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In this paper it is demonstrated that it is possible to predict the wave vector of the spin-density wave in
chromium without explicit consideration of exchange and correlation effects. To do so the Fermi surface is
obtained from a Hartree energy-band calculation and used to deduce the nesting wave vector. In this
process the Fermi surface is presented using computer-graphic techniques which give clear views of the
Fermi surface and its nesting portions. The Fermi surface and nesting wave vector are found to change
dramatically as self-consistency is achieved in the energy-band calculation. For the self-consistent potential,
agreement with the experimentally determined nesting wave vector is found to within about ten percent. It
is concluded that the dominant exchange and correlation effects needed to establish the spin-density wave
are implicitly included when the experimental lattice constant, lattice structure, and number of electrons per

atom are introduced into the energy-band calculation.

1. INTRODUCTION

The energy-band structure and Fermi surface
of chromium have been of continued interest since
it was first suggested that the ground state of
chromium contains a spin-density wave.”? Num-
erous band calculations exist for paramagnetic
chromium, most of which included some approxi-
mation to exchange effects but none to correlation
effects, and most of which were performed without
consideration of self-consistency between the
charge distribution and the crystal potentials em-
ployed.>*° The most thorough calculation was
performed by Rath and Callaway, who gave a brief
review of the earlier ones, including the various
exchange and correlation methods used and the
amount of self-consistency achieved.!® That dis-
cussion is adequate and will not be repeated here.

Most of the studies cited above attempted to ob-
tain the wave vector of the spin-density wave by
examining the Fermi surface for nesting features,
as suggested by Lomer.! A more rigorous ap-
proach was used by Gupta and Sinha,® who ob-
tained the nesting wave vector by calculation of
the wave-vector dependence of the magnetic sus-
ceptibility x(q). An absolute maximum of x(q)
for §,#0 is the condition used to predict stability
of a spin-density wave at wave vector q,.!! More
elaborate conditions for the temperature depen-
dence of a paramagnetic to antiferromagnetic
transition have been discussed by Fedders and
Martin,'? and Asano and Yamashita.” Conditions
for antiferromagnetism have also been given by
Yamashita et al.*®

A number of developments in recent years have
motivated a reexamination of the spin-density
wave in chromium. First, band-structure methods
have improved considerably so that accurate,
self-consistent results may now be obtained by a
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variety of methods. New treatments of exchange
and correlation within the framework of energy-
band theory have been developed, and new for-
mulas for the susceptibility of an electron system
including exchange and correlation have evolved.
These developments are discussed in various
review articles and in the text by Callaway.'*'®
Equally important has been the development of
fast numerical procedures for evaluating x(q).*°

Before embarking on a more lengthy compu-
tational effort which would reexamine the sig-
nificant work of Gupta and Sinha® in light of these
new developments, it was determined that a
simpler study was first appropriate. In a recent
article'” two authors of this paper used the Green’s -
function method of Hedin'® to go beyond the ran-
dom-phase approximation (RPA) to the suscep-
tibility to include exchange and correlation in a
systematic fashion, and noted that the usual RPA
formula should employ Hartree energies and
matrix elements to be consistent with the theory
from which it is derived. For the electron gas it
was shown that substantially different results are
obtained when different choices for input energies
are made in calculating x(§). This further moti-
vated the present study for a real metal using
Hartree solutions for electrons moving in the
periodic chromium lattice.

This paper reports the Hartree energy-band
structure of paramagnetic chromium and an-
alyzes it for the density of states, Fermi sur-
face, and nesting wave vector. The importance
of self-consistency is stressed by comparing re-
sults from a typical potential constructed as a
superposition of atomic potentials with those
achieved after self-consistency was established
for the crystal potential. The resulting nesting
wave vector is estimated from the corresponding
Fermi surfaces, and surprisingly good agreement
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is achieved between the experimentally deter-
mined wave vector of the spin-density wave and
the self-consistent Hartree value, in spite of the
failure to include explicitly exchange and cor-
relation contributions either in the band structure
or the susceptibility function.

The remainer of this paper is outlined as fol-
lows. Section II briefly presents the energy-band
calculations and the densities of states. In Sec.
III the Fermi surfaces for the starting potential
and the self-consistent potential are analyzed by
contour plots and by some interesting computer-
graphic studies. Section IV discusses the nesting-
wave-vector determinations and Sec. V states the
conclusions which are drawn from this study.

II. ENERGY BANDS

The energy-band structure of paramagnetic
chromium was determined from a Hartree cal-
culation using a body-centered-cubic (bcc) lattice
constant a =5.45 a.u. The linear combination of
atomic orbitals (I.LCAO) method employed here
has been described elsewhere,!®?! and is similar
to the method used by Rath and Callaway in a
Hartree-Fock-Slater calculation for paramagnetic
chromium.!® The LCAO basis set was adapted
for solid chromium from the basis set used by
Wachters in an atomic calculation.?? Contraction
coefficients were used to save computer time and
core and a 41 X 41 Hamiltonian matrix resulted.
In order to obtain well-converged energy bands,
special attention was paid to convergence of lat-
tice sums as well as convergence with respect to
the basis set. Energy eigenvalues are believed
converged to within 0.001 Ry for the bands of
interest here. No effort was made to include f-
symmetry orbitals or spin-orbit interactions. In
this Hartree calculation exchange and correlation
terms in the Hamiltonian were purposely omitted.

The band structure for the starting crystal po-
tential is shown in Fig. 1. The potential was con-
structed as a superposition of atomic potentials
(AS) corresponding to a 3d°%4s' configuration.

The final self-consistent (SC) potential was ob-
tained by allowing changes in the first thirty in-
dependent Fourier coefficients of the potential until
all coefficients were converged to within 0.0001
Ry. A 55-point grid in 1/48 of the bce Brillouin
zone was used to generate the iterated Fourier
coefficients of the potential. The first and last
iterations were done with 819 points to provide
accurate Fermi surfaces. By carefully deter-
mining the Fermi energy at each iteration, no
convergence problems were encountered. The
fully self-consistent Hartree energy bands are
shown in Fig. 2, after 11 iterations.
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FIG. 1. Hartree energy bands of paramagnetic chro-
mium along symmetry directions for the superposition
of atomic potentials.

A comparison of Figs. 1 and 2 reveals that im-
portant changes occurred between the first and
last iterations. The most significant change was
the position of levels at H. Because of incon-
sistency between the basis and the atomic super-
position (AS) potential, the p-like level H, fell
below the d-like level H,,. This order reversed
as self-consistency lowered and narrowed the d
bands. This is visible in the densities of states
for the two band strcutres in Fig. 3 (AS) and Fig.
4 (SC). These densities of states were obtained
using the analytic tetrahedron method'® with a
grid of 3456 tetrahedra in 1/48 of the first Bril-
louin zone and an energy interval of 0.005 Ry. The
scale sizes are different to show details in Figs.
3 and 4. The Fermi energies (E,) obtained by
integrating the density of states were 1.393 and
0.939 Ry, respectively, or 1.142 and 9.714 Ry,
respectively, relative to the bottom of the con-
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FIG. 2. Hartree energy bands of paramagnetic chro-
mium along symmetry directions for the self-consistent
potential.
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FIG. 3. Hartree density of states for chromium for
the atomic superposition potential. The analytic tetra-
hedron method was used with 3456 equal-volume tetra-
hadra in é of the Brillouin zone and an energy interval
of 0.005 Ry.

duction bands I';. The latter self-consistent Fermi
energy may be compared with a Hartree-Fock-
Slater value of 0.53 Ry deduced from Fig. 2 of

Ref. 10, or 0.64 Ry from Ref. 9. These differences
are traced to self-consistency effects and the fact
that Gupta and Sinha,® and Rath and Callaway'® in-
cluded exchange potentials which caused a lowering
and narrowing of the conduction bands. The band
structure of Gupta and Sinha was not self-con-
sistent, so additional lowering of their energy is
expected with a corresponding reduction of E
relative to T',.

It is not the purpose of this paper to make de-
tailed comparisons with other energy-band cal-
culations for chromium, since this is only a
Hartree calculation. For such comparison some
of the energy levels at symmetry points are given
in Table I. The point to be stressed here is that
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FIG. 4. Hartree density of states for chromium for
the self-consistent potential.

TABLE I. Self-consistent energy bands of paramag-

netic chromium at symmetry points. Energy in ryd-

bergs.
Ty T%s Ty Hyy Hy; Hys
0.2247 0.8742 1.0457 0.5288 1.1908 1.5970
Ny N, N{ Ny Ny Nj
0.5162 0.7251 0.8991 1.0524 1.0867 1.2294
P, P, P, Ep
0.7111 1.0924 1.6876 0.939

self-consistency has dramatic effects upon the
band structure in this LCAO study, as can be
seen by comparing Figs. 1 and 2 or Figs. 3 and

4. The self-consistent band structure is similar
to the Hartree-Fock-Slater results of Rath and
Callaway,'® the chief difference being the order

of levels at the point N. Inclusion of their ex-
change potential into the energy-band calculation
of this paper should yield essentially identical
results, since the methods are identical, and both
calculations are converged. It is surprising that
even better agreement is obtained in the band
structure of Gupta and Sinha,® although their band
structure is not self-consistent and the present
results exclude exchange. Exchange entered this
computation only indirectly: Hartree-Fock wave
functions were used to generate the starting charge
density from which the Coulomb potential of the
electrons was obtained. Inview of the large changes
which occurred here, it is necessary to express
strong reservations about the details of the band
structure of Gupta and Sinha in comparison with
that of Rath and Callaway, which was self-con-
sistent. How these differences might affect the
susceptibility function x(¢) is not obvious, but
matrix elements and positions of peaks in x(g) are
surely affected. )

A comparison of the SC Hartree density of
states, Fig. 4, with the SC Hartree-Fock density
of states of Ref. 10 shows qualitative agreement
on all structures that are readily observable in the
figures. Although the level N; lies below the Fermi
energy in the former and above in the latter, there
is no corresponding structure in the density of
states which is detectable. Aside from different
band widths, the main observable difference is
caused by reversal of the levels P, and N, between
the two calculations, which causes the broad peak
in Fig. 4 at 0.75 Ry which is not present in Ref.
10. ‘This small difference is reflected in the
Fermi surface, as described below.

On the other hand, the SC Hartree and AS Har-
tree densities of states are noticeably different.
The most important change upon achieving self-
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consistency is the increase in strength of the peak
above the density of states which arises from the -
bands in the vicinity of D,, N,, P,, and F, (at
about 1.1 Ry in the SC density of states). The
Fermi surfaces for the two Hartree band struc-
tures differ more dramatically.

III. FERMI SURFACES

Fermi energies for the AS and SC Hartree
band structures were determined by integration
of the densities of states. The Fermi surfaces
were first investigated by contour plots in planes
perpendicular to the k, axis. The plane k,=0 for
the two calculations is shown in Fig. 5 (AS) and
Fig. 6 (SC).

The Fermi-surface sections shown in Fig. 5
consist of surfaces in three conduction bands.
For analysis of the energy-band structure pro-
ducing these surfaces, it is convenient to define
band one as the set of levels which lies lowest
in energy at each point in & space, band two as
the set of energies which lies next lowest, etc.
With this notation the symmetry type of a band
will change at each band intersection, but the
Fermi-surface topology is more easily under-
stood. For convenience the I'; conduction level
is defined to be the bottom of the first band, ad-
ditional lower bands being ignored. With the
definition for a band introduced above, this band
(number one) is completely filled, and thus does
not contribute to conduction at all. The second,
third, and fourth bands intersect the Fermi en-
ergy. Band two (A;—A,- A, etc. in Fig. 1) has
a hole surface at I' (vertical markings); band three
has two hole surfaces, one at T" (enclosing the

FIG. 5. Cross sections of the Fermi surface in the
plane k,=0 for the atomic superposition potential. Band-
two surface is centered at I" and indicated with vertical
lines. Band three has two sections, one at I" and one
at H. Band four is indicated with horizontal lines.
Figure 7 shows bands three and four in perspective.

FIG. 6. Cross sections of the Fermi surface of chro-
mium in the plane k,=0 from the self-consistent poten-
tial. Band three is a hole surface around H; band four
is the electron jack; and band five is a set of electron
lenses contained in the neck of the jack (diagonal lines).

hole surface of band two) and the other at H; band
four has an electron surface surrounding, but not
including, H. It is possible but difficult to vis-
ualize these Fermi surfaces in three dimensions
by using a succession of contour plots, so com-
puter-graphic-imaging methods were employed.??

The computer-graphic method allowed viewing
of the different Fermi-surface pieces from vari-
ous angles. This was especially useful for the
AS Fermi surface which is complex and had not
been examined previously. The band structures
were generated at 819 points in 1/48 of the first
Brillouin zone and interpolated to give a total
of over 4000 points. The graphics package was
used to obtain three-dimensional projective
drawings by straight-line connection of these
points, including proper scaling and hiding of
lines to give perspective. Shading in with colored
felt tip pens enhances depth perception of these
images.

For the AS Fermi surface, bands three and four
are shown from the same perspective in Figs.
7(a) and 7(b). The band-two surface is similar
to the central part of the band-three surface and
is not shown. The electron surface at H in Fig.
7(b) forms a complicated but interesting figure
when the origin is chosen at H, consisting of six
of the claw-like figures connected around the point
H. These Fermi surfaces [Figs. 7(a) and 7(b)]
are unlike any others published for paramagnetic
chromium (or any other metal) and must be an
artifact of the AS potential or basis set used here,
neglect of exchange, or lack of self-consistency.
The latter seems to be the most important, as
discussed below.

The self-consistent Fermi-surface contours in
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(a)’

FIG. 7. (a) Band-three hole surfaces of chromium
from the atomic superposition potential. Cross sections
in the plane %, =0 areshown in Fig. 5. (b) Band-four
electron surfaces of chromium from the atomic super-
position potential. Six of these electron ‘“claws” are
connected through the surfaces of the zone to form a
complex surface surrounding the point H. Cross sec-
tions in the plane %,=0 are shown in Fig. 5.

Fig. 6 are more familiar. With the same band-
numbering scheme as before, there are once again
three sections of the Fermi surface. Bands one
and two lie completely below the Fermi level.
Band three has a hole octrahedron centered at

H, band four is the familiar electron jack, and
band five is a set of electron lenses inside the
necks of the jacks (diagonal lines). The first two
surfaces are shown in Figs. 8(a) and 8(b). The
lenses are too small to plot well on the scale of
these figures. Missing in these figures are the
hole pockets at N (which look like jelly beans) as
reported in Hartree-Fock-Slater band structures.
Figures 9 shows a composite of the two Fermi
surfaces responsible for the nesting wave vector
in chromium. This plot is obtained from a large
number of computed points in the Brillouin zone
and is viewed from an angle similar to the one
used by Mattheiss in his sketch of the Fermi sur-
face of chromium. A view including the entire
structure at each point H is remarkably similar
to Mattheiss’ model, which was drawn without
benefit of an energy-band study for chromium.?*
It is impressive how well Lomer and Mattheiss

FIG. 8. (a) Band-three hole surfaces for chromium
from the self-consistent potential. Cross sections in
the plane 2,=0 are shown in Fig. 6. (b) Band-five elec-
tron surfaces for chromium from the self-consistent
potential. Cross sections in the plane k,=0 are shown
in Fig. 6.

FIG. 9. Nesting portions of the Fermi surface of
chromium. The hole surfaces at H are just tangent to the
balls of the electron jack along the cubic axis. When
one of these surfaces is shifted by 0.90(2r/a) along a
A axis, it nests with the body of the electron jack at I".

were able to anticipate the band structure of para-
magnetic chromium by using information from
other transition metals and the rigid-band con-
cept.

The dramatic change which occurred when a
self-consistent potential was employed led to much
better agreement with experimental information
and with previous band calculations. To investi-
gate whether the inclusion of exchange would have
the same effect, a non-self-consistent calculation
was performed using the X, local exchange po-
tential approximation with a =2, the value em-
ployed in Ref. 10.

As expected, inclusion of the exchange poten-
tial had the effect of lowering the conduction bands
and the Fermi level, changing the Fermi surface
significantly, as can be seen in Figs. 10, 11(a),
and 11(b), Figure 10 corresponds to Fig. 5, and it
can be seen that the main effect of including ex-
change is a spilling over of electrons into the two
hole surfaces at I', until the electron claws join

r H r

FIG. 10. Cross sections of the Fermi surface of
chromium in the plane k,=0 from the non-self-consis-
tent X, potential. Band three is a hole surface around
H; band four (horizontal lines) is an electron surface;
and band five is a set of thin electron lenses contained
within the arms of the electron surface of band four.



FIG. 11. (a) Band-three hole surfaces for chromium
" from the X, potential, not self-consistent. (b) Band-four
electron surface for chromium from the X, potential,
not self-consistent. The evolution of the electron jack
can be seen in Figs. 7(b), 11(b), and 8(b) as exchange
and self-consistency are added to the crystal potential.

up and the holes disappear. A comparison of
Figs. 7(a) and 11(a), and Figs. 7(b) and 11(b)
reveals the changes clearly. While they are
noticeable, they do not produce a good Fermi
surface in comparison with Fig. 8. Not shown

in Figs. 10 and 11 are a set of electron lenses
similar to the ones in Fig. 6, but too small to
plot accurately without more extensive Brillouin-
zone sampling than was done here. Missingfrom
this X, calculation is the set of hole pockets around
the points N. They appear only after self-con-
sistency is achieved including exchange.

IV. NESTING WAVE VECTOR

A proper determination of the wave vector of
the spin-density wave in chromium requires cal-
culation of x(§), which is a nontrivial task, to
say the least. Gupta and Sinha accomplished it
with an augmented-plane-wave (APW) band struc-
ture followed by a major computational effort to
evaluate x(q). The band structure was not self-
consistent, but did include exchange in an ap-
proximate way. Their susceptibility functions
exhibited a maximum at § =27/a (0.88,0,0), but
they did not quote any Fermi-surface dimensions
_ for comparison.®

To estimate the nesting wave vector for the
Hartree band structures reported here, contour
plots and computer-graphic methods have been
employed. For the AS Hartree band structure a
number of possible nestings occur, but none of
them strong enough to produce an absolute maxi-
mum in ¥(g). The strongest nesting occurs be-
tween the hole surface in band three centered at
I" with the inside of electron claws along the A
axis. This is best visualized by making trans-
parency overlays for Figs. 5 and 7 and other com-
puter-graphic views. From Fig. 5 the nesting
vector is about (0.74-0.78) 27/a. This range of
nesting vectors for the AS Fermi surface is sim-
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ilar to that found in Ref. 10, but it should be ob-
served that the electron and hole surfaces are
quite different here, and in fact, interchanged
positions. A preliminary calculation of x(g) along
the A axis using the analytic-tetrahedron method'®
with constant matrix elements produced only a
very weak relative maximum in the vicinity of
q=0.821/a).’®

The X, potential produced a Fermi surface with
a nesting vector which corresponds to the body
of the electron surface at I' nesting with the hole
octahedron at H. The nesting is not strong in the
sense of occurring over a large area, but it is
similar to the SC-potential nesting behavior for
the Fermi surface. Once again a nesting vector
occurs at 0.8 (27/a), but another nesting occurs
which appears stronger at about 0.05 (27/a). The
latter corresponds to a nesting of the hole oct-
ahedron at H with the palm of the claw extending
along A toward H. The claws vanish with self-
consistency to form balls on the electron jack
discussed below. .

The SC Hartree band structure exhibits much
stronger nesting features which suggest that con-

‘ditions could be right for the spin-density wave.

From Figs. 6, 8, and 10 the dominant nesting
feature is the one between the body of the electron
jack at " and the hole octahedron at H. The
nesting vector along the A axis ranges from 0.88
to 0.90 (27/a) over a large area of the Fermi sur-
face. This is made more apparent by the use of
transparencies of the computer-graphic images
viewed from different perspectives. In order to
accurately determine the nesting vector, a full
calculation of x(q) including matrix elements and
local-field effects must be performed. However,
this approximate determination of g, using Hartree-
Fermi surfaces gives values close to those ob-
tained by Gupta and Sinha® and also the experi-
mental values of Koehler et al.?® Near the phase
transition temperature experiment yields ¢,
=0.963 (27/a). The Hartree value of ¢, is essen-
tially the same as that obtained from the elaborate
calculation of Gupta and Sinha, and is in error
compared to the experimental values by less than
ten percent. A complete calculation of X(g) is
required to verify the Hartree value of ¢, since
matrix-element and local-field effects are thought
to be significant, but it seems likely the Hartree
value will lie in the range obtained by Fermi-
surface nesting measurements. It would be in-
teresting to compare the predictions for q, from
an RPA susceptibility calculation using these
Hartree energy bands and wave functions with the
predictions from the time-dependent Hartree-
Fock susceptibility function using Hartree-Fock
energy bands and wave functions.
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V. CONCLUSION

A well-converged LCAO Hartree energy-band
calculation for a starting crystal potential for
paramagnetic chromium gave a band structure
with an unusual Fermi surface and an order of
energy levels contrary to previous experience.
This was caused mostly by lack of self-consistency,
and only partly by lack of exchange. Evenwithout
the exchange potential, the self-consistent Hartree
bands resemble very closely the band structures
which have been obtained by others using exchange
and different starting potentials. Inclusion of ex-
change in this study improved the non-self-con-
sistent band structure only slightly. While the
self-consistent Hartree band structure obtained
here agrees fairly well with the Hartree-Fock-
Slater band structure of Gupta and Sinha, their
results are likely to change when made self-con-
sistent, unless they made a much better approxi-
mation for the starting potential than was made
here. The self-consistent Hartree-Fermi sur-
face lends further support to the Fermi-surface
model originally proposed by Lomer.

The nesting wave vector determined from the
well-converged, self-consistent Hartree struc-
ture by Fermi-surface determinations is in
agreement with the susceptibility results of Gupta
and Sinha, but differs slightly from the Fermi-
surface dimensions of Rath and Callaway. This
is the interesting conclusion to be made by this

paper: It is possible to obtain an accurate esti-
mate of the wave vector of the spin-density wave
of chromium without explicit consideration of ex-
change effects. The nesting wave vectors appears
to be mostly a topological effect produced when
the proper lattice constant, lattice structure, and
number of electrons per atom are once esta-
blished. These quantities themselves all depend
upon a minimum in the total energy of the crys-
tal, and consequently include exchange and cor-
relation effects implicitly. One might then infer
that the pressure dependence of the paramagnetic-
antiferromagnetic phase transition in chromium
could be deduced by repeating the Hartree cal-
culation at appropriate lattice constants to find

a critical pressure at which the nesting features
of the Fermi surface are lost. Such a study will
be reported in a future paper.
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