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The amplitude response (i.e., relation between input and output amplitudes of a wave

transmitted through a medium) of 10-MHz longitudinal wave is investigated in hcp and bcc
solid 4He as well as normal fluid and superfluid 4He. In all four phases the acoustic saturation
in the amplitude response curve was observed. The results are well described by an equation
for amplitude loss based on second-harmonic generation. The nonlinear parameter P of these
phases was evaluated. It is found that the magnitude P in solid 4He is comparable to that of
classical solids. Dislocation contributions to the amplitude response were also investigated and
were ruled out as a significant source of the observed effects. It is concluded, therefore, that
the large nonlinear amplitude response, which leads to saturation observed in solid 4He should

be attributed to the unusually large compressibility, i.e., small elastic constants (second order),
which, in turn, induces in solid 4He much larger strain amplitudes for a given applied stress than

in ordinary solids.

I. INTRODUCTION

One of the characteristics of ultrasonic wave propa-
gation in nonlinear media is the waveforrn distortion,
or equivalently, the generation of higher-harmonic
waves. As the amplitude of the fundamental wave
increases, the effect of this conversion to higher har-
monics becomes significant and results in a nonlinear
amplitude response of the wave; i.e., the attenuation
of the fundamental wave becomes amplitude depen-
dent. This amplitude-dependent attenuation is often
referred to as "finite amplitude losses. " With further
increase of the wave amplitude, a phenomenon called
"saturation" takes place, whereby the amplitude of the
transmitted wave measured at a given distance from
the source approaches a limiting value; i.e., the signal
amplitude received becomes essentially independent
of the source strength. Although there are several
experimental reports on finite amplitude losses and
saturation for the cases of liquids' and gases, ' as far
as the authors are aware, none has been reported for
solids. In this paper, we show that in liquid He
(both normal and superfluid phase) and in particular
also in solid 4He (both bcc and hcp phase) these two
effects are observed.

These results are analyzed in the frame of continu-
um mechanics, and the nonlinear parameters are
evaluated. It is found that the magnitude of the non-
linear parameters in He crystals is comparable to that
of classical crystals. Dislocation contributions to the
amplitude dependence were also investigated and
were ruled out as a significant source of the observed
effects. %e conclude, therefore, that the large ampli-
tude dependence, which leads to saturation observed
in solid He should be attributed to the unusually

small elastic constants (second order) which, in turn,
induce much larger strain amplitudes in solid He
than in ordinary solids for a given applied stress.

II. EXPERIMENTAL PROCEDURE

The sample holder, a cell made out of brass whose
outer dimensions are approximately 2 x 2 x 3 cm is
immersed in a liquid- He bath. On the inner faces of
the side walls of the cell, three ultrasonic transducers
are mounted, two facing each other 1 cm apart and
the third perpendicular to the other two. Those two
transducers are used for, respectively, transmitting
and receiving ultrasonic waves for the amplitude-
dependence measuremerits, and the third is used for
the purpose of superimposing a dynamic bias stress
on the sample. These are all LiNb03-coaxially-plated
transducers of fundamental frequency of 10 MHz
(active plating is 0.3 cm in diameter). The cell is
pressurized to a desired pressure through a fill line,
and is maintained at a predetermined temperature by
controlling the pumping speed of the He bath.
Radio-frequency pulses of 10 MHz (pulse width of
-3 p,sec, repetition rate of -20 Hz) are applied to
the transmitting transducer through a step attenuator.
The signals of the wave thus generated in the sample
are processed through the receiving transducer,
another step attenuator, a tuned receiver, a peak
detector, and chart recorder. The step attenuator in
the transmitting side is for changing the input ampli-
tude P~o by a known amount. The step attenuator in
the receiving side is for minimizing the error caused
by nonlinearity which might exist in the receiver, by
maintaining an approximately constant amplitude of
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the input to the receiver. The overall error of the
measurement was +5%. The received signal ampli-
tude PI is then plotted on a log-log scale as a func-
tion of Ptp (amplitude response curve). Both Pt and

Pio are measured relative to their respective initial

values, which are arbitrary. The same sample holder
is used for liquid- and solid- He experiments.

III. RESULTS AND DISCUSSION

This extra attenuation corresponds to the "finite am-
plitude loss" mentioned earlier and is designated by
EXDB (extra dB). As the input amplitude increases,
the EXDB increases and PI tends toward a limiting
value; i.e., it shows the effect of saturation.

The analysis of nonlinear wave propagation has a

long history. " Here, we use the amplitude-loss
equation" given by

dPI Pk= —o,PI — —PI2
dx 2poco2

A. Liquid 4He

Typical amplitude response curves for liquid 'He
are shown in Fig. 1 (obtained at T =1.74 K, P =27.6
atm for superfluid, and at T =1.90 K, P =32.5 atm
for normal fluid). In the absence of amplitude
dependence of the attenuation the relation between
Pi and Pio is governed by the expression

P~ ——Ptpe sin(ppt —kx)

and in a log-log plot it should yield a straight line of
slope one, as indicated by a dashed line in Fig. l. In
the above, o. is the attenuation coefficient for "small-
amplitude" ~aves caused by viscosity, etc. , which is
considered to be amplitude independent, x is the pro-
pagation distance of the wave, eo is the frequency,
and k is the wave vector. As can be seen, however,
actual data depart from the straight line, indicating
the existence of extra attenuation at high amplitudes.
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The solution of Eq. (2) with the initial condition

P& =Ptpl -p

is

P =P e ~"[1+(1—e ™)/2ax]

or, in terms of EXDB, expressed by X,

X =20 log]p[1+(1 —e ")/2ux]

where x is the discontinuity distance given by

x =1/Pek

In the above P is the nonlinear parameter of' the
medium, and is defined by

p= 8/2A +1

where A (=poco ) and 8 are the coefficients of a
Taylor-series expansion of pressure Pi in terms of
density change (p —pp)/pp defined by
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with e = P~p/ppcp (acoustic Mach number). The first
term on the right-hand side of Eq. (2) corresponds to
the rate of amplitude decrease caused by the small-
amplitude attenuation, and the second term corre-
sponds to that caused by generation of second har-
monic. ' In the temperature range not too close" to
the x transition, l( T —T&)/T&l & 10 ', 8/A can be
estimated by'

FIG. 1. Received signal amplitude Pi of 10-MHz wave as
a function of input signal amplitude Pio (amplitude response
curve) in liquid 4He. The differences between the slope one
line (dashed straight line) and the data points correspond to
EXDB. The solid curve represents the calculated values ob-
tained by Eq. (6) for both normal fluid and superfluid. The
difference between the two cases is not distinguishable on
the scale of the drawing. V: superfluid at T -1.74 K and
P =27.6 atm; 0: normal fluid at 1.90 K and P -32.5 atm;
~: normal fluid as above except that the repetition rate of
the ultrasonic pulses is increased by a factor of 10, to 200
Hz. The arrow indicates the onset of the instability.

where y is the thermal expansion coefficient, and C~
is the specific heat under constant pressure. [It turns
out that the second term on the right-hand side of
Eq. (8) is small and can be neglected. ] For the ex-
perimental conditions mentioned above, po =0.178
g/cm', cp=3.60 x10 cm/sec, and (8c/8p) r-—2.9
&10~ cm/secdyncm' for superfluid"" and po
=0.181 g/cm', cp =3.85 x 104 cm/sec, and (8c/Bp) r= 3.S7 x 10~ cm/sec dyn cm' for the normal fluid.
With these values, one obtains P,„~,=2.86,
p„., „-3.50, «,„~,-4.62 x 10'/P&p cm, and x„.,~,~



3934 A. HIKATA, H, KWUN, AND C. ELBAUM 21

=4.69 x 104/Pta cm. With x = I cm and measured
value of n =0.4 Np/cm for both superfluid and
normal fluid, Pt or EXDB can be calculated as a
function of PtQ. Since only relative values of P~ and

P~Q are obtainable in the present experiments, the
origin of the coordinates for the data points is arbi-
trary. By adjusting the position of the origin, there-
fore, one can test the fit of Eq. (5) or Eq. (6) to the
data. The solid curve in Fig. 1 is the result of such
fittings for both normal fluid and superfluid. [The
difference in the calculated values between the two
cases is not distinguishable on the scale of the draw-

ing. This is accidental and is due to the fact that in

Eq. (7) for x, the larger P in the normal fluid is com-
pensated by a larger sound velocity for the higher
pressure of the measurements in this phase. ] As can
be seen, the fit is quite good for the superfluid state.
In the normal state, the EXDB increases more rapidly
at high amplitudes than predicted by Eq. (6). In the
superfluid state, with this fitting procedure, .one can
estimate the absolute values of PtQ. The value thus
obtained is 4 x 10' dyn/cm' for the maximum ampli-
tude used in this study which corresponds to 42 dB in

Fig. 1.
When PtQ is further increased, in the normal state,

the ultrasonic echo shape becomes unstable; i.e., it

changes with time. The effect sets in at lower ampli-
tudes if the pulse width or repetition rate are in-
creased. For example, the data points indicated by
solid squares were obtained under the same condition
as those of open circles, except that the repetition
rate was increased by a factor of 10 (to 200 Hz). The
onset of the instability detected on the oscilloscope
screen is indicated by an arrow. The effect may be
due to such causes as streaming' or cavitation' in

the sample, and may also be responsible for the
departure of the data from the theoretical prediction.
In the superfluid state, on the other hand, such an
instability was not observed within the experimental
conditions of the present study.

Without knowing the absolute value of PtQ, it is

still possible to deduce the ratio P„„„/P,„„,from the
data. Using the values of EXDB evaluated below the
24-dB point for P~Q in Fig. 1, and the same values for

pQ cQ and e mentioned above, one obtains

(Pnormal j'Psuper )expt

A similar evaluation of EXDB at a larger amplitude
of PtQ (32 dB) gives a ratio -1.59. These values
may be compared with the value calculated above

3.50(Pnor mal/Pse per )care

32
1

'
1

24—

tude dependences were investigated in the same
manner as in the liquid case. We could not grow
crystals with predetermined orientations, and thus the
direction of the wave propagation generally did not
coincide with a high-symmetry crystallographic axis.
Data were taken for the crystals whose sound velocity
ranged from 5.00 X10 cm/sec to 5.27 X10 cm/sec
in the hcp phase and from 5.15 x 10 cm/sec to
5.40 && 104 cm/sec in the bcc phase.

Typical results for hcp (taken at T =1.67 K,
P =32.5 atm, cQ = 5.06 & 10 cm/sec, pQ

= 0.195
g/cm') and bcc (at T =1.62 K, P =27.6 atm,
cQ 5.40 x 10 cm/sec, and pQ =0.190 g/cm') are
shown in Fig. 2. [Also shown in this figure are the
values calculated from Eq. (6} for hcp crystals by the
solid curve and for bcc crystals by the dashed curve,
to be discussed later. ] As can be seen, and to our
surprise, the results are very similar to the case of
liquid He shown in Fig. 1, This suggests that the
origin of the observed amplitude dependence in solid
He is also the generation of the second harmonics.

Two sources of harmonic generation are readily en-
visaged; i.e., the lattice anharmonicity and the oscilla-
tion of dislocations. Besides the generation of har-
monic, dislocations are known to be responsible for
amplitude-dependent attenuation in ordinary solids.
Therefore, in the next section, the likelihood of
dislocations being the cause of the observed amplitude
dependence is examined. This is followed by a dis-
cussion of the effects of intrinsic lattice anharmonicity.

a0
0 8 l6 24 32 40

P)o {dB)

FIG. 2. Amplitude response curve in solid He. b, : hcp
phase at T=).67 K, P =32.5 atm, and CQ=S.06 X10
cm/sec; 0: bcc phase at T =1.62 K, P = 27.6 atm, and
CQ=5.40 & 10 cm/sec. The solid and dashed curves
represent the calculated values obtained by Eq. (6) for hcp
and bcc phases, respectively. As in Fig. 1, the dashed
straight line of slope one is used as the reference for EXDB.

B. Solid ~He Dislocation contribution

Without altering the experimental arrangements,
He crystals were grown in the cell, and the ampli-

Motion of dislocations can cause amplitude-
dependent attenuation in many ways. Among vari-



21 FINITE AMPLITUDE WAVE PROPAGATION IN SOLID AND. . . 3935

ous processes, the most often cited mechanism is the
breakaway' (unpinning) of dislocations from weak
pinning points (point defects). The functional form
of the dependence of the attenuation on amplitude is

complicated. Generally, as the input amplitude is in-
creased, the attenuation starts increasing rather
sharply at a certain amplitude. With further increases
of the amplitude, the rate of attenuation increase de-
creases, and eventually goes into a plateau or even
goes through a maximum. The appearance of the
plateau or the maximum at high amplitudes is the
consequence of the exhaustion of pinning points
from which dislocations can break away. " A

schematic diagram of the attenuation-amplitude rela-
tion (a Pta diag-ram) is shown in Fig. 3(a). If one
converts the o.-P~O relation into the amplitude
response relation (Pt-Pta relation), the resulting di-

agrarn ~ould be of the form shown in Fig. 3(b).
When Pta is small (A 8), Pt fa-lls on the straight line
of slope one (A'-8'). At Pto=B, amplitude depen-
dence appears in the attenuation. In the P~-P~o di-

agram this corresponds to the sharp departure of P~

from the slope one line at 8'. The plateau in the a-
P~o diagram corresponds in the P~-P~o diagram to the
slope one line C'D'. When e decreases after passing

pW

In

In PlP

FIG. 3. (a) Schematic diagram of attenuation e as a func-
tion of input amplitude P~o. A -B, small amplitude (ampli-
tude independent) attenuation; B-C, amplitude-dependent
attenuation; C-D, plateau; and D-E, attenuation decrease
due to exhaustion. (b) Corresponding amplitude response
diagram (schematic). The slope-one lines are represented
by the two dashed lines.

through the plateau (D E),-the corresponding P~

must approach the original straight line of slope one
(D'-E'). Such behavior of P~, however, has never
been observed in the present investigation. This sug-
gests that the dislocation contribution through the
unpinning mechanism is negligible in the present
study.

In order to test further the extent of dislocation
contribution, dynamic bias stress experiments were
carried out. The bias stress test consists of superim-
posing a wave of large enough amplitude to unpin
dislocations, while the measuring wave (of small am-
plitude) is propagated in the sample. If the bias
stress induces dislocation unpinning, the small ampli-
tude attenuation nq should change (increase or de-
crease depending on the frequency, magnitude of the
damping, and the segment length). Using the third
transducer placed perpendicular to the pair of the
measuring transducers, a large-amplitude wave of 10
MHz (comparable to the maximum amplitude Pta
shown in Fig. 1) is applied. In the present study
small but measurable changes in 0. were observed in

both hcp and bcc phases. The characteristics of the
change, he, however, are quite different from the
ones attributed to dislocation unpinning and observed
previously ' ' in ordinary solids. We denote by ht
the delay time of the trigger time of the bias wave.
Since the magnitude of the effect should depend criti-
cally on the amplitude of the bias wave, because of
the catastropic nature of the breakaway process, and
since the wave amplitude decays due to the attenua-
tion, the behavior of b,e as a function of 4t for a
given bias stress wave should be as follows: As lit is
increased starting from zero, full magnitude of hn
should be observed during the initial time period cor-
responding approximately to the pulse width of the
bias wave (-30 p,sec) and then decrease rather
sharply. In fact this was the characteristic of b,e ob-
served in ordinary solids. The experiments carried
out to check this effect in solid 'He revealed that,
contrary to the case of ordinary solids, no significant
changes in An were observed for ht from zero up to
at least 50 msec. If the change, 4a, is the conse-
quence of the breakaway process, this finding implies
that once a dislocation breaks away from pinning
points, it stays unpinned long after the bias stress has
decayed out, which is very unlikely. Therefore, we
conclude that the bias stress effect attributable to the
dislocation breakaway process is practically absent in
solid 4He. The absence of the bias stress effect is
thought to be due to a lack of effective pinning
points from which dislocations can break away. The
only impurities which can exist in solid 4He are 'He
atoms. Although we cannot determine the concen-
tration of He atoms in our He crystals, the starting
material has a concentration ' of He not in excess of
1 ppm. Other candidates as the pinning agent (in or-
dinary solids) are vacancies. However, according to a
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study of dislocation pinning processes by Iwasa and
Suzuki this is not the case in solid He. These au-
thors investigated amplitude dependence of attenua-
tion in the temperature range from 0.12 to 1.8 K and
with 10-, 30-, and 50-MHz longitudinal waves. Ac-
cording to their results, amplitude dependence of at-
tenuation occurred in solid He samples which con-
tained a small amount of He atoms as impurities
(-30 ppm). The effect disappeared at temperatures
of -1 K and above. In pure He crystals, on the
other hand, no amplitude dependence was detected at
all temperatures investigated. This finding implies
that vacancies are either very strong or completely
ineffective pinning points. Judging from the trend
found in ordinary solids~ that vacancies are less ef-
fective as pinning points of dislocations than impuri-
ties, it is natural to infer that vacancies in solid He
are not effective pinning agents in the temperature
and frequency range studied here.

Another possible cause of the amplitude depen-
dence is the generation of harmonics by large ampli-
tude oscillations of dislocation segments. 2' Here, it is
assumed that no breakaway from, nor dragging of
pinning points takes place. Pinning of dislocations by
intersecting dislocations, for example, provides such
a pinning situation. We assume that the dislocation
segment is straight at the outset, and the Peierls
stress is negligible. The equation of motion of such
a dislocation segment under the influence of an oscil-
latory stress can be treated by analogy with a vibrat-
ing string. ' The restoring force appearing in the
equation of motion is the line tension of the disloca-
tion arising from the energy difference between the
displaced (bowed out) and the straight dislocation
configurations. Because of the symmetry require-
ment (i.e. , deviations from the straight configuration
should be the same for equal positive and negative
stresses), the first nonlinear term which appears in
the restoring force term is proportional to f"f'
where f'= 8//87t (g is the coordinate on the disloca-
tion segment and ( is the displacement of the seg-
ment; see Fig. 4). Since the displacement of disloca-
tions, (', is proportional to Pt in this approximation,

the dominant harmonic generated from such a non-
linear equation of motion is the third harmonic in-
stead of the second harmonic. As mentioned earlier,
the behavior of the amplitude response of solid 'He
is similar to that of liquid "He, which is found to be
consistent with the second-harmonic generation and
not of the third-harmonic generation. ' Therefore,
the contribution of harmonic generation by disloca-
tions to the observed results can be considered very
small.

Thus the most plausible dislocation mechanisms
for the amplitude dependence of attenuation, the
breakaway process and the dislocation generation of
harmonics, are ruled out as the cause of the observed
results. This does not necessarily mean that disloca-
tions do not contribute to the amplitude independent
attenuation a~. In fact, at least in hcp crystals, the
attenuation of small amplitude waves increased drasti-
cally' when the samples were deformed plastically by
static compressional stresses. This increase has been
attributed to an increase in the dislocation density.

2. Lattice anitarmoni city

The observed results are now discussed in terms of
the second-harmonic generation by lattice anharmon-
icity. The analysis can be carried out in a manner
similar to that of liquid He. The relation corre-
sponding to expression (4) in solids is the expansion
in a Taylor series of strain energy density in terms of
deformation tensor components. The expression for
the general case is very lengthy, and since we do not
distinguish crystal orientations, such a formula is not
useful here. Following Brugger's convention, the
stress-strain relation in the one-dimensional case is
given by

r r r

~=K, +-(K +3K ) +gQ 1 QM

QX QX

where K2 and K3 are taken as "effective" second- and
third-order elastic constants and consist of, respec-
tively, combinations of the second- and third-order
elastic constants. With this definition, the nonlinear
parameter P„~;d becomes

3
Pse~;d =

2
+ K3/2K2

With the known values of po and measured values of
co and u the relative values of P„~;d to P p are cal-
culated. Here, however, the initial amplitude P~o
must be adjusted by a factor determined from the
difference in the acoustic impedance between the
liquid and the solid He. The values thus obtained
from the data of Fig. 2 are

Phcp/Peeper
FIG. 4. Schematic representation of displacement of

dislocation segment which has length L and is pinned at
both ends.

and

Pbee/P su per
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TABLE 1. A list of measured values of attenuation e,
sound velocity co, and corresponding values of P, ['d/P pg,
for four different samples of bcc and hcp solid 4He.

a (Np/cm) co (10 cm/sec) ~solid/~super

bcc

0.3
1.12
0.45
0.39

5.4
5.15
5.26
5.33

2.76
3.04
2.42
2.58

The fitting of the expression (6) with these values is

shown by the solid curve for hcp crystals and by the
dashed curve for bcc crystals, as mentioned earlier in

Fig. 2. As can be seen, the fit is excellent.
If we take for P,„~„the value calculated from the

expression (7), Pt,„and Pb„can be determined.
These values differ somewhat for crystals of different
orientations (i.e., crystals having different sound
velocity). A list of these values for four cases is
shown in Table I ~ It is difficult, however, to extract
from this table a trend which might exist between P
and eo. In all cases, P ~;d is larger than P~;~„;d. As far
as we are aware, no other investigations have been
reported of the nonlinear coefficient in both liquid
and solid phases of the same material. Therefore, no
comparisons with other cases are possible.

From these values of 18 one can estimate the ratio
K3/Kq. It ranges from 8 to 11 for hcp and from 11
to 15 in bcc crystals. It should be mentioned that the
values of P deduced here are absolute values and we
have no way of distinguishing their sign. If P is neg-
ative, then the range for K3/K2 should be read
—11 & K3/K2 & —14 for hcp and —14 & K3/K2 & —18
for bcc 'He, These ratios can be compared with
those in other solids. The values calculated from
various sources are listed in Table II.' It is ap-
parent from the table that the values obtained for
solid He in this study are large but not extraordi-
nary. This means that the nonlinearity of He crys-
tals is of the same order of magnitude as that of ordi-
nary solids. The reason why the former exhibits
much larger nonlinear effects in wave propagation
than the latter is that the sound velocity and the den-
sity are each approximately one order of magnitude
smaller in solid He than in ordinary solids (i.e., the
second-order elastic constants are roughly three or-
ders of magnitude smaller). Therefore, for a given
applied (and experimentally available) stress wave

Ch'a
O

O
La
cd)
I0

O

tD

c5

C)

tV

I

+

+

-l~

+

+

+
CV

+

+

+

+

+
f4

f4
+

-I~

hcp

0.6
0.46
1.2
0.69

5.06
5.03
5.27
5.0

1.93
1.85
2.29
2.36
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amplitude, one order of magnitude larger strains are
induced in solid He even after the adjustment is tak-
en into account for the acoustic impedance mismatch
between transducers and the sample.

As in the case of liquid He in the normal state, an
instability occurs in the solid when the input energy
is increased beyond a certain value. Since streaming
or cavitation cannot be considered in solids, we attri-
bute this effect to local melting of the surface layer of
the sample in contact with the transducer. This was

confirmed by shear-wave experiments where the ef-
fect was found to be greatly enhanced because of the
inability of the liquid (the melt) to support shear-
wave propagation.

IV. COMPARISON WITH OTHER INVESTIGATORS'
RESULTS

A. Liquid 4He

As far as the authors are aware, there are no re-
ports concerning the amplitude dependence of at-
tenuation in liquid 'He. The values of the nonlinear
parameter calculated above are comparable to those
of other liquids. '

B. Solid 4He

Tsuruoka and Hiki' (hereafter indicated by TH)
reported the amplitude dependence of ultrasonic at-
tenuation of 5-MHz longitudinal waves in hcp crys-
tals measured at 1.70 K (molar volume 20.5 cm').
The behavior of the logarithmic decrement
5(=2n caa/co) reported by these authors may be
summarized as follows: (a) At low amplitudes 5
remains constant; (b) at sufficiently large amplitudes,
5 increases rapidly with increasing amplitude; (c)
eventually with further increase of amplitude, 5 lev-

els off (shows a plateau); (d) no hysteresis effect is
observed when the direction of the amplitude change
is reversed; and (e) the amplitude dependence
depends on the crystallographic orientations. The
main difference between their results and ours is in

item (c) above, i.e., the occurrence of saturation in
the attenuation, instead of in the amplitude P~. If
their results are converted into the amplitude
response (PI —PIO) diagram (referring tc Fig. 3), the
characteristic would be a curve represented by
A'B'C'D'. As mentioned before, our data have nev-
er shown such behavior. This means that either the
two groups are investigating different phenomena or
one of the groups' results are incorrect. We present
the following argument.

The method of attenuation measurements used by
TH consists of matching calibrated exponential
curves to the echo train. When the attenuation be-
comes amplitude dependent, however, use of such a

method is no longer justifiable, simply because the
decay of the echo train is not exponential by defini-
tion. Nonetheless, if this approach is still used, at
sufficiently high amplitudes the heights of all the
echoes become insensitive to the amplitude of the in-

put signal, because of the saturation effect, as
demonstrated in the present work. It follows that the
measured attenuation becomes amplitude indepen-
dent. Therefore, the method used by TH to obtain
data is inappropriate for studying highly nonlinear
media and is apt to lead to incorrect conclusions con-
cerning the attenuation mechanism.

The distance x at which the data are taken relative
to the discontinuity distance x I.Eq. (7)] determines
EXDB. Although the frequency cu they used is one-
half that of our experiments and the resulting x is
twice our value, the distance x to the first echo in
their experiment is also approximately twice that of
ours. Therefore, the susceptibility to the saturation
at equal amplitude must at least be comparable in

both cases. The magnitude of the amplitude depen-
dence also depends on the distance x. Since x in

their case is ambiguous (it depends on which echoes
were chosen), it is meaningless to compare the mag-
nitudes.

It should be mentioned also that the mechanism
TH proposed to explain the amplitude dependence,
i.e., the dislocation-jog-dragging mechanism, is not
consistent with our experimental findings, as dis-
cussed below. The jog-dragging mechanism is mean-
ingful only if the jogs in motion experience a larger
Peierls stress than the dislocation segments moving
on the primary slip systems. In hcp crystals the basal
plane is considered to be the primary slip plane, while
the jogs are not in the primary slip system and the
above condition can be fulfilled. In bcc crystals on
the other hand, the primary slip systems usually con-
sist of (111) directions, and at least several different
crystal planes containing those directions. Thus the
jogs can also lie on primary slip systems. If the jog
mechanism is the main cause of the amplitude
dependence, one would expect, therefore, a marked
difference to appear between the P~-P~o relations for
hcp and bcc crystals. As shown in Fig. 2, our experi-
mental findings indicate that this is not the case.

The argument presented above, therefore, suggests
that the jog mechanism TH proposed is not the major
cause of tho. amplitude-dependent attenuation ob-
served in this investigation.

Iwasa and Suzuki's" results, mentioned earlier,
se~m to be consistent with the breakaway mechanism
of dislocations from pinning points ('He atoms), as
these authors postulated. Although comparison with

the present results should not be made, since we

have not investigated the effect of impurities nor of
temperatures below 1.5 K, the absence of the ampli-
tude dependence of attenuation in pure 'He they
found is not necessarily in conflict with the present
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results. The reason for this discrepancy may lie in

the difference in the maximum amplitude used in the
experiments. Unlike in the cases of TH and of the
present study, they used quartz transducers instead of
LiNb03. In fact, their maxmimum amplitude was ap-

proximately one order of magnitude smaller than
ours and too small to observe the lattice anharmoni-

city studied here.

fact that the thermal expansion coefficients of solid
4He are approximately three orders of magnitude
larger than those of ordinary solids at approximately
the same reduced temperature, T/eD, where OD is
the Debye temperature. The thermal expansion coef-
ficient y is related to the Gruneisen parameter yg
through the macroscopic relation

y = yoC„/3E

CONCLUSIONS

The anharmonicities observed by means of
amplitude-dependent propagation of 10-MHz longitu-
dinal waves are of comparable magnitudes in four
phases of 4He, i.e, superfluid, normal fluid, hcp solid,
and bcc solid. The origin of the amplitude depen-
dence is primarily the generation of the second har-

monic due to the intrinsic anharmonicity, and the ex-
perimental results on all four phases can be described

by Eq. (2). Dislocation contributions to the ampli-

tude dependence of the attenuation in the solids
seem to be negligible. The ratios of the third-order
elastic constants to the second-order elastic constants
(K3/K2) in solid He are of the same magnitude as
those of ordinary solids. The fact that solid He exhi-
bits unusually large amplitude dependence as a solid

is due to the smallness of the sound velocity, or,
equivalently, the smallness of the second-order elas-
tic constants.

One final remark should be made. It is often
said that solid He is "very anharmonic. " The no-

tion of "very anharmonic" stems probably from the

where C„ is the specific heat under constant volume,
and E is the bulk modulus. As shown in this study,
the anharmonicity of solid 'He is comparable with

those of ordinary solids. Therefore, what makes y
large is not the Gruneisen parameter yg (which
represents anharmonicity) but the large compressibili-
ty, i.e., the smallness of the bulk modulus E. One
should not confuse a solid of "large anharmonicity"
with a very compressible solid of ordinary anharmon-
icity.
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