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Theory of the upper critical field in anisotropic superconductors
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The upper critical field in superconductors is calculated using a model which incorporates an-

isotropy in both the Fermi surface and the superconducting pair state. The effects of nonlocality

are included to all orders in perturbation theory, giving results valid over nearly the entire tem-

perature range. It is shown that increasing Fermi-surface anisotropy causes H, 2 to become

more nearly linear in temperature, whereas even small amounts of pair-state anisotropy cause

positive curvature in H, 2(T) near T,o. All effects of anisotropy are diminished by increasing

the impurity scattering rate. The theory is fit to experimental data on NbSe2.

I. INTRODUCTION

The upper critical fields of materials with anisotro-
pic Fermi surfaces have been the subject of many re-
cent experimental investigations. ' ' In some of the
anisotropic materials the H, 2( T) curve displays posi-
tive curvature near T,o and retains anomolously high
values as T approaches zero. Recent experimental
work by Orlando et al. ,

' for example, shows upward
curvature in the critical-field curve of the A-15 ma-

terial Nb3Sn, and perpendicular field measurements
made by Dalrymple and Prober and others' on the
hexagonally distorted material NbSe2 show H, q

exceeding the predicted value for spherically sym-

metric materials by —20'/0 in the low-temperature re-

gime. Similar effects are seen in other' anisotropic
materials.

Theoretical models describing these features should
include nonlocality of the superconducting pair state
as well as anisotropy in both the Fermi surface and
the pair state. Several years ago Helfand and Wertha-
mer showed how to treat nonlocality in isotropic ma-

terials exactly. A short time later, Hohenberg and
Werthamer did a quasilocal calculation demonstrat-
ing that Fermi-surface anisotropy can cause upward
curvature in H, t(T) near T,o. Takanaka and
Nagashimato (TN) extended the work of Hohenberg
and Werthamer by retaining higher-order terms in

the nonlocality and by perturbatively introducing gap
anisotropy. The applicability of their (TN) work is

limited to the immediate vicinity of T,o. Teichler, "
using a different formalism, found expressions for
the first few terms in a cubic harmonic series expan-
sion of the contributions to H, 2( T) from anisotropy
in the Fermi velocity and the electron-electron cou-
pling. He obtained results for all temperatures, but
predicted that H, 2( T) could deviate either above or
below the Helfand and Werthamer' curve depending
on the phases of the anisotropies of the Fermi veloci-

ty and the e-e coupling. (No anisotropy-induced
reduction of the Helfand-Werthamer curve has ever
been seen experimentally. )

In this paper we extend the Hohenberg-Wert-
hamer~ theory of the upper critical field by summing
to infinite order the effects of nonlocality, and by
perturbatively including Fermi surface and pair-state
anisotropy. We will restrict our consideration to
fields applied along crystal symmetry axes, and will

concern ourselves primarily with clean materials since
it is in them that the effects of anisotropy are most
pronounced.

In Sec. II we formulate the theory. In Sec. III we
describe the theory appropriate for materials with

general Fermi-surface anisotropy but unperturbed
pair states. In Sec. IV we allow both the Fermi sur-
face and the pair state to be anisotropic and fit exper-
imental upper critical field data on NbSe2 in the per-
pendicular field direction.

II. DESCRIPTION OF THE THEORY

The foundations for our theory are described by
Hohenberg and Werthamer and references therein.
The assumptions made were that the transition to the
superconducting state is second order (only terms
linear in the gap in the Gor'kov equation are re-
tained), the electron-electron coupling is isotropic
and weak, the electron scattering centers are random-
ly located and nonmagnetic, and the effect of the
magnetic field on the orbital motion of the electrons
may be treated in the semiclassical approximation. "
The Fermi surface may contain only one band.
Although Hohenberg and Werthamer considered only
the case for which the Fermi-surface anisotropy was
small and the pair state was isotropic, the formalism
they developed is sufficiently general as to allo~ arbi-
trary shapes for both the Fermi surface and the pair
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state. We begin with Eqs. (5) and (11) from Ref. 9,
the solution of which gives H, 2( T):

1 =gN(0) T X (S ' —1/2r) '

where

'2n

S„= AN(q) (—1)n S S . 2)
l cdl p, 2cu

In Eqs. (1) and (2) g, N(0), I/r(=—n
l
u l'), N(q),

and v are, respectively, the BCS coupling constant,
the average density of states at the Fermi surface, the
electron scattering rate (or the product of the impuri-

ty concentration and the square of the impurity
scattering amplitude), the density of states at the Fer-
mi surface in direction q, and the Fermi velocity.
Furthermore, rr = —i 0 —2eA is the gauge-invariant
momentum operator acting on the pair state lS)
(described more fully later), and fp = a&„+sgn
&& (co„/2r) is the Matsubara frequency renormalized
by impurities. As usual, v is the impurity scattering
time, cv„=(2v+1)wT (v=integer), e = lel, and A

is the magnetic vector potential. We remark that S„
is the nonlocal pair propagator in the ladder approxi-
mation for the scattering, and Eq. (1) includes the
usual vertex renormalization. Anticipating isomor-
phisrn with the harmonic-oscillator problem, ' we
choose H - (0.0, —H ), and A - (0, —Hx, 0) where
the z axis may be any one of the three crystal axes.
Units have been chosen such that A = k~ = c = 1.

By inserting I/l2v+I l
—I/l2v+1l in the v sum in

Eq. (2) and introducing the Debye frequency cutoff
in the first of these sums in the usual manner, Eq.
(I) becomes

(Ol(v w)'lO) =v+v p—= vkH„,
[v+= —'(v. +iv, )] .

(4)

Furthermore,

(ol(-' w)'"+'lo) =(2n +1)v+v p(ol(-' w )'"lo)

(5)
so by induction

(0l(v rr)'"l0) =(v~v )"p"(2n —I)!!
= ( vIeH„) "(2n —I )!!

(6a)

(6b)

The sum in Eq. (2) then becomes
'2n

X ( —I)" 0 " 0 1+ X ( —1)"a"(2n —1)!!
n~0 2' n 1

(7)

state lS) to be the lowest eigenstate of the harmon-
ic-oscillator operator wz/2m. We denote this lowest
state by lo). In real space, the wave function of this
state is

5p( r ) = ( r lo) -exp( —eH, zx')

The system is quantized by setting n lo) =0 where
n+ = m„+i 7Ty and establishing the commutation re-
lations

[n~, n, ] = [n, n, ] -0, [w-. rr+] =4eH, t = p

For fields applied along crystal symmetry axes we ex-
pect the pair state to have no momentum parallel to
the field, so w, lo) =0.

The expectation values from Eq. (2) of the form
(Gl( v n )'"lo) can be determined by establishing a
recursion relation. It is easy to show that

ln - X TS„T 1 1 1 (3)
T p „2T l2v+ I l

= twz exp (z') erfc (z)

(8)
where T p=(2y&ua)/rr exp [ —1/gN(0)] is the zero-
field transition temperature, y =1.781 is the ex-
ponential of Euler's constant, and coD is the Debye
frequency.

The equations we have written so far are formally
identical to those in Ref. 9. We will extend their
scope by deriving expressions for S„which are valid
for all temperatures and for arbitrarily shaped single-
band Fermi surfaces (Sec. III), and by considering
the modifications to S„resulting from the inclusion
of anisotropy in the superconducting pair state (Sec.
IV).

III. ANISOTROPIC FERMI SURFACE

The nonlocal contributions to S for materials with
distorted Fermi surfaces but undistorted pair states
can be summed analytically to infinite order. Follow-
ing Helfand and Werthamer we initially take the pair

where z -(2a) ', a -vzzeH, .z/4', and erfc(z) is
2

the complimentary error function.
Notice that the perturbation series [Eq. (7)] treat-

ing the effects of nonlocality is asymptotic. If one at-
tempts to evaluate it by retaining increasingly
higher-order terms' he finds that his approximation
to H, z( T) improves in an increasingly narrow neigh-
borhood of T,0, but diverges at increasingly higher
temperatures. To obtain results valid over the entire
temperature range, this series must be summed to in-
finite order [Eq. (8)].

When Eq. (8) is substituted into Eq. (2) we have
an integral over the Fermi surface which must in
general be evaluated numerically. This is done by
picking a particular v value and evaluating the exact
form of the n sum [Eq. (8)] for each of a dense
series of points on the Fermi surface. This procedure
is repeated for enough v values that the v sum is
evaluated reliably. When k~1/(2prT, )papr0, H, t
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TABLE I. Slopes (—dh/dt + 0.2'lo) at t =1 of the curves in Figs. 1 and 3-7.

Curve

Fig.
1

3
4
5

6
7

0.711
0.711
0.781
0.781
0.627
0.781

1.055
0.722
1.151
0.627
0.627
0.669

3.70
0.749
4.32
0.405
0.627
0.672

31.8
0.781

34.6

0.627

0.829

and T are first estimated then determined self-
consistently. Numerical solutions to Eqs. (2) and (3)
assuming a spherical Fermi surface and various
values of h. are shown in Fig. 1. Here t =—T/T, a,
h —= eH, 2vt/(2rr T,a), and b'(t) = h (t)/
(—dh/dtI, t). These solutions are numerically ident-
ical to those in Ref. 8 and are included here for fu-
ture comparisons. [In Appendix A we show analyti-
cally that when the Fermi surface is spherical and
A. =0, our more general equations defining 0,2( T)
reduce to those of Helfand and Werthamer. l The
slopes of all curves in Figs. 1 and 3—7 have been
fixed to be —1 at t =1. Table I contains the actual
slopes at t =1 for each of these curves.

Fermi-surface anisotropy enters the calculations
through the quantities N (q ) and vj'"(q ). For ma-

terials with hexagonally symmetric distortions (such
as the transition-metal dichalcogenides with the field
perpendicular to the layers) we model the Fermi sur-

face by setting

I vx(q ) I
=

v F(1 + b6(6&) ] sing

and N(q) —I/Iv(q) I, where 8 and $ are the polar
and azimuthal angles, respectively. Figure 2 shows
how cross sections of the Fermi surface would appear
for b6=0.0, 0.15, 0.3, and Fig. 3 shows the upper
critical field curves for materials with hexagonally dis-
torted Fermi surfaces. We observe that increasing
Fermi-surface anisotropy causes the h'(t) curve to
lie increasingly above the Helfand-Werthamer curve;
for b6=0.5 the upper critical field is nearly linear in

temperature. Although we have plotted results only
for hexagonally symmetric Fermi surfaces, identical
results are obtained with uq(q ) = ~F sin&
x (1+bcosnP) for all n. We therefore conclude
that it is the magnitude and not the shape of the
Fermi-surface anisotropy that determines the
enhancement of H, 2( T).

Since impurity scattering tends to smear out the
Fermi surface, we expect that increasing impurity
scattering should drive the H, 2(T) curves towards the

isotropic dirty limit curve of Helfand and Werthamer.
Figure 4 shows the results of numerical calculations

h 0.5

(i)
+%0~6(&)

0.5 I.Q

FIG. 1. Upper critical fields for spherically symmetric ma-
terials. A, = (1) 0.0; (2) 0.5; (3) 5.0; (4) 50.0.

FIG. 2. Cross-sectional shapes of the Fermi surface.
b6=(1) 0.0; (2) 0.15; (3) 0.3.
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IV. ANISOTROPIC PAIR STATES

0.5
t

I.O

FIG. 3. Upper critical fields for materials with distorted
Fermi surfaces. A. =0.0, b6=(1) 0.0; (2) 0.15; (3) 0.3; (4)
0.4; (5) O.S.

with b 0.4 and X =0.0, 0.5, 5.0, and 50.0 = 0o.

{When A. =1.0, the electron scattering length is
roughly equal to the pair coherence length. ) %'e note
that the A =50.0 curve is essentially identical to the
isotropic dirty limit curve of Helfand and Werthamer.
However, for A. =5, which describes relatively dirty
materials, h'(t) for b =0.4 still lies above the isotro-
pic clean limit curve. A material must be quite dirty
before the effects of Fermi-surface anisotropy vanish
completely.

(9)
Here, a6, for example, is a complex parameter which
determines the magnitude and phase of the hexago-
nal distortion of the pair state. In much of this sec-
tion we will consider only hexagonal distortions.

With IS) taken to be
t I

'-1 2 a n6
ls)= i+I I' i+ (Io)

It is expected that the anisotropy in the supercon-
ducting pair state will be strongly dependent on the
anisotropy in the Fermi surface as well as on impurity
scattering, temperature, and perhaps even the field,
Takanaka and Nagashima' devised a scheme for re-
lating the pair state anisotropy parameters a2„ to the
Fermi-surface parameters, but their scheme relied on
the assumption that the upper critical field satisfied
BH,2/tia2'„=0. (We know of no physical motivation
for making this assumption. It does not necessarily
imply that the free energy will be a minimum. ) Their
resulting expressions for a2 and a4 diverged at low
temperatures and are therefore unacceptable. In our
model the pair-state anisotropy parameters are con-
sidered to be free and independent of the Fermi sur-
face, but in practice are always taken to be smaller
than the analogous Fermi-surface anisotropy parame-
ters.

In a manner similar to that proposed by Takanaka
and Nagashima' we write the perturbed pair state as

eo

Is)= i+ X Ia,.l' i+ X "„', lo) .{2~!)1/2 m

we find that the expectation value in Eq. {2) can be
broken into three separate terms.

&sl( v ~/2~)'"ls) =A + la612) + la6l'~, (ii)
where

h 0.5

A = (Ol( v 0r/200)'"lo) =a "(2n —i)!!
' 2'

1 ~6 v. n0= ~
~ ~

0 0)+B.c.
c

2 cos(6$+ @0)

(&2)

0.5
t

I.O

and

2N

C = 0 m m+0 =(I 6!)a" (n)61 q6

(i4)

FIG. 4. Upper critical fields for materials with distorted
Fermi surfaces and impurity scattering. b6=0.4, A. =(1)
0.0; (2) 0.5; (3) 5.0; (4) 50.0.

Here, 0/06 is defined by a6= la0I exp (i@6), and as be-
fore, a =ujeH, q/4'�. The functions P(n) and Q(n)
are found by making repeated use of Eq. (6) and the
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commutation relation [e, e+] = E, and are given by

(2n +5)!!—15(2n +3)!!+45(2n +1)!!—15(2n —1)!! n ~3
P(n) =

0, otherwise (&5)

Q(n) =(2n +11)!!—30(2n +9)!!+315(2n +7)!!—1380(2n +5)!!
+2475(2n +3)!!—1350(2n +1)!!+ 225(2n —1)!! (16)

Each of the sums over n of the terms in Eqs.
(12)—(14) is essentially identical to the sum in Eqs.
(7) and (8) and can therefore be evaluated exactly.
Numerical solutions to Eq. (3) with lS) hexagonally
distorted as given by Eq. (10) are shown in Fig. 5.
%'e observe that even small amounts of pair-state an-
isotropy cause positive curvature in h'(r) near r =1,
and increased values of h'(t) for lower temperatures.
Further calculations indicate that as impurity scatter-
ing is increased, the effects of pair-state anisotropy
vanish in a manner nearly identical to that shown in

Fig. 4.
Expression B [Eqs. (11) and (13)] is the coefficient

on a term linear in the pair-state anisotropy. By
changing the phase of a6 (i.e., by rotating the pair-
state anisotropy relative to the Fermi-surface aniso-
tropy) we can estimate the contribution of this linear

term to h'(r) Num. erical results are shown in Fig. 6.
Although the model used by Teichler" is quite un-

like the model developed here and the approxima-
tions he made cannot easily be compared with ours,
it is possible to contrast some of his results with ours.
First, our h'(t) curve lies on or above Helfand and
%erthamer's curve for h'(t) in isotropic materials
regardless of the relative phase of the Fermi-surface
anisotropy and the pair-state anisotropy (Fig. 6).
Teichler's h "(r) curves can fall below Helfand and
Werthamer's curves for some reasonable values of
his parameters. Secondly, we find that terms linear
in the pair-state anisotropy [term B, Eqs. (11) and
(13)] contribute significantly to h'(r) at low tempera-
tures. Teichler's formalism contains no such linear
terms. Although parametrized differently, many of
our other results are, however, qualitatively similar to
Teichler's.

If the crystal symmetry perpendicular to the field is
not hexagonal but either ellipsoidal or cubic, the pair
state is described by

IS) =(1+la,l'+la, l')-'' 1+" '+ " ', l0)2!E 4!E

(17)

o
5

0.5
t

I.O 0.5
t

I.O

FIG. 5. Upper critical fields for materials with distorted
Fermi surfaces and distorted superconducting pair states.

0.'0, b6=0.4, ay=(1) 0.0; (2) 0.15; (3) 0.3.

FIG. 6. Upper critical fields. $6 measures the rotation of
the pair-state anisotropy relative to the Fermi-surface aniso-

tropy. $, =0.0, a6=0.15, b6=0.4, $6-(I) 0.0; (2) —n", (3) ~.1
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c) 30
Ol

0.5
t

I.O 4 6
T(K}

FIG. 7. Upper critical fields for ellipsoidally, cubicly, and

hexagonally distorted Fermi surfaces and pair states.
A, =O.O, qb„=0.0, a„=0.0, b„=0.0 except: (1) bn =0.4
(any n); (2) a2 =0.15', b2 =0.4; (3) a4 =0.15, b4 =0.4; (4)
a6 =0.15; b6 =0.4.

The sum over n from Eq. (2) can now be broken into
six separate sums similar to those in Eqs. (12)—(14)
(see Appendix B). Numerical results depicted in Fig.
7 show that ellipsoidal and hexagonal pair-state per-
turbations cause significantly more enhancement of
h'(t) than do cubic perturbations. The reason for
this is not understood.

In Fig. 8 we fit our theory to experimental data on
2H-NbSe2, a material with hexagonal symmetry in

the layers. Here a —= T pm'/oFm is a free parameter
which sets the scale of H, 2, and m' is an average ef-
fective mass of the conduction electrons. The choice
of b6=0.34 is consistent with Fermi-surface calcula-

FIG. 8. Fit to experimental H, 2J data (+) on 2H-NbSe2.
A, =0.0, a6 =0.12, b6 =0.34, F56 =0.0, T 0

= 7.06 K, n =0.07 1 .

tions done by Wexler and Woolley. " Prober et al. '

estimate A = go/I =0.15 for NbSeq. If we were to fit
the data with A, &0, b6 and a6 would be slightly
larger and a should be slightly smaller.
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APPENDIK A

lf h. =0 and the Fermi surface is spherically symmetric so N(q) =1/4a and

dye(q )~,'"= ~,'"
~ ~

2 fl.
(2n +1)!!

Eqs. (2), (3), and (7) become
' lt

T g rrT g ( )„1~ ~svF 2"n!
T o ~-- l~l n &-4~ (2" +1)"

(18)

or
'I

1 1 g ( 1)„(2h)'" n!
12v+ll 12v+11 „o t(2v+1) 2n+1 (20)

where t and h are defined in Sec. III. Our Eq. (20) is identical to Eqs. (24) and (36) in Ref. 8.
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APPENDIX B

With IS) described by Eq. (17) we find

&&l(e ~l2~)'"IS) =~ + la, lD+ Ia, l'Z+ Ia41 F+ la, l la41 G+ Ia4I2FI,

where A is given by Eq. (12),

D=
-„.p

"
2 cos(2$+ d 2)

0
"'~ e'() +H c = a"[(2n+1)!!—(2n —1)!!]

M2!e la)l

(21)

(22}

2N

F. = 0 m m+0 =(1 2!)a"[(2n +3)!!—2(2n +1)'.!+ 2n —1)!!
2!e 2'

(23)

2N

4!e a4!

2 cos(4$+ $4)
a "[(2n +3)!!—6(2n +1)!!+3(2n —1)!!]

4!
(24)

N

G =
&

0 e' rr+0 +H.c.=,
&,

a "[(2n +5)!! 7(2n +3-)!!
a'a „„2cos(2$+$—$ )

(2!4!) ~r2e a& a& 2~ (2!4!) ~r2

+9(2n +1)—3(2n —1)!!]

1 0 4 ver
4!~' 2o)

(25)

~4+0 = (a" 4!) (2n +7)!!—12(2n +5)!!+42(2n +3)!!—36(2n +1)!'!+9(2n —1)!!

(26)

Here, P2 and P4 are defined by a2 =
I a2I exp (i $2) and a4 ——la4I exp (i g4)
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