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Variational calculations of the excited states of liquid 4He
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Approximate wave functions of the form g4(tt (k)), where g is a correlation operator that

contains two-body, three-body, and momentum-dependent correlations, and 4(n ( k )) is a

noninteracting-Bose-gas wave function with occupation numbers n(k), are used to calculate the

energies of excited states of liquid 4He. The energy expectation values are calculated by gen-

eralizing the Fermi hypernetted-chain methods. The single-quasiparticle excitation spectrum

provides stringent tests for the correlation operator g. The calculated phonon, maxon spectra
are not in good agreement with the experimental results presumably because of the truncations
in the large-distance behavior of the two-body correlations in the g. The results obtained for
the roton energies are in good agreement with the experiments over the range of liquid- He

density.

I. INTRODUCTION

A one-to-one correspondence between the low-

lying states of interacting and noninteracting quan-
tum fluids is implicit in Landau's quasiparticle ap-
proach to the theory of quantum fluids. This corres-
spondence implies the existence of a correlation
operator g that transforms the noninteracting states
4; into interacting states 4;:

4;(n;(k)) =tt4;(n;(k))
The noninteracting states are specified by the occupa-
tion numbers nf( k ) of the single-particle states, and
the correspondence allows also the %'; to be labeled
with the n;( k ).

Let np( k ) be the occupation numbers in the
ground state. The difference 5;( k),

5;(k) = n;(k) —np(k) (I.2)

specifies the quasiparticle excitations in the state 0;.
In Bose liquids the states Vx (n x ( k )),

SK(k =K) = I

s-„(A.- =0) = —1,
Sx(k &0 or K) =0

which correspond to the 4-„given by

4-„(n-„(k))= ge p(xiK r;)
I

are identified with the phonon-roton excitations of
momentum K. In their pioneering calculation of the
phonon-roton spectrum in liquid He, Feynman and
Cohen' (FC) used the correlation operator

(&.4)
II 1BFc=+0 I +XPI, 3 ry'&g

i&j riJ.

ll

where Op is the exact ground-state wave function, to

generate the approximate +-„. We emphasize exact
wave functions and energies with a caret. FC did not
attempt to calculate either the +p or Ep. They
developed their theory specifically to explain the exci-
tation spectrum of liquid He using the experimental-
ly known static structure function.

Recently" an improved description of the ground
state +p of both liquid He and 'He has been ob-
tained with the correlation operator

S=II.~, II ~, ~ III.. — (&.s)
i&j i(j(k i&j

The fq,&
is a two-body Jastrow correlation function of

~r, —r, ~, while

fg„"=1+- '
r j 7„" (I.6)K IJ

y
IJ IJ

incorporates the FC backflow, and the '7„" are re-
stricted to operate on the 4. The three-body correla-
tion f3 j/( contains terms of type g&r,& ('7;fq;I, ), and
it is in principle determined by the two-body func-
tions /1,&

and Yt& The approx. imations in this g, and

the calculation of,f~ j 7)j'and f3;jk are discussed in

Refs. 2 and 3 which we henceforth denote by I and
II, respectively.

Fermi hypernetted-chain summation methods are
used in II to calculate expectation values with the
wave functions g4; in Fermi liquids. In Secs. II and
IV these methods are further developed to calculate
the E(n ( k )) of the excited states of Bose liquids.
The theory is developed for an arbitrary n ( k ) with

the hope that it will be useful in extending the varia-
tional method proposed for Fermi liquids at finite

temperatures to Bose liquids.
We calculate (0';~H~'I;)/(4;~V;) directly, where

as in past' ' the excitation spectrum has been ob-
tained by calculating ('p-„~H~'Px)/('P0~%'0) and

(q x ~

q" x ) /(q p~ q p) seParately. When/ does not
contain any backflow correlation the (0 x ~

4 x ) /

(0'0~ 'po) for the one-quasiparticle excitations be-
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comes simply S(K) the liquid structure function.
We expect our formalism will be convenient for an

arbitrary 'P;(n;(K)).
The cluster expansion for Bose E(n(k)) is quite

similar to that of the Fermi E(n ( k)), except for ex-
tra exchange loops that are needed to describe the
exchange of particles in k & 0 states with those in the
k =0 condensate. When n ( k ~ 0) =0 the cluster
expansion reduces to that of Ep discussed in I, and it

has no exchange loops. We emphasize that the n (k)
refer to occupations in 4&, so n(k WO) =0 does not
imply that all the particles in Wp are in the conden-
sate.

In Sec. V we calculate the E(n-„(k)), and thus the

phonon-roton spectrum in liquid 'He, using the de-
Boer and Michels' Lennard-Jones potential (in K)

v(r) =40.88 0 0
r

0.= 2.556 A (1.8)

q'o= gfj,„g f3,gk,
i &j i &j&k

and we can express the g in FC form as

(1.9)

(1.10)

and the g given by Eq. (1.5). The calculations are
carried out at various densities. Our object is to
develop a consistent microscopic theory of the
ground and excited states of liquid He, and thus our
calculations differ from the FC calculations in the fol-
lowing respects.

Microscopically we do not know the exact correla-
tion operator 5 that will give the 4'a. The %0 given

by the g is

The E(n(k)) contains a contribution

(q(n(k)) lg'(Jfqo) pe, „lq(.( k )) )
(1.»)

(4(n(k)) ~g g~i4(n(k)) )

H+p = Ep+p (1.12)
A

and the above contribution is Ep. We must calculate
it because the approximate 4p need not satisfy Eq.
(1.12). It is found that, particularly due to the f3 Jk

in the @0, this contribution to E(n7t(k)) is indeed

very close to Ep over a wide range of K, except at
very small K.

Since we work with a known +p we can in principle
avoid the approximations that FC make for the
many-particle distribution functions that are not ex-
perimentally measured. In practice, however, some
approximations are necessary in computing the distri-
bution functions from the 'Pp, unless a Monte Carlo
simulation is carried out on a computer.

The excitation spectrum offers a more stringent
test of the g than the ground-state energy, For ex-
ample the long-range r ' component of fj„"has a

small effect on the Ep, but our failure to obtain the
correct small-K part of the spectrum can be attributed
to the absence of this component in our g. The com-
puted maxon energies are much too high, and this is
probably due to the missing I/r&~ tail of the rt~. The
roton energies are in reasonable agreement with the
experiment over a wide density range.

which includes the entire potential energy, and the
kinetic-energy terms in which the V; operators
operate on the Op. This contribution is given by the
sum of the terms O', U, and Tof Sec. V. FC did not
need to calculate this contribution; for the exact Op

II. CLUSTER EXPANSION

To begin with, we develop a diagrammatic cluster expansion to calculate expectation values with the simpler
wave function

q",(tt(k)) = flfg. r g f3, 'Jk& ffexp[lk(l) r;1
i&j i &j&k i

i

k(1) = k(2) = . . = k(n(0)) =0

k(n(0) +1)=k(n(0) +2) = . =k(n(0) +n(k&)) =k&

The 5 is a symmetrizing operator. We will assume that n(0) can be large and approach ~ in the limit the
volume 0 0o, but all n(k &0) are finite, and define a quasicondensate fraction p as

n(0)
A

where A is the total number of atoms

(2.1)

(2.2)

(2.3)
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A diagrammatic cluster expansion for the expectation value of a two-body operator 6(r)

'I

J) S /exp[ —'k( ) r;] gf'y /f3 Jq P, exp[i k( ) r;] d
l i&j i&J&k i

(2.5)

is obtained, as in II, by replacing all the fJ', except
fJ „ in the numerator, by 1+F, and all the f3 by
1+g„,Xjq. For our choice of f3

glj 9(k
X(Jk =p3 r(j'r kfJ ijfJik

(2.6)

where P3 is a variational parameter. The various in-
tegrals in the expansion of the numerator and the
denominator are then represented by diagrams in
which the points represent the particle coordinates,
Fj is a dashed line joining i and j, and solid lines ij
and ik with a marking on the angle i of the triangle
ijk denote X~k. All numerator diagrams must contain
the points mand n and the function .f „6„f„.

Exchanges are represented by directed lines. An
exchange line labeled k(i) going from i to j repre-
sents the contribution of a term in +' in which parti-
cle j occupies the state k(i). %'e symmetrize only
the left-hand +' and thus particles i, j, . . . , respec-
tively, occupy states k (i), k (j), . . . , in the right-
hand V. All exchange lines k(i) must thus originate
from the point i. Exchange lines having k ~0 are
called I lines; their rules are similar to those of ex-
change lines in Fermi liquids. ' Exchange lines hav-
ing k =0 are called p lines; they are dashed while the
I lines are solid, and their diagram rules are discussed
below.

In diagram 1.1 (of Fig. 1) we show a diagram with
an exchange loop made up of two p lines. This di-

agram is not allowed since it represents a term in
which both particles 1 and 2 are in the quasiconden-
sate in 4". This term has already been counted by
the direct diagram 1.2. Similarly diagrams, such as
1.3, having exchange loops with two p lines depict ex-
changes which have already been counted by di-
agrams, such as 1.4, which contain only one p line
per exchange loop. These restrictions can be incor-
porated in a single diagram rule which states that all
permissible exchange loops can be formed with any
number of I lines and at most one p line. For con-
venience we will refer to an exchange loop as an /

loop if it is made up of only l lines, and as a p loop if
it contains a p line. Lastly we note that diagrams
such as 1.5 and 1.6 in which uncorrelated particles
are exchanged give zero contribution due to the

I 2
l.2

2 i-~-- ]

i -~ 'I

2
(i)

1 )kfj

]~ j
7]t(j)

2

l.6

FIG. 1. Examples of diagrams having p exchange loops.

orthogonality of plane ~aves, and they should be dis-
carded.

Diagrams depicting expectation values with Fermi
liquid wave functions do not have p loops. In ab-
sence of f~ the cluster expansion for Fermi systems
is irreducible; i.e., the reducible numerator diagrams
cancel the denominator and the expectation value
equals the sum of irreducible numerator diagrams.
However, the restrictions on the p lines spoil this
cancellation of the denominator in Bose systems.
Therefore, the cluster expansion for expectation
values with excited Bose liquid wave functions is not
irreducible. Expectation values with the Bose ground
state 4'0 have no exchange diagrams and are thus
given by the sum of irreducible numerator diagrams.

'We use the general cluster expansion for an expec-
tation value given by Wiringa and Pandharipande.
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They give the following result:

(0) = [A] + {[Aa]—[A] [a]} + ([ Aab] —[Aa] [b] —[A] [ab] + [A] [a][b]}

+ ( [A—ab] —[Aa][b]+—[A][a][b]}+[ '[Aa—b] —[Aa][bl ——[A][ab]+[A][a][b]}+, (2 7)

where. . . represent terms having «4 inseparable
pieces. The notation in the above expression is as
follows. '

(i) A, a, b, . . . , denote irreducible diagrams that
cannot be broken into two pieces by cutting them at
one point. The capital A represents elements of the
set of the numerator diagrams that contain the opera-
tor 5 „,while the lower case letters a, b, . . . ,

denote diagrams that do not contain 6 „. These
could come from either the numerator or denomina-
tor.

(ii) Overhead lines denote common particle labels,
for example Aa indicates that the elements A and a
have a common particle label. Two overhead iines
Aab denote that A and a have one common particle
label, while a and b have another common particle la-

bel. A single common particle label in A, a, and b is
denoted by Aab.

(iii) Connected diagrams are enclosed in [ ]. Thus
[&a] denotes a connected reducible numerator di-

agram whose articulation point is the common parti-
cle, while [ Aab ] is a reducible diagram with two arti-
culation points. Terms having two or more [ ]'s
denote products of disconnected diagrams. [A][a]
for example denotes the product of [A] and [a].

(iv) A summation over all elements A, a, b, . . . ,

of the'sets of irreducible diagrams is implied with the
restriction that the elements A, a, b of a given term,

such as [Aa][b], satisfy all common particle relation-

ships specified by the overhead lines.
Normally terms enclosed in curly brackets of Eq.

(2.7) cancel each other and only the sum of irreduci-
ble diagrams [A] survives. However, this cancella-
tion does not necessarily occur for terms in which

A, a, . . . , have p loops passing through the point
having the common particle label. We can restrict
our analysis to these terms only.

The simplest element in the set A containing a p
loop is shown in diagram 2.1 (of Fig. 2), while the

simplest element of this type in set a is diagram 2.2
of Fig. 2. Let us pretend for simplicity that the sets
A and a have only elements of type 2.1 and 2.2,
respectively. The sum over A, a, b, . . . , etc. , will

then become that over particle label of diagrams 2.1

and 2.2. Note that m &n (0), i & n (0) because there
is an I line that starts from these vertices, and similarly
n(n(0) and j (n(0).

The [A][a] terms that can be constructed with

these simplified sets are shown in diagrams 2.3 and
2.4. The diagram 2.5 is an [Aa] term because the

k (m)

2.1 2.2

k(m) k(;)
m, .n~i-e

2.'5 2.4

j
k (m)

Ir
n~ Im

k{m) .
k (m)

0, ~ fg
k m

l
2.7

2.6

k(m)
m. . n x

2.8

I

1+ g j~--~m
k(m)

FIG, 2. Exchange diagrams that give vertex corrections.

[

exchange line fIi can be "bent" to make it go from n

to m and m to i, and it cancels the [A][a] term 2.3.
However, there is no [Aa] term that will cancel the
[A][a] contribution 2.4. The [Aa] diagram required
to cancel 2.4 is shown in diagram 2.6; it has two p
lines in a loop and thus does not exist.

We can similarly analyze the terms in Eq. (2.7)
that have three separable pieces. Within the simpli-
fied set of diagrams we find that only the term
[ A][a][b] shown in diagram 2.7 is left uncanceled.
The uncanceled terms 2.1, 2.4, 2.7, and higher terms
having «4 pieces that contain the element 2.1 of the
set A, form a geometric series which can be summed
to all orders. The sum is illustrated in diagram 2.8.

We can think of the coefficient of diagram 2.1 in
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diagram 2.8 as a correction to the vertex m of 2.I.
All other reducible contributions can also be included
as corrections at the vertex m of the irreducible di-

agram 2.1. All the elements of the full set a that
have a p loop containing an / line labeled k(m) start-
ing from m will contribute to this correction, and if
we define their sum to be S(k(m)) —1 the vertex
correction will be S(k (m))

Since the vertex correction depends on k(m} it is
more convenient to associate it with the I line labeled
k (m) starting from the vertex m. It may be verified

that when we multiply all / lines, labeled k (i), in all p
loops by 8(k(i)) ', all the reducible diagrams are
automatically summed when diagrams of the irreduci-
ble set A are summed.

We may now sum over the particle labels of topo-
logically identical diagrams. Apart from trivial sym-
metry factors we get a factor p at each vertex, and all

exchange lines ij become simple functions of rJ. The

I lines in I loops become Ij,

I
/;, =—X exp(i k r&.) n ( k )

~ a&o

while the I lines in p loops give IJ

exp(/k r &)I"=— n(k)
~ k)0 $(k)

(2.S)

(2.9)

t if», r/& r,& [ k (i) —k (j) —k (i') + k (j') ]

while the double wavy line of diagram 3.2 gives

——q,2&r,
&

[k(j') —k(i')] r,& [k(/) —k(j)]

and the p line gives the factor p.
Expectation values with the full wave function

O(n(k)), which contains the f» correlation have ad-

ditional diagrams that represent the contribution of
terms in the expansion of ( ff, &&f»,&

—1). The
f~„.—I is represented by a wavy line joining i and j,
its contribution depends on the states occupied by i

and j. The single wavy line shown in diagram 3.1 (of
Fig. 3) gives

In dealing with wavy-line diagrams it is useful to ima-

gine a closed directed loop labeled k (j), illustrated in

diagram 3.3, at every direct vertex j. Note that a sin-

gle wavy line connecting two direct vertices gives
zero contribution. Diagrams containing wavy lines in

exchange loops are often not reducible, because to
reduce exchange diagrams (2.5 for example), we
often have to "bend" exchange lines, and this changes
the f~ contribution. These diagrams have to be
treated with the general expansion (2.7), as is done
in II.

III. CHAIN SUMMATIONS

k (j') The hypernetted-chain (HNC) integral equations
for Bose excited states are direct generalizations of
the Fermi HNC equations in II. The chain G

classified according to the type of exchanges xx' at its
ends m and n. The classifications having xx' dd,
de, ee, and cc, which, respectively, describe chains
with both ends direct, one direct one exchange, both
exchange, and those having an incomplete I loop
passing through both ends, are sufficient to describe
all the chains in Fermi systems. Two more types of
chain functions are needed to sum many-body p
loops in the present case. These have xx'= ~v and

pp; the G„„„is defined as the sum of all chains hav-

ing an incomplete loop made up of I lines, while

G~ „ is the sum of chains having an incomplete loop
of one p line and any number of I lines.

%e define

FIG. 3. Diagrammatic elements depicting (/k &
—1). Z =G +C +E (3.I)
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L =I+Z„

Q =I+2„„
P =p +Zpp

The partial distribution functions are obtained as

(3.2)

(3.3)

(3.4)

where C, denotes the sum of diagrams of type

xx' having f3 „i—1, and E is the sum of the ele-

mentary diagrams. The functions L, Q, and P that
include many-body exchanges are then given by

The C are given by

c« = r((1+z„);I),
Cg, ——I'(I;(M + Z„)) + r(Z«;Zg, )

C„=I.(Z„;(2M + Z„,)),
c„=r(L;L)
c„„=r(Q;Q),
C~~ = I'( 2 Q; P )

(3.2O)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

gdd =fJ exp(Zdd)

gde gdd Zde

g~ =g«(D+L'+2QP+Z +Za, ) =g«M—

gcc gdd L

g se = gdd Q

gpp
=gad~

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

and the total g is given by

gdd +2gde + gee (3.11)

The sum of non-nodal diagrams, which can be the
links of the chains G is defined as X . We

have

&ad =gaa —1 —Gad ~

+de gde Gde

+ee gee Gee

X„=g„—I —G„
A

X„„=g„„—I —G„„

+up =
gpp p Gpp

It is convenient to define the functions

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17}

Y =g —Sa8xx x xd (3.18)

which for xx = dd, de, and ee correspond to the sum

of links and chains, while for xx = cc, vo, and pp
they give the sum of links, chains and the I, I, or p.
The chain equations can then be written as

„= Xp f d'rt &~,~t y
ep

(3.19)

The g,~ is a sum over all allowed exchange patterns

at node1. These correspond toyy'=dd, de, ed, cc,
vv, vp, and p v. The Eq. (3.19) is very symbolic,
particularly when xx' equal vp and pv they are to be
understood as pp. There are no G„p and Gp„ func-
tions; "vp" and "pu" chains are pp chains by defini-
tion.

where I {A;B) for any functions A,j, 8~ of rj is
defined as

I' „(A8) = p Jt d, g~ g«„, ( f3 „, —I )g

(3.26)

The D „ is defined as the sum of all connected di-

agrams in which m and n are connected by either fg .
lines or exchange lines connected to,f~ lines. The
D „diagrams having articulation points have to be
treated with the general expansion {2.7). An expan-
sion of D „ into elementary clusters is given in II,
and it may be used in the present case by simply let-

ting each exchange loop be either an I loop or p loop.
The vertex correction function $(k) required to

compute the I is given by

8(k) —1 =p Jfd'riexp(i k r&)(g«J I )Ps

(3.27)

The exp (i k r&) in th, e above equation comes from
the I„ line, while (gddij —1)Pj is the sum of all di-

agrams that can complete the p loop.
The Eqs. (3.1)—(3.27) are so far exact; however,

they include the infinite sums E and D which can-

not be exactly calculated. In the HNC approximation
we neglect the E, which corresponds to neglect of
the coupling between the G, the C, , and that

XX,IJ XX .ij'
of G . . with C .. It has been argued in I that the

coupling between the G, , and that between G
XX,IJ xx, ij

is probably weak, while that between the C ~ . couldxx,iJ
significantly reduce the contribution of terms having
(C, ) N '. Following these arguments we will

neglect both the E and terms having {C ..)"
Note that this still allows quadratic terms of type
C j C

jg
etc. , in the chains.xx,iJ yy, jk'

The integral equations given above can be easily
modified to ignore ( C . .)" ' terms. We first define

XX,IJ

partial exchange functions L, „, Q „, and P „, and
partial distribution functions g such that they do

not have any contribution from C . These func-
XX,INN

tions are obtained by replacing the Z, in Eqs.

(3.2) —(3.10) by G . The distribution functions that
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contain at most linear terms in C, are given byxx, mn
liquids, and the D in this approximation is given by

gdd gdd(1 + Cdd)

d = gddCd +gde(1 + Cdd)

(3.2S)

(3.29)

D =2 ~I'(P +L)+ ~ ——(L +P) +I'
.fJ fj 6 2

(3.33)

g„=gdd(C„+ Cd, Gd, +2LC„+2QCpp +2C„„P)

+gee(1+ Cdd)

g = gddC +g (1+Cdd)

xx =cc, vv, and pp

(3.3O)

(3.31)

(k) —1=p d re'"" (gdd —1}p +(gdd 1)Cpp

(3.32)

It is found in II that the dressed two-body clusters
give the dominant contribution to D in liquid 'He;
thus only these are included in the present work.
The calculation of their contribution in the Bose ex-
cited state is not much different from that in Fermi

The links X calculated with these g do not

have multiple C,. The $(k) Eq. {3.27) is modified
to be

~here I' and I" are the first and second derivatives of
I (r), and (k') is the average value of k' in the Cc(n (k))

(k ) = —$k n(k) (3.34)
A

k

Note that the uncorrected Slater function I has been
used in Eq. (3.33) for the dressed two-body D. Ver-
tex corrections to the dressed two-body D will be of
the same order as many-body cluster contributions to
D, and they should be taken together.

IV. CALCULATION OF E(n(k ))

The E(n(k)) contains the expectation value of the
two-body interaction v „, and the kinetic energy. It
is convenient to divide F. (n ( k )) into seven parts

E(n(k)) = W+ U+ T+ W + U + T +S, (4.1)

of which only W, U, and T contribute to the
ground-state energy. They are given by

1 hW= —p g(r) v(r) ——('7 fj)/fj d r
2 m

(4.2)

2 {+mfJ, mn) ' {+m.fJ,mo) d3 d3p g3,mno d d. mn mo
2m ./ J,mn JJ,mo

T = — P
' "' V f3 mn, +2(Vm f3 mn, )

' ' " + ' ' '
d rm d rmo

g - (& f ) (~ f )
m . 3,mno . Jmn . Jmo

(4.3)

(4.4)

where g(r) is the two-particle distribution function [Eq. (3.11)], and the three-particle distribution function is de-
fined as

(4.S)2
g3, mno +.f3,mnog~' mng~ mogzz no

ep

The g, implies a sum over xx', yy', and zz' that form allowed exchange patterns. Note that the Tand Ugiven
above do not include terms of type '7 f3 „, '7 f3 ~ and V f3 „, '7 fJ p It has been argued in I that these
terms should be treated along with their HNC/4 counterparts.

The TF is the kinetic energy associated with the 4(n(k)), and it is given exactly by

Tr=(hz/2m) (kz)

The Wf and Uf give kinetic-energy contributions associated with

'7 ( fJ nf3 n, ) V 4(n(k})
terms

(4.6)

.fJ,m.
(4.7)

UF —P f3,mno
2 2

m

{~..f3,.„,) (~.f...)+f3,mno .fJ,mn

A

'
( [gcc mo ( 7m Imo ) + gpp mo ( 7m Imo ) ) ( gdd mn (gdd on + gde on ) + gde mn gdd on j

A

+ ( +m Imo) gdd mogccongcc nm + ( +mImo )gdd mo(guuongpp em + gpp onguu nm ) ) d "mn d "mo (4.S)
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Note that the UF and WF do not contain contributions for diagrams having f~ „or .f~, . These are included
along with terms of type '7'f~ „and V f~ „'7 4 in the S.

The expansion of S is discussed in II. %e include only the dressed two-body diagrams that contribute to S.
Their contribution is calculated, as in II, by defining

q =n/. f&,
rt )

fJmn ] 3 — — I
tmn = + P J ((I r0 gdd mogdd on + gdd mo ged on + gde mo gdd on f3,mno [ rmn

' (+mf3, mno fj mo ) ]J fJ, o

s = (q—"r +4q') + (q'r + q ) t

(4.9)

(4.IO)

(4e»}

The Sis given by

2

p Jt d3r gdd[ —(kt)(q'r +3q) +2s/'(L + P) +(2qrt +q'r +q)[I"(L +P) +/'~]+(2q/r)I'(L +P)
2m

+ t (qrt +q'r + q)qr[I"'(L + P) +3/"/'] +q~[(/ee —I'/r)(L + P) + I' ]) (4, 12}

When n (k )0) =0 the (k'), I, and I are all zero and
the WF, UF, TF, and S vanish. The W, U, and T
depend upon the n ( k) through the distribution func-
tions g and g3 „,. However, as stated in the Intro-
duction, if g, && f», Q, &&&„f3;&„is close to , an

eigenfunction of H the W + U+ T should be in-

dependent of n(k) and equal to F., the ground-state
energy.

V. PHONON-ROTON SPECTRUM

The one-quasiparticle excitation spectrum d(K) is

calculated by promoting a small fraction o. of the par-
ticles to the quasiparticle state K

can, k =K

n(k) =' (1 —n)A, k =0

, 0, k &K, O

(5.1)

(5.2)

(5.3)

The E(n(k)) will then be a function of a and K,
and

E(a,K) Ep-
e, (K) =lim

a~0 CX

(5.4)

If we assume that the )Ir, given by the g is the exact
4, we obtain

dt(K) = lim [ Tr(a, K) + II r( a, K )a~0

+ UF(o. ,K) +S(o.,K) j/o. . (5.5)

The two equations (5.4) and (5.5) will generally not
yield the same e(K); if the difference is large, Eq.
(5.5) should not be used. We will calculate d(K)
with both forms and use the difference between them
as an estimate of the quality of our g.

Before discussing the present calculation of ~(K) it

[

is instructive to verify the Feynman phonon spec-
trum with Eq. (5.5). The Feynman phonon spec-
rum&0 at small K is given by

A~K~
( -o)= (5.6)

exp(/K r;) +exp(/K r, )

=exp(/K R&)[exp(i—,K r&)+exp( —IT~K r&)]

(5.7)

The '7;, operating on the relative wave function can
only give terms having K' and higher powers of K.

Thus, the phonon spectrum at small K is given by

Eq. (5.5) with S(o., K) =0. The TF(a, K) is obvi-
ously (It'/2m)K~a, and we only need to calculate the
terms in WF and UF that are linear in a. These
terms are given by diagrams that have a p loop with
only one I line. The $(K) [Eq. (3.27)] is needed
only in the limit n —0 where it becomes the struc-
ture function S(K), and I becomes

~/Yt( ~ r

g(K)
(5.8)

The sum of all WF and UF diagrams having only one

where S(K) is the static structure function for the
ground state

8 ( K) = ( + p J (e ( e ) —() e p ( K e ) d'

The S(K) is linear in K at small K, and so is the
d(K).

It may be verified that the f~ contribution to the
wave function is proportional to K' at small K, and
thus negligible. The two terms in 4(n(k)) on which
the '7~in f~,j can operate to give a correlation are
exp(i K. r;) and exp(iK rJ). Their sum can be writ-
ten in relative ( r,J) and center-of-mass (R„")coordi-
nates as
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I line is given by

( H + U )„„=—— pn ['7I(r)] [ 7g(r)] d r
2m

f K
1

1

g(K)
(5.9)

(5.10)

where c is the sound velocity. Consequently the cal-

culated S(K) is not linear in K at small K, and the
calculated vertex corrections 1/S (K) are incorrect.
We hope that this difficulty may be easily eliminated

and inserting this in Eq. (5.5) gives the Feynman
phonon spectrum.

We first discuss results of calculations in which

f3 'jk is set to unity, so that g does not induce any

three-body correlations. This corresponds to setting
the variational parameter P3 in g to zero. The g then
has only one variational parameter d which is varied
to minimize Fp the ground-state energy. Its value is

generally close to 2l.p.

The et(K) and ~q(K) calculated from the equa-
tions (5.4) and (5.5) with 5(d =2ro, P3=0) at

p =0,365 o, the experimental equilibrium density,
are shown in Fig. 4. The results of Feynman and
Cohen' (FC), and the experimental spectrum" are
also shown for comparison.

In the phonon region (K ( 2 a ') the et(K) and

~q(K) are not very close, and they are not linear in K
as they should be. This incorrect behavior of e~(K)
and ~q(K) at small K is definitely due to the wrong

asymptotic behavior of the /J(r ~) in our g. We
have f~(r & d ) = 1 instead of the correct behavior

by imposing the asymptotic behavior in Eq. (5.10) on
thefj in ,g. FC use the experimental S(K) and get
the exact F. (K 0).

The ~~(K) and aq(K) are reasonably close (within
about 0.5 K) in the region of maxon (2 ( K
&4 cr '), but our calculated maxon energies are
much too large. The ~(K) in this region should be
sensitive to the tail of the back-flow correlation q;, .
The q; J(r ) d) =0 in our 5, but it should in fact' go
as 1/r' as r ~. FC assume (rt/fz)~1/r' and get
this part of the spectrum correctly.

In the region of rotons (K —5 o. ') the eq(K) and

~q{K) are in reasonable agreement with the experi-
rnent and each other. Here we do a little better than
FC, hopefully because our q(r) at small r is better
than that of FC.

The general character of ~(K) does not change
drastically when the three-body correlations are added

top. The main effect, which can be seen from Table
I, is that the ~~(K) and ~q(K) come much closer to
each other, particularly in the maxon region. The
e(K) in rnaxon region moves up away from the ex-
perimental results, while it moves down towards the
experimental results in the roton region. Figures 5

and 6 show the experimental' and calculated roton
energies at the experimentally observed densities
under pressures of 1, 10, and 24 atm, respectively.
The minimum values of Fp obtained at d =2Ip,
P3 P3;„are given in Table II. These Ep are almost
identical to those reported in I.

The results obtained with g(d =2ra, P3=0) are
shown in Fig. 5, while those with g(d =2ra,
P3 P3;„)are in Fig. 6. The general density depen-
dence of the roton energies seems to be well repro-
duced, particularly by the g(d =2ra, P3 =I83;„). The

20.0
TABLE I. The one-quasiparticle excitation spectrum of

liquid 4He.

hC

IO.O

Expt.

2.0 4.0
K(o- ')

6.0

FIG. 4. The et(K) and e~(K) calculated at p=0.365 o.

and P3 =0, are compared with the spectra calculated by FC,
and the experimental spectra.

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

9.02
12.57
15.52
18.94
19.09
16.52
12.67
9.16
&.92

13.76
23.15

5.53
11.20
16.87
19.76
19.68
16.90
12.82
9.99

10.35
14.53
22. 12

13.49
15.77
17.33
20.87
22.49
18.90
12.41
8.38
9.34

15.00
24.18

12.34
15.68
17.50
20.84
22.62
19.00
12.68
9.1 1

10.07
15.08
23.24

K ( 0 ) cy (K P3 =0) ~p(K P3 =0) e) (K P3 mjn) fp(K 183 mjg)
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10.0— IO.O—

24

8.0—
IO

24

r IO

Fxpt.

9.0—

8.0—

24
I

,IO ExPt.

7.0—
-24

7.0—

24
r 24

4.2
I

4.6
I I

5.0
Kt~ I)

I

5.4 4.2 4.6
I I

5.0
K(a. ')

FIG. 5. The calculated roton energies at p =0.367, 0.398
and 0.433 cr, and P3 =0, are compared with the experi-
mental values shown by broken lines. The curves are la-

beled with the experimental pressures (1, 10, and 24 atm) at
these densities.

FIG. 6. The same as Fig. 5, except with p3 p3

main problems appear to be (i) the minima in ~(K)
come at smaller values of K, and (ii) the curvature at
the minima is much too large. The first of these
could be related to the smallness of the core of the
deBoer-Mitchels (6,12) potential. We also note that
the a&(K) is —1 K higher than et(K) even after in-

cluding f3,ik, without it the ~i(K) is —2 K above
at(K). As was noted earlier by Chang and Camp-
bell, there is a noticeable improvement in the densi-

ty dependence of roton energy on inclusion of f3 Jk.
It thus appears that a microscopic realization of the

correspondence between low-lying states of interact-
ing and noninteracting quantum fluids may be possi-
ble via a reasonably simple correlation operator g.
However, the large distance behavior of the Jastrow
and the backflow correlations in the present /needs
to be improved, to obtain proper excitation spectra or
finite-temperature properties.

TABLE II. The ground-state energy at d =2I'0.

Expt. Calculated

P (atm) Eo(P3;„) I 3, min ED(P3 =0)

0.367

0.398

0.433

10

24

—7.14

—70

—6.6

—6.65

—6.64

—6.41

1.7

1.8

2.1

—5.57

—5.19

—4.46
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