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Critical behavior of spin-one three-dimensional Ising model with single-ion anisotropy
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The low-density linked-cluster expansion of the free energy of the ferromagnetic Ising model

with single-ion anisotropy, i.e., the 5 X, S2I term, is given by pf(p J, p—4.ph) =
2 qj + h —&

+X& t(u u) Ll(u, rt), with u exp( J/ksT)—, u, exp( 2mb/—ksT), and q exp(d/ksT)
This is a low-temperature expansion with each spin S; having magnitude one. The sixth-order

series available in the literature is analyzed by evaluating the zeros of I.
&

= u' 'L& as a function

of 5, and from that the critical temperature is deduced. The knowledge of the critical tempera-

ture as a function of the anisotropy leads to the second-order part of the phase boundary of PJ
with PLL which estimates a tricritical value of b, . The asymptotic behavior of Li is studied and

from that the critical exponent 8 of the M-h isotherm as h -0 is found. It is observed that

the anisotropy determines the transition temperature, but the exponent 5 is independent of the

same as expected from the universality hypothesis.

I. INTRODUCTION

In the theory of critical phenomena in the Ising
model, it is of interest to examine the universality of
the critical exponents when a particular coupling con-
stant, which could be varied in relation to the ex-
change, is introduced. Saul, mortis, and Stauffer'
have studied the Ising model for a face-centered cu-
bic lattice to which a single-ion anisotropy term has
been added. The model considered is described by
the Hamiltonian.

0=—J S„Su+5XS,'; —/t XSu
(ij i i

It represents a special case of the Blume-Emery-
Griffiths-Potts model, described often in the litera-
ture as the Blume-Capel model. By adding a constant
term in the Hamiltonian, the single-ion anisotropy
term can be written as S,' —

—,S(S+1), and this an-

isotropy vanishes for S 2. Therefore, we are in-

terested in the spin-1 Ising model, S =1 for each
spin.

For S = 1, the Hamiltonian (1) represents an in-

teresting system as it involves three distinct phases.
At low temperatures for small anisotropy, there is a
ferromagnetically ordered phase. The S,i term distin-

guishes between the 0 and +1 states but cannot
separate the +1 states. There are two other types of
phases; one paramagnetic phase with all the
S„=O,+1 states equally populated; another with only
S„+1states or only the S„=O states preferentially
populated (which is lower depends on the sign of b, ).

Accordingly distinct boundaries must exist separating
the three phases. As the ratio 5/I is varied, the sys-
tem traces through the three phases, and a tricritical
point is expected to occur where the three phases
coexist. We note that for 4 = —~, the S„=O state is
suppressed, and the model (1) reduces to the S = T~

Ising model. For b =+~, the S„=+1states are
suppressed, and we have only the S, =0 states so that
the model is spin-zero nonmagnetic at all tempera-
tures. For intermediate values of Ph, another
paramagnetic phase exists in which all the S„=O,+1
states are populated in the ground state of the sys-
tem, i.e., [with ri=exp(d I/sT) —= exp( ph) 1

5 &0, lim g=~, S„=O
T~O

spin-zero ground state, and

paramagnetic ground state (ferromagnetic with ex-
change).

Saul et al. ' employed the method of series expan-
sion and obtained the boundaries of the first- and
second-order transitions. The second-order e expan-
sion in the renormalization group has also been ap-
plied to this problem, but this method is designed
only to predict the universal scale-invariant behavior,
and the transition temperature which depends on the
structure of the Hamiltonian cannot be computed.

The ratio method4 of calculating the transition tem-
perature is suitable only for the high-temperature ex-
pansion of the free energy. When the ratios of the
coefficients of the successive terms are plotted
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against the inverse of the term number, it normally
leads to a linear plot only for high-temperature series
from which the limit that gives the transition tem-
perature can be easily found. However, for the low-

temperature series, the ratio plot does not lead to a
linear function. Accordingly, the ratio plot is not ap-
plicable to the low-temperature expansion with which
we shall be concerned in the present problem. Saul
et al. noted this difficulty awhile checking such ratio
plots for the low-temperature expansion and were
forced to resort to a second check with the Pade
method. The low-density and the low-temperature
linked-cluster expansion of the free energy has been
obtained for a number of Ising lattices by Sykes
et al.4 for S = —,, whereas the authors of Ref. 1 give

the low-temperature sixth-order series for S =1
analyzed in the present work. Majumdar has
developed' a new method to calculate the transition
temperature from the zeros of the polynomials in

u =exp( —4J/kaT), these polynomials being coeffi-
cients in the series expansion in the variable
p, =exp( —2mh/ks T) . For low-temperature series,
where the ratio method does not work, either the
Pade or the Majumdar method must be used. The
latter method is used so that we can test its success
for the Hamiltonian (1).

We also calculate the critical exponent 5 as a func-
tion of the anisotropy 5, and thus extend the work of
Saul et al. in this direction.

Our method of calculation is as follows: We obtain
the zeros of the high-field polynomials in the low-

temperature expansion of the free energy in a fer-
romagnetic face-centered cubic lattice for the Hamil-
tonian (1). As Majumdar found, a particular limit
point of the zeros yields the transition temperature.
This calculation is done as a function of the anisotro-

py parameter, and from that the tricritical point is
determined. The values of the polynomials at the
transition point are computed for various values of
the anisotropy parameter near the tricritical point,
and from that an effort is made to estimate the
universal parameter 8, the exponent of the magneti-
zation h —M~, for small field h. We are able to ob-
tain the phase boundary of one of the phases (see
Fig. 2) and check the universality.

II. PHASE DIAGRAM

The low-temperature linked-cluster expansion pro-
vides the free energy,

—Pf(u, p„v)) =
2

qJ+h —5+ Xp, 'u'2'Ll(u, g)
I i

u = —6g (I — q)—
2 (3)

The root is» for b =0 and approaches» as q goes
12 12

to infinity. The remaining polynomial sums up to
l =6 are solved on a computer with double-precision
arithmetic. Because of the factor u' ', there is a mul-
tiple zero at the origin in the u plane, this is of no in-
terest. The first real zero of the polynomial sums oc-
curs in the interval 0 & u & 1, and is denoted by
ul"'(q). These values of ult" (g) are plotted in Fig.
1 as a function of q, the convergence of u~"'(g) as
l ~ is determined by a least-squares fit with the
expression,

u('"(rt) =u'„(g) +ctl ' .

Here in accordance with Eq. (I),

P = I /ks T, p = exp( —Ph )

g =exp(PA), u =exp( —PJ)

and q is the coordination number of the lattice.
L~(u, q) is a polynomial in u ' and rt, calculated by
Saul, Wortis, and Stauffer for l up to 6 for S = 1

(their Table II). The polynomial L~ for S =1 is zero
unless l and m are both even or both odd. There is a
direct correspondence with the polynomials of Sykes
et al. for S= —,. The quantities u 'LI~(u) are in fact
their polynomials. The lattice constants necessary for
l «5 have been published by Sykes et al. The six
point clusters appear first in L66(u) where these are
decorated only with type-1particles. Such contribu-
tions for S = 1 can be taken quite generally from the
S =

2 Ising polynomials. Indeed the arbitrary-spin

polynomials can be calculated from S = —, embed-

dings. For b = —~, q =0, the S = 1 results reduce to
the S =

2 Ising results. For b =0, q =1, one obtains

the S =1 polynomials given by Fox and Gaunt. 4

Majumdar's method5 is to examine the coefficients of
the infinite series in p, in Eq. (2a). At low tempera-
tures, when there is spontaneous magnetization,
there must be6 a singularity at p, =1 (h =0). A suf-
ficient condition for such a singularity is that all the
coefficients of the power series in p. are of the same
sign. Whether all the coefficients are of the same
sign or not can be found by locating the zeros of
L~(u, g) and one looks at the distribution of the roots
of LI(u, q) in the u plane. These roots in the u plane
are functions of q, this is a new feature of the
present problem, compared to the previous one stu-
died by Majumdar. '

The first polynomial sum for l =2 is of trivial na-
ture with the root given by

where

I

LI(u, v)) = X LI„(u)vy

(2a)

(2b)

All the coefficients of the various powers of p, in the
series (2a) are then positive in 0 & u & u' (g). The
significance of the exponent a has been discussed by
Majumdar. ' In a recent work using the scaling an-
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satz, Gaunt' has connected the index a to the gap in-

dex. %e do not use the scaling results but utilize the
least-squares method. The Eq. (4) is obviously an

assumption neglecting powers in 1/I higher than

(1/I); such as (1/I)t; etc. The least-squares fit as-

sumes the corrections to be negligible for small l and

cannot be used as evidence that a is not universal,
although we find that a does depend on q. The
quantity u' (g) is the I ~ limit of u&"'(q) and

determines the transition temperature. The behavior

of k«T/J with rUJ thus deduced is shown in Fig. 2.
Note that we have started from the low-temperature
magnetized phase, and are deducing the critical tem-

perature by Eq. (4). e observe that the transition

temperature smoothly changes with q, until near

g -6.0 there is a dramatic fall. If a tricritical point

occurs, it may be expected near q =6.0, as found in

Ref. 1. Note that we have only analyzed one phase;
that is what the series enables us to do. We have not

analyzed the other phases as in Saul, Wortis, and

Stauffer, ' but their more complete analysis indicates

that a tricritical point does occur. Our result of locat-

ing the tricritical point by observing the changes in T,
is weaker, and perhaps the change in 8 to be dis-

cussed in Sec. III is a better motivated and more ac-

curate method of locating the tricritical point.

At the point q =6.0, our parameters are
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FIG. 2. Tricritical phase diagram of the fcc ferromagnetic

Ising model with single-ion anisotropy. The dashed line in-

dicates the area where the transition is first order whereas

the continuous curve gives the boundary of the second-

order phase transition. For large values of b„ the transition

temperature approaches zero. The point where the continu-

ous curve just starts bending near q-6 is the tricritical

poI0 t.

u&" '(6) =0.2761 +0 8214I~. (5) So we obtain,

exp( 4J/ks T, ) = u-, =0.2761

exp(I&&&/ksT, ) =7I&=6.0,
(5/ksT)&=1. 79, (5/4J)&=1.392

(k, T/4J), =0.777,

whereas the corresponding values of the tricritical
point by Saul et al. are

u, =0.2795. rt&
=6.07, (Ii&lks T), = 1.8

(5/4 J), 1.4148, (ks T/4 J)&
=0.784

(6)

(7)

0.8-

q I eXP blk, T

FIG. 1. First zeros of the polynomials LI as a function of
the anisotropy parameter. It may be noted that the tricritical

behavior is not sho~n by the polynomials individually but is

rather a matter of collective phenomenon obtained in the
limit I

The two calculations are very close to each other. In
expression (5) the least-squares fit is quite satisfacto-

ry since the total mean-square deviation does not
exceed 10~ in any of the computations, which are
performed as a function of q. In making the phase
diagram of Fig. 2 we made use of the correspondence
of the S=1 polynomials for b =0. The correspon-
dence of S = —, with those of S = 1 has also been

checked. Although the least-squares fit to Eq. (4) is
an approximation, the shape of the phase boundary
sho~n in Fig. 2 is such that the determination of the
tricritical point from the almost vertical tangent is not
likely to be affected seriously.

There is a considerable reduction in u as one in-

troduces the anisotropy. Compared to the 4-0
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value of u' -0.55, (as determined by the present
method) the values of u'„(2t) are much smaller, for
example, 0.3858(2t =3.42), 0.3752(3.66),
0.3529(4.08), 0.2108(5.02), 0.2910(5.70), and
0.2761(6.0). At the tricritical point u, our value is

about half of the value at zero anisotropy. Thus the
transition temperature is very sensitive to small

changes in the anisotropy. The larger the single-ion
anisotropy, the lower the transition temperature.

III. UNIVERSAL EXPONENT 8

The important observation for determining the
universal parameter 5 in that the polynomials at the
critical temperature diminish according to a power law

Q~ LI ~ Cpl

Then we can write, by asymptotic considerations,

ing ferromagnet. The second-order ~ expansion in
the renormalization-group approach gives 5 =4.42.
Majumdar and Rao5 obtained 5 =3.9 for the
Lennard-Jones fluid; this value of 5 is smaller than
the spin-

~
Ising value. Experimentally the value of

5 in Ni is 4.2+0.1 and in Gd it is 4.0+0.1. In the
liquid-gas transition and in some binary mixtures, the
values are known, e.g. , 4.2 in CO2, 4.4+0.4 in Xe, 4
in CC14 —C2Fi4. Equation (13) has therefore yielded
values roughly consistent with other theoretical esti-
mates and experimental determinations.

Recent calculations' using the renormalization
group in the Blume-Capel model give 5-4.605 for
the critical and 8.29 for the tricritical point in three-
dimensional systems. The values of 5 obtained by
Saul, Wortis, and Stauffer' lie between 4.5 and 6.3.
In particular their value 6.3 deviates from the value
8.29 at the tricritical point.

In order to apply the method outlined in the Eqs.
(8)—(13), we redefine our polynomials as

Pf 2qJ ——h +5—= co XP, 'I ' .
I

(9)
Li(u, 21) = u'2iLi(u, 21) (14)

We now let h ~0+ or p, 1 and approach the singu-

larity. It turns out that s is greater than one, and we
know~

4!(x,s) = Xx"n '
n 1

Then Li are evaluated at (u'„, 21). It is then found
that

Li(0.38582, 3.42) =2.4 x IP-'I

+2 3 x 1(l
—9(1—2.21)2

Li(0.375 16, 3.66) =5.8 x 10 'l-'"

I (1 —s)(—lnx)' '+ X $(s —n)(lnx)"/n!
JlW

(10)

where I'(x) is the I' function and f(x} is the Rie-
mann ( function. The first term in the expansion
will have a singularity if s is nonintegral. Therefore
to attain the singular part f, of the free energy, we

are interested only in this part. Hence

Pf, =—c01'(1 —s)(—In@)' '

+ I I X IP
—1 1 ( I

—2.2I ) 2

Li(0.35287, 4.08) =4.0 x 10 'I '"
+ I 2 x 1(l 'i(I 2 i9)2

L,(0.31049, 5.02}=3.4 x 10 ' I

+4 P x 10-12(1—2.22)2

Li (0.276 14, 6.00) = 2.8 x 10 "I '"
+3 8 x I(} 15(t 2'11)2

(15)

The singular part of the magnetization appears to be

c (s —1)I'(I —s)(h/ksT, )' 2 (12)

Comparing with the standard isotherm h —M~, we
obtain

5'=s —2 . (13)

It is well known that the mean-field theory gives
5-3, and the three-dimensional spherical model
gives 5 5 exactly. ' The value predicted on the
basis of Fade approximations in a spin-

2 Ising fer-

romagnet is 5-5. Majumdar's method outlined in
I

the equations above also give 5 =5 for the spin- —, Is-

In the limit of large l, the second term becomes
negligible compared to the first. So the values of s
appear to be about 2.21, 2.21, 2.19, 2.22, and 2.11
for the anisotropy parameters quoted in LI. The final
value q =6 corresponds to the tricritical point. The
values of 5 ' are thus 0.21, 0.21, 0.19, 0.22, and
0.11. A careful examination of Eq. (15) shows that
we are quite far from the asymptotic region required
by Eq. (8). The scatter in the first few members
gives an idea of the accuracy of the 5 thus deter-
mined. Yet these values are within the range expect-
ed from the renormalization-group calculations. It is
clear that the values of the critical exponent are rela-
tively insensitive to variations in anisotropy except
when we go very near the tricritical point.
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IV. CONCLUSION

We have been able to trace one phase boundary

PJ, with Ph for the Hamiltonian (1), starting from
the low-temperature side. We have also obtained the
critical exponent 5 of the magnetization with the field

tending to zero. Our computation shows that the
transition temperature is strongly dependent on the
anisotropy and the critical index 8 is more or less in-

dependent of the same (except near the tricritical

point}. Within a certain range we are thus able to
check numerically the idea of universality.
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