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A scaling theory and a related conjecture presented recently by de Gennes and Fisher to

predict the effects of walls inserted in two near-critical binary fluid mixtures, are checked

theoretically by exact analytic calculations for n x ~, two-dimensional Ising model strips with a

surface field, h~, imposed on the first layer; exact calculations with a second surface field, h„,

imposed on the nth layer are also reported. It is verified, in particular, that the effects on prop-

erties observed close to one wall of a second wall at distance D decay, at the critical point, as

I/D~, where d is the spatial dimensionality. In addition to the scaling limits, the leading correc-

tions are calculated explicitly and presented graphically.

I. INTRODUCTION

Recently, de Gennes and Fisher' have discussed
theoretically phenomena associated with the presence
of a plane wall or pair of parallel walls in a binary

fluid mixture AB near its demixing or critical point.
Various experiments were suggested, and predictions
for their outcome were made on the basis of a scaling

analysis. The composition, 4(z), at distance z from a

plane wall, measured, say, by the local mole fraction
of species A, will deviate from the overall or mean

composition, 4, since the wall will be more attractive
to one species than to the other. This attraction may

be represented by a surface field

/tl ((tzA PB)l (P'A PB) j/kBT

in which p, ~ and p, ~ are the chemical potentials of the

two species, while the subscript 1 denotes a molecule
in contact with the wall (say with its center close
to z -a).

In the vicinity of the critical point, at 4 =4, and

T = T„ the correlation length becomes large in accor-
dance with the standard expression'

(1.2)

as the temperature deviation from critical,

r =(T —r, )/T,

becomes small. It is then reasonable to introduce a

scaling hypothesis. For the case of two parallel walls

at spacing

D =na

and at overall critical composition (4 = 4, ), most of
the predictions presented in Ref. 1 follow from an
extended finite-size scaling postulate for the compo-
sition deviation,

in the asymptotic regime where t, hi 0 while

D ~. This postulate may be written

t

M(z, D;r/, ) =r&Y —;—;z D (1.6)

where, in general, d is the spatial dimensionality of the
system (so that d =3 for bulk binary fluid mix-
tures'). This expression amounts to an assertion as

where we have adopted an equivalent but, as indicat-

ed by the tilde, slightly different form than used in

Ref. 1, In this expression P is the standard critical
exponent' for the bulk coexistence curve or bulk

spontaneous order, while 4i is a special surface ex-
ponent. ' The composition, Mi, near the first sur-

1
face may be found by setting z = —,a so that, as

D ~, the first argument in the scaling function
Y(w;x;y) becomes smail. It then proves essential to
allo~ for singular behavior" of the scaling function
as ~ 0. Comparison with the standard finite-size
scaling theory, with no z dependence, ' ' then yields

1

Mi(D; T, h}) t Zo
pi, D h

f

I

where the surface ordering exponent is given by' '

pi =2 0! P

in which e is the standard specific-heat exponent. '
In addition, however, on the basis of a special ad

hoe postulate' for the form of the free energy as a
functional of the local compositon, M(z), valid only
for T = T„a prediction was made for the perturba-
tions close to one wall caused by the presence of the
second wall at z -D. For D ~, the result may be
written

Mi(D;T„hi) —Mi(~;T„hi) =A {hi) —,{1.9)
'(0 '
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to the form of the scaling function Zo in the limit
s/I)

t 0 with Dh~ ' large but fixed.
Although the above discussion has been presented

in terms of walls placed in a near-critical binary fluid
mixture, it is clear that analogous considerations ap-

ply, among other examples, to a single-component
fluid near its critical point and to a binary metallic al-

loy which undergoes phase separation. In an ideal
ferromagnet near its Curie point in zero bulk field,
M(z) would represent the local magnetization and
H~ =k~rh~ would be the magnetic field localized on
the surface; this example, of course, has motivated
the notation. However, in the different cases that
may be contemplated, various extra physical effects
will enter which may complicate the interpretation
and experimental realizability.

It is not our purpose here to discuss such ques-
tions: rather we remark that it is certainly of interest
to check the scaling postulates, (1.6) and (1.7), and
the form (1.9) as far as possible theoretically. Furth-
ermore, in order to design experiments that might ef-
fectively verify the predictions of Ref. 1 or their ana-
logs for other systems, it would also be desirable to
have quantitative estimates of the ranges in h ~, t, D,
and z over which the scaling forms should be valid,
and some account of the leading corrections to the
asymptotic expressions outside the scaling regions.
A partial response to these needs is presented in this
paper: explicitly, on the basis of previous calcula-
tions, ' we discuss the analogous issues in d -2
spatial dimensions using an Ising model or binary lat-

tice gas model of the physico-chemical situation. In
fact, the equivalent experimental questions can also
be raised for real two-dimensional physical systems,
such as monolayers adsorbed on crystalline or fluid
surfaces. One may thus hope that our results will not
only provide a guide to the three-dimensional case
but may even be applicable more directly.

As explained in Sec. II, we find that the scaling
form (1.7) is correct for a square lattice Ising model
in the form of a "strip" of infinite length but of
n = D/a width, in which a surface field, h~, is im-

posed on the first layer. It might be recalled that the
relevant critical exponents for the d =2 Ising model
are

a=0(log), p= —, v=1. 5t= —, , p) = —, . (1.10)) I 1

However, in the main text we restrict ourselves to
the analytically simpler (but still quite complex) situ-
ation in which there is only one nonzero surface
field Then the second or "far" wall in the model
must, from the viewpoint of a binary fluid, be re-
garded as a neutral or nonselective wall [with
(g„—pa) ~

= (y,„—pa) ]. However, this feature
does not make any qualitative chan~es at all in the
basic arguments, nor does it entail more than one or
two significant quantitative changes.

Of course, it would also be valuable to check in de-
tail the extended, spatially dependent scaling hy-

pothesis (1.6), and this may prove feasible in future,
although the necessary calculations are considerably
more difficult. However, a check for z = D is ob-
tained in the calculations with two surface fields
which are reported in the Appendix. Furthermore,
our exact results for the scaling form equivalent to
(1.7) (but allowing for logarithmic terms in n or r,

which arise from the logarithmic singularity of the
specific heat of the two-dimensional Ising model) do
precisely verify the asymptotic expression (1.9) for
Mt(D) as D ~ at T = T, ; in fact, this result holds
not just in the scaling regime. Thus the ad hoc free-
energy functional presented in Ref. 1 may well yield
exponent results which are correct in general dimen-
sionalities. In addition, further terms in the expan-
sion (1.9) have been derived. More generally, we
obtain leading corrections to the scaling form (1.7)
and, by comparison with exact numerical results, ex-
hibit clearly the ranges over which the asymptotic
behavior is achieved to desired accuracy. These
results can be read off the figures presented in
Sec. II; indeed, for the casual reader these figures will

serve to summarize our main results. The figures
display M~(n, r, h~) in various limits, but some
results for the surface susceptibility defined by"'

Xtt(n, T, h)) = (1)M)/Bht)

are also given explicitly and graphically.
The main technical steps in the analysis leading to

the results given are explained separately in Sec. III,
which utilizes the earlier calculations. As men-
tioned, the new exact results for n x ~ strips with
two distinct surface fields, h~, and h„, are expounded
in the Appendix.

Although it does not seem to have been pointed
out explicitly in the literature before, the Pfaffian
techniques ' used to calculate the free energy of the
n x ~ Ising strip with a surface field, h~, on one
boundary (the first layer), can be expected to yield
explicit analytic results also for the case where a
second, distinct surface field, h~' =-h„, is imposed on
the other boundary {the nth layer). This is explained
in the Appendix where the basic results and derived
expressions for two surface fields are also presented.

II. SCALING RESULTS IN TWO DIMENSIONS

A. Ising model strip of width n

As explained in the Introduction, we consider a

plane square lattice, spin- —, Ising model of width

n =D/a rows and of infinite length. The bulk mag-

netic field is set equal to the critical-point value,
namely zero, but a variable boundary or surface mag-

netic field, H~, is imposed on the first row. The
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K = J/ktt T and ht =Ht/ktt T (2.1)

basic features and general scaling properties of this

model were analyzed in Ref. 9, which will be referred
to as II.' As far as practicable, we will adhere to the
notation used in II. Thus, the (positive) exchange
coupling between neighboring spins is J, and we write o = n' '(1+J2)' tanhht —ht/n

r=nt' —r/n "",
(2.4)

(2.5)

in place of I, as done in the Introduction. Con-
venient scaled field and temperature variables are
then'

The surface magnetic field corresponds, via (1.1), to
the wa11 specificity in the binary fluid interpretation
of the model; it enters the analysis only through the
variable

z =tanhht =ht[1 ——ht + ]
i

3
(2.2)

(No confusion should arise with the use of z as a dis-

tance coordinate in Sec. I.) The corresponding basic
temperature variable is

t'=(1 —sinh2K)/(2sinh2K)'t'=2K, t, (2.3)

as t = (T —T, )/T, 0, with K, - —, ln(1+ J2)
=0.440687.

It proves most transparent to scale by powers of n

with the d -2 Ising model exponents given by (1.10).
However, in the limit n ~, corresponding to a
semi-infinite lattice or single wall, the scaled variable

p = r/~'= t'/(1+ J2)z' —t/ht
1/hi (2,6)

is appropriate.
The local magnetization, M(z =la) —= Mt, which,

via (1.5), represents the local composition imbalance
in the binary fluid, is conveniently measured by the
expectation value, (st), of an Ising spin st =+I, in

the 1th lattice row. From II (2.1) to (2.7), using the
relation Mt = n(9 f/Bht), in which f is the reduced
free energy per lattice site, we find an exact result for
the surface or boundary magnetization, namely,

M ( T~ ) (1 2) 2 ' [1 —A "(T,o)) j(1 —o)'}'/'do)

vi+z'(I —tv') + [v —z'(I —tv')]A "( T, tv)
(2.7)

where the n dependence enters only through the factor

A ( T tv) = k+/h. = [(1 + t' + tv') ' ' + ( t '+ uP ) ' ']' (2.8)

which is independent of hi, awhile

(I + t'+ )a' t'(t'+ at') '" + [t'(1 + t') ' '(1 —at') + r ( t ) tv']
+v(T, tv) =

1+c(t ) —t'(I+t')' '

with

(2.9)

c(t) = (2+ t' )'t (I +t'z)'tz = Jp[I + O(t )]

Our theoretical task is simply the elucidation of the analytic, scaling, and numerical properties of this formula.

8. Semi-infinite system: critical-point behavior

When the width, n, of the strip increases to ~ to yield a single-wall situation, the expression (2.7) simplifies

since A " 0 for all t and co ~0. Upon further specialization to the critical point, T = T, or t'=0, the resulting

integral can be performed exactly yielding

M„(h ) M ( T h ) z([1 —(2+ J2)z']G[(1+J2)z'] —1I
2( J2 —1)[1 —(3+242)zz]

where the auxiliary function is defined by

—n G ( w) = (I —242 w (
'tz (ln( w '/ J2) + in[1 —J2 w + (1 —2/2w) 'tz]] for w ~ —J2

= (1 —2v 2 w (
—w —tan — for w ~ —J2(1 —J2w)

(2Jgw —I)'

(2.10)

(2.11)

Contrary to first appearances, there is no pole in MP, (ht) at (3+2&2)z -1; likewise, the variation with ht is

smooth and analytic through the point where w = —,v2 or z' =1/2(2+ J2).
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TABLE I. Coefficients for asymptotic forms. Note 8), B2, and B3 are defined in (2.13) and

yE =0.577 . is Euler's gamma.

B a=2(1 +u2)' K' =2.06292

1

bl = ln(2 —V2) ——m
4

1 1
c =2ln8 —4m —11

bt = In(8&2/n ) + yE w

a3' =28(J2 - I) t'(3)/mz

b = —B2 ————K =0.71975 1 1

16 P 2 4

bz=b) —2+ J2
)

C)

b3 =bt —14(2- J2)((3)/nz
1

dp = ln
4

n —
yE + 7g(3)/m

For small fields, h), one finds the expansion

M, ,(h ) =B, (ln +b )

+B3z (lnz +b3)+O(z In~z~), (2.12)

where

B„=2(1+J2)"/n for k =1,2, 3, . . . , (2.13)

while the other coefficients are listed in Table I. Evi-
dently, the magnetization at T, vanishes with the
singular variation ht In~h~(. In Fig. I the exact result
(2.10) is plotted as a solid line. The first term in the
expansion (2.12), which corresponds to the asymptot-
ic scaling behavior (see below) is represented by the
dot-dash curve: evidently, it deviates significantly

from the exact result even for h) as small as 0.1. On
the other hand, inclusion of the leading correction
term, proportional to z3, yields, as can be seen from
the broken or dashed curve, reasonable accuracy up
to h =0.2, where M) has achieved about 70% of its
saturation value. Guided by this, we will exhibit the
leading correction terms for nearly all the results
quoted.

C. Semi-infinite system: scaling forms

In the critical region of the semi-infinite lattice one
may hold fixed the scaling variable p —r/h, ', defined
in (2.6), and study the limit r 0, or, equivalently,
z 0, at fixed p. This leads to the asymptotic form

M i ( T, h i ) = B,z [I i
n'i r' + (8(p) ]

+B z [(I +p)[ln~t'~ '+$(p) J+ C(p) J

0.75 + O(zr'In[I )), (2.14)

0.5

where Bl and 83 are given above, while the basic
scaling function is defined by

$(p) = —, In2 ——n —(I + p) $(p)3 1 (2.15)

0.25

&(p) = Tll+2pl '/'ln for p~ ——'I+, +
~
I+2p~'/

I+p-
[
I+2p['/'

0.1 0.2
Z=tonh h,

0.5 0.8 1

= (I +2p[ '"cos '[—(I + p ') I for p ~ —,'

(2.16)

FIG. 1. Variation of the surface magnetization, M), with

the reduced, surface magnetic field h) =—H)/I'+ T imposed on
the first row for a semi-infinite (n = ~) square-lattice Ising
model at its critical point. The solid curve portrays the exact
result; the dot-dash curve corresponds to the leading scaling
behavior containing the h) lnhl singularity at )ow field; the
broken curve incorporates the leading correction term.

Note that the function X7(p) is smooth and analytic
through p = ——where it takes the value X)(——) =2.1 1

2 2

This scaling result is quite equivalent to our previous
expressions II(3.10)—(3.12), but is more transparent.
The extra scaling function entering the leading
correction term in (2.13) is given by
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6(p) =(K2 —1)[1+(K2—1)(1+p)(l +2p) '][p'S(p) —1 —p]

where the coefficients D] and D2 are constants f'or
small h~ (or z); explicitly one has

mD, (z)—=1+(1+J2) zzlnz

+ (1 + J2) [—tr +%2 +1 n(1 + 2. ) ]z

+0( 'in) (),
trD, (z) = (J2 —1) (1 —z')

(2, 19)

(2.20)

One sees from (2.18) that the leading temperature
variation of the-surface magnetization is regular, i.e. ,
linear in t, whereas one might have expected an ener-

gylike, singular contribution varying as t' ~ t ln~ r
~

However, the magnetization evidently displays a
t' ~ t'ln(t( singularity in next order. "

In the opposite limit, in which h] 0 at fixed T,

one needs the behavior of p' 'Q(p) as p +oo.

The behavior of the surface magnetization at small
but fixed h~ as T T, is determined by small p.
From (2.16) one finds X)(p) =ln2~p~ ' as p 0,
which leads back to the previous expression (2.12)
for Mt", (h~). By expanding X)(p) to higher order
one obtains, for t/h~' small,

MP ( T, h [) —Mt", (h [)
t' t 2 2

= Dt(z) —+ Dz(z) —ln]t (
+ 0 —,(2.18)

z z3 'Z

Above T, the surface magnetization is then seen to
vanish in zero field, but for T ( T, one discovers a

spontaneous surface magnetization

MP ( TO+) = B,]t (' '[1+b, t + 0(t') ], (2.21)

where Bo and bo are given in Table I. ' Note that

P~ = —,, as stated in (1.10).1

The quantitative nature of these results can be
seen from Fig. 2 where M[ is plotted against tem-
perature for various small fields. As mentioned, the
plots are singular, with divergent curvature at T„but
this is not visible graphically. Further insight is

gained by examining the surface susceptibility X~],
defined in (1.11). In zero magnetic field one obtains

xtt(T, O) =~t(lnlt'I '+ci)
B+t'z(1 (nt'( '+ct) +O(t ln(t[), (2.22)

where the coefficient c~ is included in Table I. Other
explicit results, including scaling forms, may be
derived straightforwardly from the expressions
presented above for M] ( T, h[). The rounding of
the susceptibility peak in a finite field can be seen
from Fig. 3. Note that the maximum in XP[(T) oc-
curs above T, for nonzero field; again, a t'

(n es t ~

singularity is present at the critical point.

07 I

10 t I t t ] I I I I I I I I [ I 1 I t

0.5

0. 1

0 t l t t «1
-0.1 -0.05

~O.01~
0.005—

I

0 0.05
t = (7-Tc)/Tc

[

-0.05 0 0.05
t = (T-Tc)jTc

FIG. 2. Dependence of surface magnetization on tem-
perature at small, fixed reduced surface magnetic field,

h[ =—H]/k~ T, for a semi-infinite system.

FIG, 3. Variation of the surface susceptibility, X[[
=(QM&/Bh&), of a semi-infinite system at fixed reduced
surface field.
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D. Finite width: scaling forms 0.6

For small values of the width n the basic integral
(2.7) can be evaluated exactly. This has been done
for strips of width n = 1 and 2, and the expressions
found for M] have been checked against those ob-
tained by a direct application of the transfer-matrix
method. Evaluating the results at T = T, yields the
curves shown in Fig. 4. More generally, the in-

tegrand can be shown to be analytic for real ao when-
ever n is finite. Thus, as is to be anticipated, the
variation of Mt(n; T, h~) is also completely smooth
and analytic for n (~. In addition, then, M1 always
vanishes as h] 0, and there is no spontaneous sur-
face magnetization. On the other hand, as n oo

below T„ the initial, zero-field susceptibility,
Xt t (n; T, O), increases exponentially fast and diverges
for a semi-infinite system. This corresponds, of
course, to the expected spontaneous magnetization
discontinuity in the limiting magnetization isotherms
below T, .

It is convenient to define the finite-width contribu-
tion to the surface magnetization explicitly by writing

Mt(n; Th~) = MP ( T ht ) +EM~(n; T h~ ) . (2 23)

0.4

0
0 0.025 0.05 0.075

z=tanh h,
0.1

FIG. 4. Solid curves depict the variation of the surface
magnetization at the critical point for systems of finite width

n = D/a with a surface field, h], acting only on the first row.
The dotted and dashed curves represent corresponding
results for strips with a surface field ht = h„—= H„/k& T im-

posed on both first and n th rows for n =60 and n 20,
respectively.

Quite generally, one can conclude from (2.7) and
(2.8) that for T & T, the finite-width contribution,
AMt, decays to zero like exp[ —4n sinh t~r'~] as
n ~. As we will see, however, a slower, power
law decay characterizes the critical point. Further-

more, in the critical region 4M] ( n ', T, h]) obeys a
scaling law fully compatible with the result (2.14) for
M1 ( T,h]). Specifically, in terms of the scaling vari-
able r —nt and cr —n'I h~, defined in (2.4) and
(2.5), we obtain

AM~ = —BtzS'( ra. ) + 2 (, z/n n ) [(r + a ) S'( r, a ) —8'( r, o. ) ] + 0 ( n inn ) (2.24)

as n ~, where 81 is given by (2.13).
The scaling functions can now be represented only as integrals. Thus, writing

g(g ) ( 2+(2)1/2 (2.25)

we obtain

oo ( g) p I x( )I[/1 + p 4x{r)]"(7, (T2) =2
[X(() T++ a][X(()+ (r + o ) tanh2X(g) ]

(2.26)

with a similar but more complex expression for 6'(x) which is presented below in (3.5).

E. Finite width: critical-point behavior

For T = T, (or 7 =0) one may derive small-field expansions for the scaling functions in the form

S'(0, az) =incr z —Xf +)(—2az)
m 0

't

6'(0, a ) = —(1+
&
J2) 1 —2az(lna —1) —X [(I +1)~ —III+~](—2o )'

I 1

(2.27)

(2.2S)
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where the coefficients N~ are linear combinations of
Riemann zeta functions. The first few are listed in
Table II; a general integral expression is given in

(3.6). Similarly, one finds expansions valid for large
n (at fixed ht) in the form

(g+(0 2) X cf ( 2 2) —(I+t)

I t

(2.29)

8'(0, az) =(1+—,J2) Xd. ..(I +1)(—2trz) "+",
(2.30)

where the leading coefficients are included in

Table II. The general coefficient, g&k, is discussed in
Sec. III.

From these expressions we can obtain the surface
magnetization at the critical point. Consider first the
behavior as ht 0 at fixed, but large n'. one obtains
the asymptotic expression

I I 1
I I I ~

0.5 "~i

0.1—

0.05-

0.01—

Q005-

I t i s s I t
l

~ t ' t I i t I I ~~

AM~(n;T, hj, ) =
3 2

1 —-2 +0
2 4zg . zy tpgz

(2.32)
where the zero superscripts serve as a reminder that
the field on the far wall is h„=0 (see further in the
Appendix); the amplitudes are

At'(ht) = ,', rr(J2 1)(1——z')—
a,'=%2 —1 .

(2.33)

Thus the leading critical point decay of hM~ for large

Mt(n; T„ht) =Biz(inn +bt' +ct'n ')

+Biz ( aq"n +—inn +bq")

+O(z n, z n 'zn , inn), (2.31)

where the new coefficients are given in Table I. The
corresponding plots of the critical-point surface mag-

netization versus field are displayed in Fig. 4 for
n =20, 60, 100, 200, and ~. Evidently, the suscepti-
bility remains finite for all finite n and only the limit-

ing curve for a semi-infinite lattice displays the diver-

gent susceptibility Xtt ——In~ht~.
Finally, by utilizing (2.29) and (2.30), we can study

the limit relevant to the conjecture (1.9) of Ref. 1,
namely n ~ at fixed hi. We find

0.001
5 10 20 50 100 200 500 1000

number of layers TI

FIG. 5. Log-log plot of the relative deviation in surface
magnetization ~rtMt(n, T, .ht)/Mt (T, , ht)~, vs the width

n = D/a, for Ising strips at criticality under various surface
fields h& imposed on the first layer. The slope of the dot-
dash line is —2. The crosses for n =1 and n =2 represent
the exact results and serve to indicate the accuracy of the
scaling term plus the leading, n ', correction.

n (or D) is proportional to 1/n~ with d =2, in com-
plete accord with the conjecture!' Note that these
results can also be obtained directly from the exact
form (2.7) by setting T = T„subtracting the limiting
form with A " 0, noting that A "=e ~ with
$=4n sinh 'co, replacing the integration variable co

by qb, and expanding the integrand in inverse powers
of o ~z'n. The higher order terms in (2.32) are
then seen to be of the form ak(z')/z'"n" where
ak(tv) is a polynomial of degree at most k. The ex-
pansion is asymptotic and there are additional correc-
tion terms of order exp( —8K,n).

In Fig. 5 the relative reduction in surface magneti-
zation, IM (n)t/M (ot), doue to the far-wall effect
has been displayed on a log-log plot using the full ex-

TABLE II. Coefficients for expanding the scaling functions (0, o. ) and 6"(0,a. ).

1
Si =yE —ln —,

3 186((5)/m —7((3)/m2

g4 2540((7)/n —165
3 ((5)/m

gq =14((3)/m

g4 4-4~(4) +2~(2)

6 6 =34
2 ((6) +30)(4) +3((2)

g3 t =m4/120

g5 ~ 3 3 4 [((6) +2((4) ]

g3 3 4
m t1 +(m /30)]

g 5 5 =3
4 ((6) +12

2
f(4) +2

2
((2)

g4 2 =2m4/45

4/6 4 =30((6) +15({4)
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pressions (2.24), (2.29), and (2.30). Even though
the basic formula is valid only for large n, the accura-

cy even at n = 1 and n = 2 is quite reasonable, as can
be seen from the crosses which mark the exactly cal-

culated values. For moderately large values of ht,
corresponding to walls strongly attractive to one
species, the asymptotic 1/n' decay law sets in fairly

rapidly. (Note the dot-dash line of slope —2.) How-

ever the fractional changes in M~, or in composition,
in this range are only of order 10 to 10 ' which

may be hard to detect experimentally.

0,7-

0.5
z= tonh h

= 0,001

F. Finite width: critical region

For T 4 T„and hence v ~0, it is not hard to
show that the scaling functions obey

(Q'(ra), , 6 (r, a ) —(2a +ra) 'r p~' (2.34)

as ~ ~ (i.e., as n ~). This confirms the ex-
ponential decay of the finite width corrections already
mentioned. For small v and cr2 one may expand in

the form

(8'(r, a') =)n~r~ ' —[1 +(r/a') [X)(r/a')

+ln
~

m —ys+28[((3)/tr [(r+ a )

+0(T, T(T, Q' ) (2.3S)

0.7

0.5

where Q(p) was defined in (2.16), with a similar ex-
pression for e'(r, oz) given below in (3.20). To
corresponding order the scaling form for Mt(n; T, h~)

0. 1

0 t t t I

-0.1

I

-0.05
I I

0
t = (T-T0)/T0

t

0.05

FIG. 7. Width and temperature dependence of the sur-

face magnetization at the small fixed reduced field

tanhh~ -0.001 (with h„=0).

for small ~ and cr is obtained from (2.31) merely by
replacing the factor z by (J2 —1)z(r+a )/n

To evaluate the basic expression (2.24) for general
7 and cr, the most singular, logarithmic parts of the
integrals defining 8' and 6' [in (2.26) and (3.5)]
should be removed, as explained in Sec. III. The
remaining integrals are tractable numerically and lead
to the results shown in Figs. 6 and 7. The first figure
displays the variation of the surface magnetization
with temperature for a system of width n 100.
Although there is no spontaneous magnetization, M&

becomes large below T, even in very small fields.
Figure 7 shows the complementary dependence on
the width n in a small fixed surface field, ht =0.001:
the exponential increase of the initial surface suscep-
tibility below T, (which was mentioned above) is re-
flected in a strong n dependence of the surface mag-
netization.

III. CALCULATIONAL DETAILS

0.1

0.00 01 ~00000, t I t t t t I t t i t ~ ~ ~ t 1 t t t

0 0.05
t = ( T-T,)/T,

-0.1 -0.05

FIG. 6. Surface magnetization vs temperature for systems
of width n = 0/a 100 in various fixed reduced surface
fields hi (acting only on the first row). The dotted sections
indicate the results for n -~ from Fig. 2.

In this section we outline some of the detailed cal-
culations leading to the results presented in Sec. II
for a single surface field hi, and record some of the
longer explicit expressions needed for evaluating the
leading corrections to scaling. (Recall that the Ap-
pendix treats the case ht, h„AO. )

As explained, the basic formula following from I is

the exact integral expression (2.7) for Mi(n; T, hi).
The steps leading to the critical-point results (2 ~ 10)
and (2.12) are straightforward. The scaling form
(2.14) is obtained by introducing the sealing variable
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p —t/h)z and expanding in t at fixed p. The results (2.18), (2.21), and (2.22) follow directly.

To analyze the situation for finite n it is useful to rewrite (2.7) by introducing

x =x(cu) =(t'+cu )'/' (3.&)

and using hyperbolic functions to obtain

+ (1+-
d) 2 Jt' tanh[2n sinh 'x(cu)](1 —cut)'/z dc»

x(1+x )' '+[cd» +d(1 —cu )] tanh(2n sinh 'x)

where for brevity we have written

d(t z) = t'(1+ r' )' + [1+c —t'(1+ t' )' '!z'

(3.2)

(3.3)

while c is defined just after (2.9). The boundary contribution for finite n, defined in (2.23), can then be written

—m LLMi (1 2) I/2X(1 +X2) t/2eW»s(hc)/[1 + eW))s(44)]
(3.4)

4*(l+c—d) [x(l+* )' +c '+d(l — ))(*(1+*')''+t '+d(1 — '))Cxch2 4( )}

where s(cu) =sinh x(cu). The exponential decay of hM) as n ~, follows directly from this expression. Intro-
ducing the scaling variables r and o., holding them fixed, and allowing n to become large then yields the scaling
result (2.24). The leading scaling function, 8 (r, a ), is given by (2.26) which is clearly parallel to the exact
result (3.4). The scaling function for the O(1/n) correction term is found to be

d(ce X[(2+J2)(cz —ra ][X+Xtanh2X+2(r+ crt) tanh2X]
0 (1+e~ )(X+T+ cr ) [ X+(T +0 )ztanh2X]z

(3.5)

( ' tanhg dg . (3.6)

For given k, this integral can be reduced to sums of
Riemann zeta functions, ((2j —1) with j(k, as evi-

denced in Table II. The complementary series,
(2.29), in inverse powers of a', entails the general
coefficient

4)f/„= Jt (c/(cothk(c —1) dg (3.7)

For k = 1 this yields

where, as in (2.25), X —X(g) (v +( )'
Specializing to the critical temperature, ~ =0, and

expanding the factor ((+o tanh2$) ' in powers of
a' yields the series (2.27) for 0)'(0, a), with coeffi-
cient N~ as given in Table II, while for k ~2 one has

while integration by parts gives the recursion relation

cf/„= cf/„) +j(k —1) '8j ) k ) (3.9)

01'(r, cr') =(ll() —)' +(gz (3.lO)

from which the results quoted in Table II folio~.
The series expansions (2.28) and (2.30) for
6'(0, az) are obtained in parallel fashion. The series
in inverse powers of cr2 ~ n is relevant to the conjec-
ture (1.9), concerning the far-wall effects on proper-
ties at the near wall; further scaling terms in the
result (2.32) follow by using the full series.

To analyze the scaling functions for nonzero r the
scaling function 8' is decomposed as

d/, =1(j+1)~(j+1)/2/, (3.8) with the leading singular contribution

[
$0" = , =-ln)r) '+in[1+(1+r')' '] —(1+Ter ) $(f, cr )

~ X(g)+&+~2 (3.l l)

for which one finds

b(r crz) )
~1 ~2ra z~ )/ztn r +(T w+)(1+r')' '+(2T& +& )' '

f 2 (
2 ~2+ (~+ g2) (I + ~2) [/2 (2~g2+ ~4) 1/2

for —2v ~ cr2 {3.l2)
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while the remaining nonsingular integrals are

( 2) t' «nh2X(H db (3 13)
o X(f) +(r+ o') tanhX(lc)

6'(r, o') --Cp' + Cc' —eg' (3.16)

2
d cc Xe~r/( I +4e )

(X+ r + cr') [X+ (r + cr') tanh2X]

(3.14)
When v and o' are small one finds

8(r, cr ) =S(r/cr ) —o +O(r'ro, o), , (3.15)

cbeing defined in (2.16), while i' and $2' may be
expanded straightforwardly in powers of ~ and a'.
This yields the expression (2.35).

The correction scaling function for v nonzero can
be decomposed similarjy as

with
1

('-; - J C,(g;r, ~') d g

' [(2+J2)cc' —Tert] der

[X(g) + r + cr']'

1

Cc' = J Ct(tc;r, cr~) der

' [(2+J2)cc2 —rcr2] tanh22X(g) dg
[X(g) + (r + o') tanh2X(cc) ]'

t.2" =Jt [Cp($;r cr ) Cc(g;r o'.)]4&,

in which the integrands Cp(j) and C~(g) are defined
in the obvious way. The first integral can again be
computed exactly; the other two can be expanded in
powers of v and cr' or, for graphical purposes, calcu-
lated by numerical integration. In this way one finds

6'(rcrt) = —
, (1+—J2) +2(2+%2)(r+ crt) [In(r( ' —(1+ro 2)S(r/o2) +dp]

—[2+42 —r(2r+cr ) '][r+o —r o X)(r/cr )]+O(r, rcr, o ) (3.20)

where dp is in Table II. In comparing with (2.15) to
(2.17) for the scaling function $(p) and C(p), one
finds that the various singular terms in ~ and 0 can-
cel and one obtains a scaling expansion for
Mt(n;7;ht) in powers of r and o valid for large but
finite n.

Note addedin proof. Attention should be drawn to
recent work by R. Z. Bariev [Theor. Math. Phys.
(USSR) 40 (1979)] on the local magnetization of the
semi-infinite Ising model and by D. B. Abraham
[private communication and unpublished] which also
addresses the problem of a lattice of finite width with
surface fields on both boundaries. These analyses
provide further checks on the phenomenological
scaling postulates (1.6) and (A27) following from
Ref. 1.
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APPENDIX: ISING STRIP WITH
TWO SURFACE FIELDS

Calculations to study the Ising model with finite di-
mensions have, for the most part, been based on the
Pfaffian-dirner method which yields an expression for
the partition function of any finite planar Ising model
in zero magnetic field as the square root of a finite
antisymmetric determinant. ' " To construct the par-
tition function of a finite Ising strip of n layers or
rows of spins each of length m spins, with nearest-
neighbor interactions and a reduced surface field, hi,
imposed on all the spins in the first layer and a dis-
tinct surface field, h„~ hi', imposed on all spins in
the last or nth layer, we may proceed as follows.
Consider a cylinder of length ma and circumference
( n + 1)a the spins being arranged at spacing a in

(n+1) axial rows labeled 0, 1, 2, . . . , (n —1),n.

This cylinder is, of course, equivalent to a strip of
(rI +1) rows with periodic boundary conditions
across the strip.

Now an Ising model of spins s-„s, , . . . connect-

ed by pairwise interactions J( r; r ') s&s, can be

represented by a linear graph, g, in which each spin
s~ corresPonds to a vertex labeled r of Co, and each
nonzero interaction J ( r, r '), corresponds to a bond
or edge ( r, r ') of Q. 's Planarity of the Ising model
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means that the associated graph g can be embedded
in the plane with no crossing bonds. " The graph
representing the cylinder of length ma and circumfer-
ence (n +1)a is, in fact, planar as can be seen by
taking polar coordinates (r, 8) in the plane and asso-
ciating the k th spin in the I th row, say sI, I, with the
point

"k, l k 8k.l
= 21 sr/( a + 1) (A1)

for k = 1, 2, . . . , m and I =0, 1, 2, . ~ . , n.

To represent the pairwise spin couplings in the ori-
ginal m x n Ising strip, we take the nearest-neighbor
bond parameters as J(k, l;k +1,l) = JI and
J(k, l;k, l +1)= J2 for k =1,2. . . (m —1) and
l =1,2, . . . , (n —1). This looks after the couplings
of all spins except those in the row I =0; at this point
we thus have an m x n strip with free-boundary con-
ditions (and m extra uncoupled spins). Finally, to
represent the surface magnetic fields, we first intro-
duce a coupling Jp between all neighboring spins in

the row I -0; i.e. , we set

asymptotically in compact form in the limit m ~ by

established methods. ' " An alternative procedure,
which will lead to the identical final result, is to con-
sider an m x (n +1) torus with a similar special row

of spins with couplings Jp ~, kg Th&, and kqTh„.
Although a torus does not yield a planar graph it is

possible to express its partition function, Z „, exactly
in terms of the square roots of four, slightly different
antisymmetric determinants as expounded by McCoy
and Wu. ' ' It proves convenient to take m even
(which clearly makes no difference in the limit

m ~) and in both the analysis of the torus and the
cylinder one needs n «2. The required determinants
are found to be equal in pairs but care is needed in

determining the appropriate signs for their square
roots. The issue is most readily decided by consider-
ing the limit J& 0, in which case the system decom-
poses into m independent one-dimensional chains (or
"rings"} each of which has a partition function includ-

ing the crucial factor (1+zz'zz ' ) where we have
adopted the notation

J(k, 0;k +1,0) = Jp (A2) z =tanhh~, z'=tanhh„, z;=tanhK; {A4)

(Jk, ;0nk) =H„=ksTh„ (A3)

for k =1,2, . . . , m. Since the spins s~ p all take the
value +1 (or all —1), this introduces the correct
Boltzmann factors exp(htsz I) and exp(h„sz„) into
the partition function. The effect of the second op-
tion (sg p

= 1, all k) is merely that the partition
function calculated for the cylinder will be twice the
desired partition function for the strip with surface
magnetic fields.

The partition function can now be expressed in

terms of a single determinant which can be evaluated

for k =1,2, . . . , (m —1). We will let Jp ~, so
that tanh(Jp/ksT) 1; this ensures that all the spins
sg p are frozen "up" (or, equivalently, "down"). Then
the surface magnetic fields are introduced by coupling
the I =0 spins to those in the first and n th rows by

setting

J(k. 0;k, 1) = Ht =kaTh)

for i =1,2 with

K, =J, /ks T, Kz = Jz/ks T

One discovers that the condition

zz'z," ' «0 (n «2)

(AS)

(A6)

leads to all positive signs, so that the partition func-
tion is given as the sum of the square roots of two
determinants which asymptotically, as m ~, be-
come effectively equal. (The converse case,
zz'z2 ' (0 leads to a difference of almost equal
determinants which is much harder to analyze: how-

ever, as explained below, this difficulty can be
sidestepped. )

Evaluation of the logarithm of the determinants in-

volved leads, as usual to integrals. The final result
for the free energy per spin of the n x ~ lattice with
two distinct surface fields may be written, subject to
(A6), as

f(n, r;h~, h„) =
, F/kaT = lim (—mn) ' lnZ „

= ln(2 coshKt coshKz) + n ' in(coshhI coshh„/coshKz)

2N

+n '
1 IIn1 )+e"zI'"[p,( )pz, ( ) zan+(z)p (z')&" ])

4~
(A7)

where, with

2IzI s&n8 1 —» 2I sin8a= b= . , c=I1+»e"I' I1+zIe'I' ' I1+"'I'
{AS) b, ' = (b' —a' —zz )' —4a'zz (A10}

one has A.+ «A. and, explicitly

X+(8;ZI,zz) =
z (zz —a + b ) +

z
5(8;zt,zz), (A9)
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with square root chosen so that b, b' —a' «0 when
z2 0. Lastly, with

u(8;zc, zz) = 1

2

b2 —a~ —z2 'i/'2
1+

t

—1~(e;z, ,z, ) =
42

so that v'+ 6' =1, one has

p, (e;zt, zz, z) = u —
& uz'/ez2,

p (9;z&,zz', z) =c&+iuz /ezz

(A11)

(A12)

(A13)

One may now check that when z[ 0 the expres-
sion (A7) yields the correct free energy for a single
chain of n spins with fields h~ and h„acting on first
and last spins. Likewise if z2 0 one obtains the free
energy corresponding to (n —2) infinite Ising chains
in zero field plus two infinite chains, one in a field hi
and one in a field h„. Finally in the case n = 2 one

+n 'f(n, ;T, h&, h„) (A14)

where the usual bulk free energy, first found by On-
sager, ' can be expressed as

f ( T) = —, ln2sinh2K

1

+ cr ' dcu (I —cu ) ' ' Ink+( T, cu), (A15)

while the surface contribution for a semi-infinite lat-
tice is

checks, after much algebra, ' that the free energy
given for a two-layer strip with fields hi and h2 acting
on the first and second layers is the same as that cal-
culated by diagonalizing the appropriate 4 & 4 transfer
matrix. "

For further examination of this result we specialize
to the case Ji = J2 or z] =z2. Then we may rewrite
the result (A7) in the convenient form

f(n;Tht, h„) = f (T) +n '[ f"(Th&)+ f"(Th„)]

]
f"(Tht) =lncoshh& —

z
IncoshK —

c I2n+ rt' dcu(1 —cu ) ' ln[u+' (u++z u)]

Finally, the finite-size interference term for two fields is

„uc(u —z'u)(u —z'u) '

.f'(n;T, hi, h, ) =— ln 1+A "
(I —cu )' ' u (u++z u){u++z' u)

(A16)

(A17)

In these expressions we may now write

tc+(T, cu) = I +2t'+2 +cu(t'+aP)'i'(1+ t'+uP)'t', (A18)

while A( T, cu) = h.+/)c was defined also in (2.S). In addition we have

u+{T, cu) = u+{T, )ucu( T, cu)/{1 —cu') (A19)

where +(uT, cu) and e(T) were defined in (2.9), and

u ( T, cu) = [1+e —t'(I + t')' '](I —«2)/(t'+ cu')'i'(I + t'+ cu') 'i'
. (A2O)

Note that (A7) is symmetric in z and z' and reduces to previous results" if either z or z' vanish. By differen-
tiating with respect to hi, the surface magnetization of the first layer may be found as

dc&& u(1 A ) +z u (uc. +v A )
M&(n;t, h, h„) =z +z(,1 —z')—

(1 —cu ) ' ' 0+(z,z') + A "0 (z,z') (A21)

where the denominator terms are

Q+(z z'; T, cu) = (u+ + z'u ) ( u+ + z'u )/u+ (A22)

so that (A12) reduces to (2.7) when z'=0.
This result for Mi simplifies appreciably if the field hi on the first layer vanishes: the integral can then be per-

formed and one obtains

[e(+t]z—t tanh(2n sinh ')t'[)]'tz

e []t]+(t+e+z') tanh(2n sinh ']t'])]'t' (A23)
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where, since z =0, the condition (A6) now has no
force, and where for brevity we have put

I I I I I I I I I I I I I I I I I

t' = —0.05

i= r'(1+r')'~'=r', (A24)

c+(T) = (2+ r')'"(1+ r')'" —r +1 =~2+1

Mt(D; T 0 hn) 1 Z~
pt D h

which parallels (1.7) and corresponds to the natural
ht

expectation that both surface fields scale as t ' (with,
in this case, 4~ = —,) and yield the same surface mag-

Ptnetization prefactor t '. By noting the symmetry
under M~ ~M„, h„n h~, we see that this result also
tests the z-dependent postulate (1.6) in the more
general form

(A26)

(A2S)

When t,h„0 and n ~, it is easy to see that this

has the scaling form

M)

I~so
04—I

I

I

I

I

0.3

0.2

0.1

~20

/
/

/
/

]0

1

M(z, D; T, hi, h„) = Ia Y —;—;z D h~ h„

(', . (A27) 0
0 0.05 0.1

z' = tonh h„

0.15

Mt, (n;h„) =
[1+2(1+J2)nz']' ' (A29)

Thus for large n the magnetization at a free wall

(with zero surface field) decreases as C/n'r' where C
is independent of the field at the far wall, provided
only this does not vanish! This decay law is in accord

However, for w .0 and w 1 the scaling function
must exhibit the singular behavior'

Y( w;x;y, y') = w~(1 —w )~ Y( w;x;y, y'), (A28)

where Y(0;x;yy') = Y(1;x;y',y) is finite and

nonzero, and 8=(Pt —P)/v (which yields t) =
s in

the present case).
At the critical point, T = T„ further simplification

ensues and one finds simply

FIG. 8. Variation of the magnetization, M~, of the first

layer when a surface field h„= H„/I.& T is applied only on the

far boundary, i.e. , on the nth layer with h] ———0: solid curves

for T =-T, ; broken curves for ]' = 2K, ( T —T, )/T, = —0.05.

pt/v
with the scaling prediction 1/D ' which follows
from the scaling form (A26), provided the indepen-
dence of the field h„at the far wall is assumed: how-

ever, this independence is not obvious a priori/ The
critical-point variation of M~ following from (A29)
and some similar corresponding plots for t = —0.05
are presented in Fig. 8.

Further results can, of course, be derived from
(A21): in particular the critical-point scaling form for
the difference

Mt(n; T ht, h„) —Mt (T ht) = EMt(n; T h~, h„)

[which is to be compared with (2.23)], is found to be

, t)~M, (n;h ht„) = Btz[(1 ——z )8,"(az, a.' ) +n '6,"(a, a' )]

where Bt is defined in (2.13) and, in accord with (2.4),

a ' = (1 + J2) n tanhzh„

The scaling function is given by

( ) d~
(T' +gtanh2$ 1

+~ o' +(g +(y' )gtanh2( g+o

(A30)

(A31)

(A32)

(A33)

with a similar integral expression for 6,'(a', o-').
We have also evaluated numerically the integral involved in (A21) at the critical point, T = T„ for the special

case, h] = h„of identical walls. Some of the results are included in Fig. 4 (for i~ =60: dotted curve; for ii =20:
dashed curve). As is to be expected, the surface magnetization for h„= h] )0 is always greater than that for
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h„=0 at the same value of h] and n. More surpris-

ing, perhaps, is that the plots for A] = h„actually
cross and rise above the magnetization curve

M],{h]},for the semi-infinite lattice. Likewise, for
example, M], (n =20) is greater than M], (n =60)
for z =z' &0.075, which exceeds M], (n =100) for
z =z') 0.049, which in, turn exceeds M~, (n = 200)
for z & 0.037. This interplay of the opposing effects
of a positive far-wall field and of increasing wall

separation could lead to awkward experimental prob-
lems in determining the true asymptotic-decay laws.

We may also, by using the definition (A30) and
the exact expression (A21), study the influence of
one wall on the other as n ~ in order to test fur-

ther the conjecture (1.9). As in the derivation of the
results (2.32) and (2.33) for h„=0, we proceed by

setting T'= T„subtracting off the limiting form with

A " 0, putting $=4n sinh 'co, and expanding the
integrand in inverse powers of cr ~ nz'. It proves
essential to assume that h„ is strictiy positive (for
z2 & 0). We then find

A/+(h]) = —rr(J2 —1)(1—zz)

]= —,A,'(I,), (A35)

where A ] (h]) is the amplitude for h„=0 given in
(2.33), awhile

at+ (ht, h„) = (E2 —1)[(z/z')'+1 —(2+J2)z']

(A36)

A striking feature of these results is that the leading
decay amplitude, say A](h], h„}, is actually indepen-

dent of the field, h„, on the far wall although it clear-
ly depends on the sign of h„and, as seen explicitly in

(A35), also assumes a distinct value when h„van-
ishes. This general conclusion actually follows from
the ansatz for the critical-point variation of the local
magnetization introduced in Ref. 1." However, we

(h]) a] (A], /f„)1— +0
3 n 2 z n n'z4

(A34)

where the superscripts + denote the condition
A„& 0. As before the conjecture (1.9) is confirmed
in that the perturbation in the surface magnetization
decays with separation of the walls as 1/D~ (with,
here, d =2). The values of the amplitudes are

currently have no alternative understanding of the
simple factor ——, relating A ]+ ( h] ) and A ] {I] ]).
Note that the amplitude, a]+, of the leading correc-
tion term now has a significant dependence on both
h] and h„and, indeed, diverges as h„0.

Finally, let us reconsider the signficance of the re-

striction (A6) which, for the ferromagnetic case,
J2 )0, reduces simply to h]h„~0. Now the expres-
sions (A7) and (A17) for the total free energy are in-

variant under the joint inversion h], h„~ —h], —h„,
which is just what is required by the symmetry of the
original Hamiltonian. On the other hand, these ex-
pressions are also invariant under the separate inver-
sions h] ~ —h] Or h„+ —h„: unless one of the fields
vanish (or Jz -0), this cannot be correct! However
no error is involved since such separate inversions
clearly violate the restriction h]A„~O and are thus
disallowed. Nevertheless one concludes, at first
glance, that the analysis is deficient since the free en-

ergy has been found only for fields in the first and
third quadrants of the (h], h„) or (z,z') planes, The
deficiency is more apparent than real, however, since
for all finite n the free energy and all its derivatives
are necessarily analytic functions jointly in z and z'

(and, for that matter, in z] and z2 also). Thus by an-

alytic continuation, the free energy, the surface mag-
netizations, etc. , may be obtained in the second and
fourth quadrants of the (h], h„) and (z,z') planes.
Indeed, in writing (A23) with a prefactor z' (instead
of ~z'~ which is what the analysis strictly yields in the
limit z 0+) such an analytic continuation has been
explicitly performed. Unfortunately it is not clear
how to effect the continuation so explicitly when
both fields are nonzero.

The antisymmetric case, h„= —h], does, however,
yield somewhat to further argument. " By reflection
symmetry of one side of the n x ~ strip into the op-
posite side, one sees that the local magnetization
must vanish at the midpoint of the strip. Asymptoti-
cally, as D = na ~, this means that the situation
A„=—h] is equivalent to the case h =0 where the

zero far-wall field is now imposed on a strip of,
asymptotically, exactly, half the original width, i.e.,
D'= n'a = —,D. This yields an amplitude which satis-

fies the relation"

A](A] h]) = A] (h]) = 2 A] (h]), (A37)

which should, in fact, be valid for all fixed h„& 0 as
n ~. More generally, in a d-dimensional system, '

the factor 2' should be replaced by' 2 ~
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207 (197&).

2See, e.g., M. E. Fisher, Rep. Prog. Phys. 30, 615 (1967); or
H. E. Stanley, Introduction to Phase Transitions and Critical
Phenomena (Oxford University Press, New York, 1971).

~M. E. Fisher, in Proceedings of the Sist Enrico Fermi Sumnrer

School, Varenna, Italy, l970, edited by M. S. Green
(Academic, New York, 1971).

4M. E. Fisher, J. Vac. Sci. Tech. 10, 665 (1973).
5See also (a) K. Binder and P. C. Hohenberg, Phys. Rev. B

6, 3461 (1972); and (b) M. N. Barber, Phys. Rev. B 8,
407 (1973).

Note that M. A. Moore and A. J. Bray, Phys. Rev. Lett.
38, 1046 (1977), have argued that one should always have

a -—(1-~).1

Explicitly one must have Y( w;x;y) = w~ Ye(x, v) as w -0,
with e=(P) —P)/v.

~Actually the exponent found is (2 —o, )/v which is equal to
the dimensionality, d, only if the validity of hvperscalingis

granted, see, e.g. , M. E. Fisher, Proc. Nobel Symp. 24,
16 (1973).

~H. Au-Yang and M. E. Fisher, Phys. Rev. B 11, 3469
(1975): to be referred to as II.

' See also B. M. McCoy and T. T. Wu (a) Phys. Rev. 162,
436 (1967) and (b) The Two-Dimensional Ising Model (Har-
vard University Press, Cambridge, Mass. , 1973), Chap. 6.

"The coefficient of this singularity is given erroneously in

Eq. (5.39) of Ref. 10(b) owing to a misprint or slip.
M. E. Fisher, J. Math. Phys. 7, 1776 (1966).

' For graph theoretical terminology, see e.g. , J. W. Essam
and M. E. Fisher, Rev. Mod. Phys. 42, 271 (1970).

' Because of the difficulty of carrying this check through, a

few words about what is involved are in order. First, the
4 x 4 transfer matrix leads, for general fields, to an ex-
pression for the free energy per spin as the logarithm of
the largest root, x~, of a quartic equation. However, by

methods known through the theory of equations, the
roots, x;, of the quartic can be related to the roots, », of
a particular cubic equation of the form v —li v + IO=0
where I

&
and lo are functions of h &, h2, z ~, and z2.

Thence x~ can be expressed as a complicated but sym-

metric function of the cubic roots, v;. On the other hand,
the general expression (A7) reduces for n =2 to the in-

tegral on 8 of an expression lnD(8) where D(8) is found
to be a cubic polynomial in cos8. A substitution
cosH = v —a reduces this to the same polynomial arising in

the analysis of the transfer matrix. Factorization of D(H)
in terms of the cubic roots, y;, allows the logarithmic in-

tegrals to be performed and, finally, the same expression
is obtained as in the matrix approach.

' Another check, which is fairly stringent, is to let z' (or,
equivalently, z) take the value unity; the surface magnetic
field H„ then becomes infinite so the adjacent, (n —1)th,
row of spins becomes frozen all "up". In effect this must

simply reduce the width of the lattice by one row while re-

placing the surface magnetic field by the new value

H„& = J2, which derives from the bond variable z~ link-

ing spins in the nth and (n —1)th rows. The identity

a+p+(8;z&, z2, 1) =p+(8;z&, z&, z2)(1+z()/I) +z&e'
(

then ensures that the expression (A7) correctly repro-
duces this reduction.

'6Compare with the derivation of (1.7) and Ref. 7.
'~M. E. Fisher and H. Au-Yang, Physica (Utrecht) (in

press).


