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Optical response of metals in a number-conserving relaxation-time approximation
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The electronic transport equations for a periodic solid are presented in a number-conserving relaxation-
time approximation. The inclusion of a phenomenological scattering time and the concurrent imposition of
the equation of continuity is shown to lead to quantum-mechanical interference between the scattering
mechanism and the primary efFects of the periodic crystalline field. In model calculations carried out for the
simple metals, the consequences of this interference are examined in the context of both optical interband
transitions and the damping of the long-wavelength volume plasmons. An interband contribution to the
static conductivity is also found as a direct consequence of the conserving approximation. It can be
expressed as a relatively simple function of both scattering time and oscillator strengths. Local-field eAects
are also discussed within the same model.

I. INTRODUCTION

The shape of absorption curves observed in op-
tical and electron-loss spectroscopy on metals is
physically related to the available electronic decay
channels. In a real crystal such mechanisms are
numerous; they include electron-phonon, electron-
electron, electron-impurity, and electron-defect
scattering, as well as intrinsic interband (IB) tran-
sitions. As a result, both the detailed microscopic
calculation of absorption curve widths and compar-
ison to experiment are difficult. It is for this rea-
son that a description of the effects of the different
mechanisms via a phenomenological scattering or
relaxation time T is attractive. However, the in-
corporation of a scattering time to describe elec-
tronic transport properties in metals must be car-
ried out with some caution. In particular, within
the framework of the random-phase approximation
(RPA), Ehrenreich and Philipp' have introduced the
relaxation time in an ad hoc fashion in order to ac-
count for the shapes of optical absorption curves.
Although their formulation leads to good agreement
with experimental data, it nevertheless violates
number conservation. More recently, Greene
et al. and Mermin have formulated theories in-
corporating the relaxation time in the quantum-
mechanical Liouville equation in a manner specif-
ically designed to overcome this problem. In par- .

ticular, Mermin has succeeded in deriving a
Lindhard-type die1ectric function for the free-elec-
tron gas including a phenomenological relaxation
time. It is the purpose of this paper to extend
Mermin's approach to the case of electrons moving
in the periodic potential of a crystal. In doing so,
expressions for the dependence of the local field
on scattering have also been derived. These allow
us to study the effect on optical absorption and en-
ergy-loss line shapes due to both scattering and
the local field in the simple metals. Finally, we

are able to make a comparison between the present
number-conserving results arid the previous work
in which this consideration has been neglected.

We devote Sec. II of this paper to a reexposition
and generalization of the number-conserving quan-
tum- mechanical relaxation-time approximation.
In Sec. III the number-conserving longitudinal di-
electric function is derived for electrons in a per-
iodic crystal potential and undergoing scattering
processes. An application of the result to the op-
tical conductivity in simple metals finds good
agreement with the previous results of Ashcroft
and Sturm (AS).' Furthermore, it is found that be-
cause of the band broadening resulting from the
introduction of a scattering time, there is a con-
tribution to the dc conductivity from interband
transitions.

In Sec. IV we present a calculation of the contri-
bution of the local field in our relaxation-time ap-
proximation. The derivation follows Wiser's col-
lisionless case procedure. ' Although the contribu-
tion of the local field has been shown to be weak in
nearly-free-electron-like metals, "such a calcu-
lation is useful in that the dependence of the local
field on the relaxation time is clearly displayed,
and we are able to make contact with the approxi-
mations of others. ' An analysis of the local field
contribution in terms of interband transitions and
the resultant effect on line shapes in the simple
metals is shown to be straightforward.

Finally, in Sec. V the number-conserving result
is applied to a derivation of expressions for the
plasmon dispersion and damping in a periodic po-
tential. Recent work by several authors has shown
conclusively that interband transitions are the
dominant processes in the damping of plasmons in
simple metals. ' " Nevertheless, other scattering
mechanisms do contribute to the full width at half
maximum (FWHM) of the energy-loss function. In
the number- conserving relaxation- time approxima-
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tion the contribution of both collisions and inter-
band transitions is handled consistently. By doing
so, we find that the interband and scattering con-
tributions to the FWHM obey an empirical Mat-
thiessen's rule. However, we also find that the
damping, i.e., the imaginary part of the plasmon
frequency, is not simply related to the FWHM but
reflects an interplay between interband transitions
and band broadening due to electronic scattering.
In our model calculations for the simple metals,
we find very good agreement between our calcula-
tions and experimental results for both the long-
wavelength plasma frequency and the FWHM of the
energy-loss function.

The formulas developed in Secs. III-V are gen-
erally valid for electrons moving in a periodic po-
tential. However, all of the numerical calculations
have been carried out for simple metals, i.e.,
metals well described by a weak pseudopotential,
a small core, and a large band gap between the
core and conduction electrons. The pseudopotential
matrix elements used are either from fitted exper-
imental data or derived from the empty-core po-
tential. " Finally, except where otherwise noted,
band calculations were carried out using a two-
plane wave (2-PW) model and a suitable band
effective mass.

II. FORMALISM: THE SINGLE-PARTICLE DENSITY
MATRIX

In order to calculate the electronic response
properties of our system, we start with the single-
particle approximation and assume that the elec-
trons move in a self-consistent (screened) field.
Ehrenreich and Cohen'4 have shown that in the ab-
sence of collisions, the equation of motion for
single-particle density matrix in the presence of
a self-consistent field can be obtained from the
random-phase approximation of many-body theory.

'To describe the system we write the total one-
electron Hamiltonian as:

H= H, +H, (r, p, t),

where H0 describes some unpertrubed system and
has associated eigenfunctions ((u)] which satisfy:

H, iu) = g„iu) .
The self-consistent perturbation H, (r, p, t) is taken
to be the screened external perturbation.

The collisionless single-particle density matrix
for the unperturbed system, p' ), is written

-(.)
e~(ap P0)+ ]

P Iu) =fulu) =
g(g -P ) l Iu)

1

Here g„ the equilibrium chemical potential, is
constant throughout the system.

In the presence of an external perturbation and
any internal interactions as are to be described by
collisions, the total single-particle density matrix
satisfies the Liouville equation

The difficulty now arises in the selection of an

appropriate collision term (sp/Bt) „.We proceed
to make the standard relaxation-time approxima-
tion, "i.e., in a time interval dt the probability
that any electron in the ensemble will suffer a col-
lision is dt/7. Now, it is well known that an in-
cautious introduction of such a collision time into
either the classical Boltzmann equation or the
quantum-mechanical Liouville equation can lead to
a violation of the equation of continuity, and thence
to results which are not number conserving. " For
the case of otherwise free electrons, Mermin' has
observed that the difficulty can be traced to the
need for a correct description of the particles im-
mediately after collisions. Whether we consider
jellium or a system with a periodic potential, sub-
sequent to such collisions the single-particle dens-
ity matrix must represent the fact that the parti-
cles are in a state of local equilibrium. This is of
course the normal procedure in formulating the
semiclassical Boltzmann equation in the relaxa-
tion-time approximation. To carry this out for the
Liouville equation, we follow Mermin and specify
a local equilibrium density matrix of the form

1

loc e~(+ &0 ~P)+ g

It is the introduction here of a local chemical po-
tential, pa+5P(r, t), that supplies the additional
degree of freedom necessary to achieve number
conservation. I We note in passing that Gp(r, f) is
a function of the strength of the scattering as de-
scribed by w; however, we suppress explicit rep-
resentation of this dependence until necessary. ]

Essentially we have now reduced the transport
to two equations in two unknowns; the Liouville
equation of motion and the continuity equation are
coupled through the unknown total density matrix
p and the unknown local chemical potential 5P (r, t)
describing the local equilibrium. We now solve
this pair of equations.

In the relaxation-time approximation, the equa-
tion of motion is

where the occupation of a single-particle state is
given by
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At the level of linear-response theory, we use (5)
to calculate p"', the first-order correction to the
unperturbed equilibrium density matrix g"&. The
single-particle unperturbed and interaction Hamil-
tonians for a particle of charge e are, respective-
ly,

2

Qp p Ap r p) + e4p r t + V

&I
' 53(q, &)

,~ (f.-f.) &~ I
e *"

lu&+ ~ g g @( ~/ ) (gs gu)/@

x Q +~ v ~ ~ Q 0~ Qp, v ~

u 8V
(10)

Trp&'&/e '"' [p A(r, &o)+A(r, u&) ~ p]jkme

A ' p- —Ao + p Ao A

+ e4 (r, t). (6)

On the other hand, to linear order the induced
number density is given by

bn(q, ~)=Trp"&e "'
Here A, (r, t) and 4o(r, t) are the fields present in
the unperturbed system, I(&r) is a general one-body
potential energy which may be a crystal potential,
and A(r, t) and 4 (r, t) are the self-consistent vector
and scalar perturbing potentials. As is normal in
linear-response theory, terms of order A' have
been neglected.

- The analysis which now follows is a generaliza-
tion of Mermin's free-electron procedure. We
suppose that bt&(r, t) is first order in the perturba-
tion P, . Then to linear order the matrix element
of the local equilibrium density matrix is

&ulp...l&&&=f. b + g"
Q V

+ O(bp, ') .
From (5) and (6) we find after linearizing that

Finally, we now impose on bn(q, &u) and bj(q, co) the
connection required by the equation of continuity:

&bn(q, ~) —q b3(q u&) =0. (12)

After combining (12) with (10) and (11) and Fourier
transforming, we arrive at

bn(q, ~)= — Tr(p&0&e *'"[v' A(r, (u)]]
PIC

T r[ p"'A (r, ru) ~ (p —tfq/2) ]@~C

&ulp& &lp)— g„- g„@(~+-i/T)

i)I/~
X Q IIj V — Q Pj ~P

g V

(6)

We have expanded here the total density matrix to
first order, i.e. , p =p"'+ p"'+ 0( P', ).

Recall now that the single-particle current-dens-
ity operator at a point r is j(r, t) =

3 &&(r) +
' "'(r, t),

where

j "'(r) = [pb(r- r)+5(r- r)p]
2n1

A,

A, (r, t)b(r —r)
mc

and

rh

j "'(r, t) =- A(r, t)6(r- r) .
ppl c

Accordingly, to first order the induced current is

bj(r, t) =Trp"'j'"(r)+ Trp"'j"'(r, t) . (9)

If we now Fourier transform (9), the longitudinal
current is found to satisfy

+ "--" Q0, —5p, v ve 'q'
uV 8 rlV

(13)

The results which Mermin presented follow from
an application of (13) to the free-electron gas for
which lu& and I&» are simple plane waves. In the
following sections, we consider the consequences
of (13) for independent electrons moving in a peri-
odic potential.

III. DIELECTRIC RESPONSE FUNCTION FOR A CRYSTAL

The response theory presented in this section
will be restricted to disturbances and responses
with wave vector q contained within the first Bril-
louin zone. We will ignore responses of the elec-
tron system that represent diffractions by the
crystal, i.e., Umklapp processes, of wave vector
q+K for K, a reciprocal-lattice vector. As has
been shown by Ehrenreich, "this simplification is
equivalent to averaging the fields over many lattice
sites befoxe evaluating the response functions. We
normally refer to this as the macroscopic response
of the system. The corrections that result from
evaluating the true microscopic response of the
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system (i.e. , including the higher Fourier compon-
ents) a.re dealt with in Sec. 1V.

We specialize to a Bravais lattice and write Hp

as H, =p'/2m + V(r) H. ere V(r) is the periodic
potential satisfying V(r+R) = V(r) for all lattice
vectors lRJ of the crystal. Correspondingly, the
unperturbed basis set is ( ~u)/ = {~k, I)] with k the

Bloch wave vector and l the band index. 'Thus

(r(kt) = e'k'ug, (r),
I

where 0 is the crystal volume and uk, (r) is the
periodic piece of the Bloch function.

Let us consider the wave-vector and frequency-
dependent longitudinal dielectric function appropri-
ate to the linear response of a crystal to, say, the
field of a charged particle. If C (q, ~) is the self-
consistent potential arising from such a longitudin-
al disturbance, then by definition we have

4)
q 6j(q, ~) = I' q ~ e(q, ar) ~ q- 1]e(q, &u}

= ~5n(q, &}, (14)

where &(q, ~) is the dielectric tensor of the crystal,
q is a unit vector in the q direction, and -e is the
charge on the electron. But it'also follows from
the definition of the dielectric response function of
the crystal that

4m (-e)5n(q, (u)
q' e(q, (u)

and as a consequence, that

e(q, &) = q e(q, ~) q-=a~(q, ~),
i.e., the dielectric response function is identical
to the longitudinal dielectric function. Here we
have assumed, for simplicity, a cubic crystal and
a description with respect to principal axes.

It is well established that in the optical limit
(q-0) the longitudinal and transverse dielectric
functions are equal for cubic crystals. ' In what
follows, collisions are introduced via the relaxa-
tion-time approximation and a tacit assumption
that the scattering is isotropic. We therefore ex-
pect the long-wavelength equality of the transverse
and longitudinal dielectric functions to be pre-
served. Accordingly, for cubic crystals we can
extract both the optical behavior and long-wave-
length plasma oscillations from the response func-
tion lim, ,e(q, &o) =-e(v). To obtain the latter we
will work in the transverse gauge and consider the
response of the crystal to an external charge.

If we identify H, (r, t) = -eC (r, t), then from Eq.
(13)

where

(k, l~k+q, I') = d'r u-„, (r) uk, -, ,(r) .0,
Here 0, is the unit cell volume. We see that the
net effect of including collisions in a number-con-
serving fashion via a local chemical potential has
been the renormalization of the effective field to
which the electrons respond. Rather than respond-
ing to -ee(q, (u) as in the usual self-consistent field
or random-phase approximation, we find that the
electrons respond to -ee(q, u&) —6p, (q, &u).

Adopting a notation similar to that of Mermin's,
we now define a quantity B(q, &u) by

This is related to the RPA polarizability by

4m+(q, (u) =lim V,B(q, (u+iq},
yj ~0

(16)

e((u} = lim e(q, co)
q-+p

&u', ~ 4we' d'k ~' f- ~u,

(20)

In this expression, F"... is the oscillator strength
defined by

where V, =4ne2/q2 is the Fourier transform of the
Coulomb potential. Using (16), Eqs. (10) and (8)
now give

6n(q, &u)

'(-e)e(q, ~)

V, B(q, (u + i /7')

1 —(1 —i&uT) 'II —B(q, &a+i/r)/B(q, 0}] '

(18}

Taking the limit r -~, this expression for e(q, ~)
reduces precisely to the form for the dielectric
response obtained by Ehrenreich and Cohen, '4namely,

e(q, (u} =1+ lim V, B(q, (u+irt).
1) ~P+

In expressions of this kind, lifetime effects have
previously been introduced by interpreting g, the
adiabatic perturbation theory infinitesimal, as a
finite inverse relaxation time (i.e., '&=1/r). (The
priroe on the summation indicates l=/' is ex-
cluded. )

k+ q ~
l' ~kl

x [-ee(q, (u), —6g(q, ~)],

with p =q p the momentum operator in the q di-
.rection and 8 w. .. the energy difference defined by
A+, , = St„.—g». The conduction-band averaged
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("optical" ) mass m, ~is then given by

d'u
3 Z.fX~Fii

PP c BZ l
S

where the subscript BZ on the integral indicates
its restriction to the first Brillouin zone. By $,
and pg, are meant the conduction band and its elec-
tron density, respectively, with m, the electron
mass without band corrections. From this follows
the definition of the optical plasma frequency (o,~,
namely, uP„=4',e /m„. Finally, to complete the
explanation of the notation, we note that for both
optical and long-wavelength plasma frequencies
the core polarization contribution is essentially
real. Hence, to simp'lify matters, we restrict our
sums to the valence band and incorporate the ef-
fects of core polarization in the constant q p

=1
+4'„where np is the total core polarizability.

We now compare (20) with the expression (18)
for e(v) given by the number-conserving approxi-
mation. In a similar notation (18) reads

2
CO pp

&u(e +j/7)

4we'
(1+j/(ur)

d'k
m Bz r

fkl I'l (21)

The extraction of the core polarization and the re-
striction of the sums to the valence bands is still
straightforward. It requires noting that

lim B(j, ( + p /T)/a('q, 0}= 0,
q~p

and arguing that the weak frequency dependence of
the core contribution due to the i/uT term is en-
tirely swamped by the leading Drude term. There-
fore the difference between (20) and (21) is

f4'' I ~' d'I f- F",
m QrT (gi 4F (&a&+f/T)

(22}

20

l6

Re crze

I2

0
0

I

h~ (ev)

FIG. 1. Optical conductivity for Al for both the Ehr-
enreich and Philipp {Ref.1) relaxation-time model {a)
and the number-conserving result {b). Note the non-
vanishing of Rea&B at ~= 0. Here 7'= 0.5&& 10- sec.
The unit of conductivity used in these figures is
e /247taoS= 5.48 & 10~ sec ~=—1636 p, Q cm.

Figs. 1 and 2. The parameters used for Al are
slightly different from those specified in AS. The
first two pseudopotential matrix elements used
were V», =0.243 eV and &2pp 0 764 eV as in Ref.
4; however, to be consistent with the last section
of the present paper V», =1.37 eV (i.e. , the K»0
IB transition) has been included. Furthermore, in
order to be consistent with both band calculations
and experimental data, a band effective mass m*
=1.025 has been used. This value of m* provides
a good fit to the bottom of the band as determined
both by numerical band calculations and by analy-

We now examine whether this correction can re-
sult in observable effects. As a conveni. ent model
system we consider the interband (IB) optical con-
ductivity of aluminum. As discussed in detail in
AS, the IB optical conductivity is the sum of paral-
lel band (PB) absorption with its distinctive edge
shape, and a broader Wilson-Butcher "normal"
IB contribution. In AS, a relatively simple closed-
form expression for g~(&o} was obtained using (20)
and second-order pseudopotential perturbation
theory. Within the same approximations it re-
quires little additional effort to obtain o~(&o) from

/

the number-conserving expression (21) and the re-
lation e(v) = I +i 4wo(&o)/&o. The two results for
&y,s(&u) thus obtained are plotted for Al and Na in

Re cr

0.""
0

h~ (ev)

FIG. 2. Same as in Fig. 1 but for Na with &= 1.0
&&10 ~ sec.

IO
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sis of experimental data. ""
The optical mass used in our calculations was

computed including the lowest three IB contribu-
tions to the conductivity, i.e., the direct transi-
tions corresponding to the reciprocal lattice vec-
tors K»„K,«, and K», . This makes our conduc-
tivity consistent with the sum rule

TABLE I. Optical mass as a function of the number of
IB transitions included. Results for A1 and Na.

Al
IB transitions

included m rm,

Na
IB transitions

included m~/m,

{111}
{200}
{220}
{311}
{222}
{400}

1.11
1.57
1.61
1.64
1.65
1.65

110}
200}
211}
220}

1.02
1.02
1.03
1.03

deRea(&o) = +&/8 ( ~& =4wn, e'/m, ) .
p

However, it should be noted that the inclusion of
additional IB transitions will result in an increase
in m, p. Using the empty-core model for the higher
pseudopotential matrix elements, Table I indicates
the variation of m, p as a function of the number of
IB transitions included. Of course any experi-
mentally determined m, p must reflect the inclusion
of all IB transitions. Nevertheless, since the
higher Fourier components of the potential are not
accurately known, we have chosen to restrict our
calculations to the first three sets of reciprocal-
lattice vectors, and we use m p 1 61m, .

Upon examination of Figs. 1 and 2 it becomes ap-
parent that except for low frequencies, the correc-
tions introduced by enforcing number conservation
are relatively minor for the simple metals. Any
experimental optical data that one result purports
to fit, the other will also.

The interesting consequence of (21) as applied
to Rea»(ru) is the realization that there are IB con-
tributions to the static conductivity i.e. , as can be
seen in Figs. 1 and 2,

lim Rea»(v) g0 .
Q) ~P

Generally it follows from (21) that

e'
Rea, (m=0) = (azT)

ka() k~

fTg &)~&

sz4w' I+((u. .. )'T'

where q, is the Bohr radius and g„and k~ are the
Fermi velocity and wave vector, respectively. In

our relaxation-time approximation approach there
is no explicit mechanism for the conversion of IB
transitions into Drude-type absorption. However,
it must be recognized that the relaxation time
represents a description of scattering processes,
and hence the strength of the scattering potentials
in the metal. As a consequence, the one-electron
levels are implicitly both shifted and broadened by
the inclusion inthe number conserving argument of
a local chemical potential which as noted is a func-
tion of 7'. The nonvanishing of Rea (a=0) is thus
a manifestation of the overlapping of the broadened
levels. There is a resulting mobility between the
corresponding bands that persists to zero fre-
quency. It is of course clear that no such IB con-
tributions to Rea»(&u) can arise from an heuristic
introduction of a scattering time by setting q =1/7'
as in Eq. (20). This follows immediately from the
role that the infinitesimal plays in adiabatic per-
turbation theory: it is the infinitely slow rate by
which the external perturbation is introduced to
the system so as to ensure that there are no shifts
in the energy levels. In contrast, in the relaxa-
tion-time theory developed here, the scattering
time v is an intrinsic property of the system, and

it is the number conservation requirement that im-
plies a local chemical potential which can shift the
single-particle energies. T hus the introduction, of
dg(r, f, r) via a conserving approximation is neces-
sary to effect a shift of the. energy levels.

Such contributions at small ~ from interband
processes have in fact been discussed by others.
In particular, Nettel" and Stevenson" have ob-
served that optical absorption aided by 1-phonon
processes can lead to indirect interband transi-
tions. As in our case, the resultant interband ab-
sorption then begins well below the onset of the
usual (direct) IB processes. Quite recently,
Chakraborty and Allen have arrived independently
at the conclusion that in the presence of an elec-
tronic scattering mechanism (such as disorder),
IB transitions do indeed contribute to the dc con-
ductivity 2~ While their approach via semiclassical
transport theory '24 includes higher-order contri-
butions neglected in our relaxation-time approach,
nevertheless, their resultant formalism does not
readily lend itself to the straightforward numerical
evaluation that our phenomenological relaxation-
time equation permits.

We arrive, however, at a conclusion similar to
that of Chakraborty and Allen as to the existence
of a "saturation" conductivity. In Fig. 3 a plot of
Rea» (0) is provided for Al as a function of the
logarithm of the scattering time 7. As might be
expected, both the limits lim, „Rea»(0) and

lim, ,Rea»(0) are found to vanish. However, the
taking of the latter limit is both unwarranted and
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are sufficiently strong, then sum-rule considera-
tions imply a reduction in OD,„d,. The result would
be a significant portion of the dc conductivity aris-
ing from Rea~(0). We are presently examining the
consequences of this possibility.

IV. CONTRIBUTION OF THE LOCAL FIELD

-IS -17 -16 -l5
Tc

-l4
log T

FIG. 3. Plot of Kq. (23) as applied to Al. As discussed
in the text an approximate cutoff relaxation time is indi-
cated. (Vertical dashed line. ) The relaxation-time ap-
proximation is meaningful for scattering times larger
than this cutoff.

unphysical, since clearly our model cannot be
meaningful when v~T, the mean path length at the
Fermi surface, is on the order of a lattice spacing.
When this occurs, multiple scattering events make
a more rigorous approach necessary. It is for this
reason that a rough cutoff scattering time v, is in-
dicated in Fig. 3. The choice of v, =1.0&10 " sec
corresponds in Al to a mean free path vz& at the
Fermi surface of about five lattice spacings. For
shorter scattering times the relaxation-time ap-
proximation becomes quite dubious.

The conductivity at this cutoff corresponds to the
notion of saturation of Chakraborty and Allen. If,
in fact, very strong electronic localization does not
occur as the disorder increases, but a Qoltzmann
or Liouville single scattering transport equation
does indeed remain valid; then the IB contributions
result in a minimum in the dc conductivity, or a
maximum (saturation} in the resistivity.

The contribution of Reo,s(0} in the simple metals
is very small. Experimentally, the relaxation-
time range in Al is observed to be about 0.2-0.5
&10 ' sec for temperatures between 1S8 and
552'K.2' But for T =0.5&10 '4 sec, Rea,s((u)
=1.9e2/24skao, whereas an, „~,=400e'/24vha; i.e. ,
the IB contribution is only 0.5% of the total dc con-
ductivity. Even at our imposed relaxation-time
cutoff of 1.0&10 " sec, Ream(0)/an, „d, is only 0.15.
It follows that the IB contribution to the dc conduc-
tivity is experimentally undetectable or inseparable
from the Drude term in the simple metals. Never-
theless, systems in which Res~(0) is non-negligi-
ble are imaginable, and as Chakraborty and Allen
have pointed out, if the oscillator strengths in (21)

In Sec. III we derived the dielectric response of
a crystal by working entirely with macroscopic
quantities. Macroscopic quantities, in the present
context, are those whose spatial variations are
small on the scale of a unit cell. Equivalently, we
may describe them as quantities whose largest
significant Fourier component lies in the first
Brillouin zone.

Not all of the quantities involved in obtaining the
solution for e(q, e) are macroscopic in this sense.
As an example, even though the external electro-
magnetic field is slowly varying, the response to
it of the charge in the immediate vicinity of an ion
core or a surface can be very rapid. This local
response will involve Fourier components outside
the first Brillouin zone. We can then expect simi-
lar behavior of the self-consistent field within the
crystal. In particular, the bulk response of a
crystal to an external field E'"'(q, &u) will, on the
microscopic level, involve Bragg-diffracted Fou-
rier components such as E '(q+K, &u), where K is
a reciprocal-lattice vector.

To average these quantities before calculating
e(q, &o), as is done in Sec. III, is not strictly the
proper procedure, though it is often a plausible
approximation. It would seem easiest, of course,
to deal directly with the macroscopic external per-
trubation in calculating the response of the system.
Ehrenreich" has outlined the general method for
achieving this aim, but his prescription cannot be
followed in the single-particle self-consistent field
approach. 'The correct averaging procedure to cal-
culate the macroscopic e(q, cu} within the context of
the self-consistent HPA has been developed by
Adler, ' Wiser, ' and again later by Ehrenreich. '
Both Adler and Wiser have argued that the local-
field corrections to e(q, a) stemming from a proper
averaging are small in simple metals. (Once
again, by simple metal, we mean one with a near-
ly-free-electron band structure and a tightly bound
core).

More recent calculations suggest that local-fieM
effects are of importance in explaining optical data
in covalently bonded solids, as well as plas-
mon line shapes in metals and semiconductors. '
With this in mind, we present here an analysis of
the local-field contribution to the optical proper-
ties of aluminum in the long-wavelength limit car-
ried out within the number-conserving approxima-
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tion. As predicted, the correction will be small;
nevertheless, features of the local-field correc-
tions that one might expect to be generalizable to
other systems will be found.

We first provide the general relaxation-time re-
sult for the macroscopically averaged dielectric
function. Though adapted to Mermin's conserving
approximation, the procedure followed is equival-
ent to that used by Wiser. The result presented

here is analogous to Wiser's Eq. (34):

»(q, &) = [(» '), , ] '

(»)K go

=»o o(q~ ro)+ Z»OK (-)o o ~

K~o
(24)

Here superscripts denote the indicated cofactor.
The matrix elements of the dielectric matrix
»KK(q, &o} are defined by

i 4'�' 1
X' BK» (jor),

where
1 g„K(q, (rr) 4we'

&KK(q ol) =1+
1

- 0}
—1 +

&2 &KK(q err} ~

2

»KK «ol)=frKK + - -, pa+ 1
. [B(q, &+i/~)B '(q, o}-1]]gg&og (q, ro+i/l ). (25)

(q+K)2 0
7

In turn, the matrix elements of B(q, ro) are given by

B—,(q rd}= —g "+'!' "r -(f&~e '"' ~f+qf')(f+q$'[er ' (kP).KK' I g hro (g g )Q)gw k+gl ]fl

In this notation, the dielectric function of Sec. III is written», ,(q, &o). (Note: I/w here is the relaxation
rate, not the more conventional infinitesimal quantity. }

As in Sec. III, we now specialize to the case of a simple metal, or more generally, to a solid described
by a weak pseudopotential. Using (24), »(&o)=»(q-0, &u) is expressible to second order in the pseudopoten-
tial matrix elements VK. Again, the result is not dissimilar from Wiser's. The total macroscopically
averaged optical response function appears as

4 2

» (or) = lim 1+, (1+i/(oT)~o o(q, (u+ i/v )
q~o

4we' g BK;(q, or+i/~)B; (Kq, &@+i/7) 4we'
(26)

O'
K~o AKK(qy ~+2/T) [ E

In the nearly-free-electron approximation the local-field (LF) contribution for a cubic crystal can be re-
expressed as

(2wa, E)2 . +(ur
3- 2o 1+ [ar--(rd+i/r)/b"- 1]+- "-(rtr+i/r )] '~T KK KK

0

(27)

J d'k
4w' " (1+ 2)'~2 (herr)2 —4V'(I+x'} '

dr-„-„(~)= -2w(a, X), VK-
4we'

(28)

dok (1+x2)'~2

4w' I" (8'ro)' —4Vw(1+ x') '

4~e' 1 d'a
bKK 2 (ao&) If2 y 4 3 frr (1 + 2)l/2

where

The reduced matrix elements here are defined by

g3 4~e2 2

err;K(or) =
2
—,(a, K) '

x= (1 —2f K/Ifw).

Note that the integrals and occupation factors are
extended over all k space. As in the paper by
Ashcroft and Sturm, a 2-PW. approximation has
been made. The integrals can be evaluated in a
straightforward fashion following their procedure.
Some care must be taken, however, in the selec-
tion of integral limits in order to distinguish the
parallel band contribution from the Wilson-Butcher
contribution. These limits are functions of both
the reciprocal-lattice vector K under considera-
tion, and the Fermi energy. Closed-form expres-
sions for these reduced matrix elements are pro-
vided in the Appendix.

In Figs. 4 and 5 we display the LF contribution
to the optical conductivity, Beo~„(&o), in Al and Na
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the LF contribution.
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FIG. 8. Plot of a 1-PW calculation of the local field in
Al. The structure is now similar to that of Fig. 5 for
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sec). Here m*=1.0 for comparison with the work of
others (m*= 1.025 leads to no significant change).

ies as a correction to the IB absorption between
-7% and 14/&. Finally, we note from Figs. 4 and 5

that as the scattering rate is increased the LF re-
sponse is broadened with a decrease of the IB
edges.

As would be expected, for higher energies the
inclusion of correspondingly higher IB transitions
is necessary in order to calculate the correct LF
contribution. Figure 7 confirms this in plots of the
ratio of the LF correction to normal IB absorption.
in the range 0~km&~ 7gz, curve 7(a) includes K»,
and K,«, curve 7(b) includes K»o as well.

Finally, in Fig. 8 the results of a 1-PW LF cal-
culation are plotted in order to make comparison
with our 2-PW result for Al. Agreement in the
visible optical range is not to be expected, and the
differences are both significant and predictable.
'The 1-PW minima correspond to Butcher-Wilson
IB absorption maxima just as in the 2-PW model
the minima corresponded to PB absorption onset.
Furthermore, the 2-PW model gives an LF con-
tribution to Heo three times as large as the 1-
PW result in the range 10 ~has & 20 eV. The nar-
row PB absorption, as opposed to the broad But-
cher-Wilson absorption, spreads the LF contribu-
tion over a larger energy range. For the same
sum-rule considerations as in the optical case, we
can expect difficulties in approximating the LF
contribution to the energy-loss- function Im[-I/
e(q, &u)] with a I-PW model even at h&u~. These
differences between a 1-PW and 2-PW calculation
should be borne in mind when considering Sturm' s
1-PW LF corrections to plasmon line widths' and
his demonstration of the "equivalence" of the LF
and dynamic screening. In particular, such
equivalence does not hold for polyvalent metals in
the optical region where it is crucial to include the

It has been demonstrated by a number of
authors' "'"that the dominant plasmon decay
channel in metals is interband (IB) transitions. In
particular, the series of papers by Sturm demon-
strates that a 1-PW model for a nearly free elec-
tron moving in a weak pseudopotential is sufficient
for a good quantitative understanding of the effect
of IB transitions on the plasma frequency and
damping in simple metals. Prior to the realization
of the importance of the periodic nature of the
crystal potential in determining the behavior of
electronic plasma, attempts were made to fit elec-
tron-loss experimental data with various dielectric
functions" " for the homogeneous electron gas.
These approaches attempted to fit the observed line
widths with overly large scattering times —scatter-
ing times that subsumed the then unrecognized
damping due to IB transitions. As a result, con-
sistent agreement with experimental results was
not found. While it is true that the primary contri-
bution to plasmon decay is IB transitions, the cal-
culated full width at half maxima due to IB damping
alone in the simple metals are about 0.1 eV smal-
ler than the accepted experimental values. In the
number-conserving relaxation- time approximation
the additional broadening is successfully accounted
for phenomenologically by the inclusion of a scat-
tering time.

The importance of IB transitions can be readily
understood. As an example, consider the decay of
the long wavelength (q=0) 15.0 eV plasmon in Al.
In a translationally invariant electron gas the sim-
ultaneous requirements of energy and momentum
conservation prevent its possible decay into an
electron-hole pair. By contrast, in a periodic
system it is crystal momentum that must be con-
served. For example, in an extended zone
scheme, the energy necessary to create a hole
near the Fermi surface by the IB transition k~
-kz-K»0 is go z —g» =14.88 eV. (Here g~~

=82k/2m. ) Such a transition is thus a means of
decay for the @=0 plasmon. In aluminum IB tran-
sitions for all reciprocal-lattice vectors less than
or equal to K22p contribute to such decay; larger
ones do not. As a consequence of IB decay,
Imc(q, &u) and hence the plasmon damping are non-
vanishing even in the collisionless regime. " How-
ever, as indicated above, IB transitions do not ac-
count for all the plasmon decay channels in a
solid. Though of lesser strength, other electron
scattering mechanisms do exist. In the relaxation
time approximation this further degradation is
parametrized by the scattering time T.
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TABLE II. Plasmon energy, damping, and FWHM for Al as a function of scattering time.
Here m = 1.025m„m, ~

= 1.61m„&g= 1.04, Vugg
= 0.243 eV, V200 ——0.764 eV, and V220 ——1.370

eV. The value of the plasmon energy cited, 5 &(0), is that for which the energy-loss function
has its maximum value at q =0.

& (sec)

0.5 x 10-"
1.0 x 10-"
p.5 x 10-"
1.0 x 10 |4
0.9 x ]p-&4

0.7 xlp &4

0.5 x 10-&4

0.3 x 10 &4

1.0 x 10-"

S~~(0) (ev) '
15.12
15.12
15.12
15.12
15.12
15.12
15.13
15.13
15.14

FWHM(~) (ev) '

0.39
0.40
0.40
p. 46
0.46
0.48
0.52
0.61,
1.06

2y, (~) (eV) '

0.346
0.356
0.369
0.472
0.487
0.528
0.602
0.775
1.65

2I'(&) (eV) '

0.345
0.350
0.357
0.410
0.418
0.439
0.478
0.567
1.02

Plasmon energy is calculated by maximizing the energy-loss function including the local
field.

"The FWHM including the local field from Eq. (29). Verification of Matthiessen's law is
immediate.' The damping calculated by Eq. (40); the local field is not included.

The FWHM as calculated from Eq. (29); to make comparison with y&(&) the local field is
excluded here.

Im&(q, (u)
I'=,

Re& q, cu

(29)

It is readily shown' that so long as Re&(v~) =0 and
Ime(&u ) is slowly varying, Eq. (28) is always the
expression for the FWHM irrespective of the de-
rivation of e(q, ~). As a result, although we will
find that the number conserving RPA with colli-
sions developed here gives a different expression
for the damping, the full width at half maximum as
a function of scattering time will continue to be
given by FWHM(r) =2I'(T). We will continue to de-

Within the framework of the collisionless RPA,
the line shape of the electron energy-loss function
Im[-1/c(q, &u)] is expected to be Lorentzian. As a
result, the FWHM is twice the damping I'—the
imaginary part of the plasmon frequency. Both are
given by"

fine I (r} by (29), but it is no longer the imaginary
part of the plasmon frequency. Furthermore, we
are led to an approximate Matthiessen's rule be-
tween the inverse scattering time I/r and the col-
lisionless damping which arises from IB transi-
tions alone. Thus, direct calculations of the
FWHM(v) for Al and Na shown in Tables II and III
as a function of v. justify writing:

FWHM(1 ) = I/T + F'WHM(T = 00) .
We now proceed to derive the plasmon dispersion

relationship in the number- conserving relaxation-
time approximation. The procedure is that used by
others in describing classical plasma oscillations
and exploits the similarity between the quantum-
mechanical Liouville equation and the Boltzmann
equation. ' ' We regard the plasmon as a self-
sustaining charge distribution -e6n(r, t). The cor-
responding potential C (r, t) satisfies Poisson's

TABLE III. Plasmon energy, damping, and FWHM for Na as a function of scattering time.
Here m*= 1.00m~, m»= 1.02m~, and V&&0= 0.26 eV. Superscripts a-d have the same meaning
as in Table II.

& (sec)

0.5 x 10 i2

1.0 x lp-"
0.5 x 10-|3
1.0 x 10-'4
0.9 x 10-'4
0.7
0.5
0.3
0.1

hen&(0) (eV) a

5.86
5.86
5.86
5.86
5.86
5.86
5.86
5.85
5.84

FWHM(7) (eV)"

0.107
0.112
0.119
0.172
0.179
0.200
0.237
0.325
0.774

gyp(&) (eV) '

0.112
0.123
0.136
0.238
0.253
0.293
0.367
0.541
1.471

2I'(y) (eV) d

P.ill
0.116
0.123
0.175
0.182
0.203
0.241
0.328
0.774
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equation:

v'C (r, /) = 4we5n(r, /) .
5n(q, K, v) = —QB~o(q, 0)[H, (q, G, &d) —6p, (q, G, &d)],

(31)
In the notation of the previous sections, the inter-
action energy is

2

H, (q, K, (d) = -e 4 (q, K, a&) = ~, 5n(q, K, &u) .

(30)

Furthermore, it is not hard to show that

where by definition

5n(q, K, (u) =T rp&" e '& "K& ' '

= g (k+ql'l p"'lk/) &/-„,
her'

&/~
= «/I e """"lk+ ql') .

Combining Eqs. (30), (31), and (32) we find

(32)

0

() +~('I) "I) (&= ~ .. ."'g "'
g

() +~('I)& la&-
g g () +t))'Ik-)'i)) (&)

k+()& k& k+qi' k&

—( fk )&&
—fk() 1 ~ 4we 4 zVl/T

g( / ) (g g ) O ~
(q K) &)K g g ~ GK(q, )&/.

*
K k+q / kt

(33)

where the additional relationships

4 2

(k+q/'(H, lk/) = —g, 5n(q, K, &u)&/K (35}
q+ K)'

have been used.
Now returning to (33) and summing both sides of

the equation over k, l, and l', we arrive at

fk.a& fk(-
h(&d+i/7) —(8;~,.—8-k, )

4we' * i5/&

«+K)' " '
K

« p))-,-„(,, 0)„-„;).
G

(36)

This is the number-conserving relaxation-time
approximation plasmon dispersion relationship.
The result becomes more manageable if we neg-
lect the contribution of the local field. In this case
(36 ) bee ome s

v , g (f-„„-,~ —f-„,)[(k+q/'lk/)l'
f/ -„, a((u+i/T) —(8k;„.—Sk, )

(37)

[where a(q, 0) is the RPA polarizability]. Finally,

(k+q/'lH, —5p, lkl) =—Q [H, (q, G, a&)

G

—5p(q G, ~)]nE

' g gB=-'(q, 0)
Q GK

G K

x5n(q, K, ~)&/~o (34)

in the (/-0 limit Eq. (36) can be written as

1 = —V, B(q, a&+i/T) . (38)

Furthermore, in the collisionless limit (T-~) we
recover the standard RPA result for the plasmon
dispersion:

1 = —4w&w(q, a&) . (39)

Contact between this collisionless relation (39) and

the dispersion relationship (38) can also be made
in the 7 -~ limit via the identity (17}. That there
is a difference in the dispersion relations with and

without collisions is not surprising. It is some-
what analogous to the difference between the nor-
mal mode and ringing frequencies of a damped
harmonic oscillator: In the absence of collisions
the plasmon normal mode frequency is determined
by the RPA condition (39}, whereas if frictional
forces are included the system rings at a shifted
frequency. Moreover, in our case there is a fac-
tor in competition with the "frictional" damping in
determining the plasma frequency: The broadening
of the energy levels makes possible a larger
Drude-type contribution acceleration of the elec-
trons. This might tend to shift the resonance fre-
quency to higher energy as opposed to a downward
shift due to damping. For the purposes of this
analysis we have taken the maximum of the energy-
loss function to be the plasmon energy. Its values
prove to be only a weak function of the scattering
time a's shown in Tables 11 and III. Use of Eq. (37)
results in no significant numerical difference for
the plasmon energy from the values cited in Tables
0 and III.

As mentioned above, there is also a correspond-
ing change in the result for plasmon lifetime or
damping. In the case of simple metals and in the
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hundredth of an eV. However, for Al the differ-
ence between &,=1.0 and 1.04 results in a shift of
0.3 eV. Similarly, the use of a larger value for
sl p which might reflect additional IB contributions
(see Sec. HI above) can also alter &u~(0). Thus m, ~
=1.64m, gives (d (0) =15.05 eV. Finally, a shift in
m* from 1.025 to 1.05 reduces ~~(0) by 0.1 eV.

In summary, a direct inclusion of a relaxation
time in a number-conserving manner has allowed
us to justify the older theory of Ehrenreich and

Phillipp with only slight modifications. An inter-
esting result of the present method is the appear-
ance of an IB contribution to the dc conductivity.
In addition, the number conserving procedure has
allowed us to examine the effect of scattering on

both the local field and on energy-loss line shapes

in simple metals. We have found good agreement
between theory and experiment in our calculations
of the plasma frequency and FWHM's. Finally,
for those systems which are well described by a
weak pseudopotential, we find that the plasmon
line shape is dominated mainly by IB transitions
and the choice of a scattering time, the local field
having relatively slight effect.
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APPENDIX

We provide here explicit formulas for e(&u) of Sec. III and the integrals in E(I. (28). The general method for
setting up theproblem of direct IBtransitions in a, 2-PW model for the case where parallel bands (PB) exist
has been sketched in AS. We follow the same procedure here in dividing Fourier reciprocal space into re-
gions which can undergo a direct IB transition and those portions of the Fermi sea which are forbidden on

IB transition through a reciprocal-lattice vector K by the Pauli principle.
Writing ops(&u) for the PB conductivity and o,s(&u) for "normal" IB conductivity (i.e. , of the Butcher-Wil-

son form) we find

a„(()=g a.(a,K)n„"{-2tan ' (x' —I )'~' ~;o+ [f (a», x) +f(-a», x) ] ~;o]

x g(S, [I', i
—,'8'), , =g(( +./T)/2i&„i

a (&) = g a n, » z, (z' —I)'&' —z (z' —I)')" + (z —z )[tan '(z' —I)'&' —«an '(z' —I'))(']
' a(ax) V

[(z, —a )(z, +a )f(a, x)(;„—(z, —a )(z, +a )f( a, x)(;]), -

2

e(&) =1 —
(

".
/ )

+ [o (v)+a,s(&o)] .

Here 8» is the Fermi energy, g» ——0'&'/2m, g, =e'/24»ha, the prime on the sums indicates K =0 to be ex-
cluded, and the limits ~;& or ~;o indicate that the complex functions

-(I+ax) + [(a' -1)(x' - I)]'~'
f (a, x) = —,, „f, ln

~a —1) 0+ X

-()- ax)+ (( *-()(x'-()1"*)f(-a, x) = — »f, ln
(

2 1)1/2 x-a
are to be considered indefinite integrals of ~ to be evaluated between the K-dependent limits. 'These limits
are given by

2(S 8, +V')'~'- S

and

8, +2(8 8 +V')"

Furthermore, the factor n~ denotes the number of equivalent lattice vectors of length K. Finally we rec-
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ognize the Heaviside function

e(x) = 1 if @~0

0 if g«0

as indicating when the PB structure contributes.
In the same notation the integrals of Eq. (28) are

$0K =-2[f(aK, x)+f(-aK, x)]l'0 e(eF ——,'eK —
I vKI)+ " [f(aK, x) f(-a K-, x)] I,'

—[f(a-„,x)+f( a-, xi[I-+ n»)a ',', »
—(a» —))[f(a», x) —f( -„,x)II-,')

[2(z', —I)'/'+ aK[f(aK, x)+f(-aK, x)] I10]'(&F—4 eK —
I ~K I)

K

4SF —S-K z, +(z', —1)'" a-,
+ 4@»,', (, l I).,-. —-2' [f(aK x)-f(-aK x)]I.',

+ "' (zl- I)'"- (zo- »'"+ 2" I[f(aK x)+f(-aK x)) I

K 0

2 Z/2

z, (z, —1)'/' —z, (z', —1)'/'+2a ln ','
»2 —aK(aK —1)[f(a-„,x)-f(—aK, x)] I

and

Ki(z2 1)1/2p(g 1g y)+ F K ln 1 1 + I Kl[(z2 1)1/2 (z2 1)I/2]2 I y- I 48 - 8- z +(z'-I)" Iv-
KK g 0

K
F K K 4g K 0 0+(2 1)1/2 g. 1 0

K

1 1/2
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