi+1 —k 2 Sz%Sz%H (A16)
and g i

K
A=2\, k=22,
2)\1

€=0, e=2, e3=%‘l (K>3J) ,
4 (A17)
El=\/§, 62=2, 63=—3q' (K=3.,) ,

€ =V2, €=0, e3=4—’J“i (K <3)) ,

This spin-1 quantum Ising model is expected to have
the same critical behavior as the classical BEG model.
We therefore recover exactly the same model that
was derived in Secs. I-VI from the continuum field
theory. (The parameter k here has to be identified
with the k of Sec. I-VI).

For k =0 we obtain a relation between the parame-
ters of the (anisotropic) BEG model and the parame-
ters of the quantum Ising model

- ,_2¢ ,_
b'e N y E z=0
which can be used for comparing the phase diagrams
in the two models ( y is proportional to the chemical
potential difference g for two-fluid systems).

, (A18)

APPENDIX B:
DERIVATION OF THE RG TRANSFORMATION

As shown in Sec. IV, we first group two neighbor-
ing lattice points into a block and obtain the block
Hamiltonian

Hyp= (S, +5x,) +e(S3 +52)

-!~53(S,21 -t-S,:'2 )—AS;S;, - (B1)
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The sites that have definite parity and have a definite
symmetry under site interchange are

-1

wf—ﬁ(|n>+|u>) , (B2a)
i

M—ﬁ(mnln)) : (B2b)

=1 =) +ll =)+ =D +I=1) , (B2
W=+t =I=D=1—1) , (B2e)

-1 _

w—ﬁmn [y . (B2f)
_1 _

!b?—ﬁ(ltl) ) . (B2g)

W=1U1= =1l= +I=D=1—1)) , B2h)
=11 -ll=) = 1—=D+I—=1) . B2

The superscript e indicates an even-parity state, and o
indicates an odd-parity onte. In this basis H, be-
comes block diagonal. ¢ is an eigenstate of H;, with
eigenvalue \§=2¢; +e€;.

J

The odd-parity eigenvalues and eigenstates are
easily written

M=7Re+36+A+[(e+4)+4€f1)
of=[1+(af)?172(y§+afys) , (B3a)
af——ell—()\f—ez—253—A) ,

M= Rea+3e+A+[(e5—A)2 +461'7)
#3=[1+(a3)217"2(wt +asy3) , (B3b)
aS=-EI—(KS‘€2—2E3+A) ,

1

M=1Re+36a+A—[(e+A4)2+4€f]12) |
#3=[1+(a$)217 2 (g3 +agvg) , (B3c)
as=—:—(xs—52—2q—m ,

1

)\3=%{262+3€3—A—[(E3—A)2+46“1/2] ,

#3=[1+(a3) 172yt +asy9) ,

a2=€L()\2—52—2e3+A) : (B3d)
1

AMZ=M=N=2] . (B4)
The even-parity eigenvalues are solutions of the
quartic secular equation

(e+26—A+MN) (e +263+A =N [ (26— N) (26, +€3— \) —2€}] — €}(2€;— 1))

—[(2e;—N) (2e; +e3—A) —2¢€fl —€f(e; +2e3+A— 1) (2e;—A) =0 . (BSa)

For €, =0 the equation reduces to
[(2e3—N)2— A2][A(NA—€3) —2¢€]]
+2efr(2e3—1) =0 . (BSb)

The solutions of the above quartics can be found
analytically. We call the eigenvalues A{, A§, A§, A§,
A=A =A{=\E

The even-parity eigenstates are easily obtained
once the eigenvalues are known. Their general form
is

¢f=#(wf+a,-‘np5+b,-3¢§+cf 9, (B6a)

with

Ni=(1+af?+bf2 +cf?)1/ (B6b)
and af, bf, cf functions of the associated eigenvalues
A5 i=1,2,4,5.

In the tricritical region, where the three lowest
eigenstates are two even-parity with one odd-parity

r
state in between, we can use as a truncated basis

[+) =1 +a} +b3 +c})12

X (Yf +aps +bp§ +cf) (B7a)
10) =11+ (a$)2172(wt +agy$) , (B7b)
[-)=(1+a2 +b2 +c2)712

x () +a-y§+b_v§ +c-yf) (B7c)

(at=a$§, a~=a$, etc.) .

From these eigenvalues and eigenvectors the new
Hamiltonian generated by our iteration procedure can
be constructed. The new parameters can be obtained
from the formulas (2.18) to (2.34) of Sec. II. Some
fixed points of the recursion relations can be found
analytically. Consider the point x =0, y =1, z=0.
Measured on the scale of A the eigenvalues are
A+=1, Ay =1, A_=0. Therefore aps=—1 and

b_.~oo, ay=bi=cy, b_/C-=b_/a_"-oo .

From this one has €;=¢€;=0 and €=A"=1. This
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shows that the point
D*=(0,1,0) ,

is a fixed point. (The renormalization-group analysis
performed in Sec. IV shows that D* is the discon-
tinuity fixed point).

Also the point x =0, y =-—2, z=0 can be shown
analytically to be a fixed point. In this case

)\+=—'3, Ao=—5, A_=_5 )

and
anu=0, ay/cy~o ,

a+/b+~00, a_=b_=c_=0 .

This gives €, =¢€>=0 and A’=1, e=-2. Thus the
vector

Fe*=(0,-2,0)

is also a fixed point (in fact, the weak-coupling or
low-temperature fixed point).

*This work forms part of a thesis fulfilling part of the re-
quirements for the Ph.D. degree of the author.
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