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Two new approaches for describing the dynamics of energy transfer in solids have been

developed and are described here. The first is a method for treating the case in which weak

direct sensitizer-activator interaction acts as a small perturbation on energy transfer by diffusion

among sensitizers. A technique involving a propagator expansion and the Born approximation

in the interaction strength is used to solve this problem. The second approach is a Monte Carlo

technique to simulate the migration of energy on a random distribution of sensitizers. The pre-

dictions of both these models are compared to experimental results and to the predictions of
other theoretical models. In their regions of validity they predict significantly different results

than those of the models commonly used. The models developed here are applicable to many

important materials such as those used for rare-earth lasers.

I. INTRODUCTION

The transfer of electronic excitation energy
between ions or molecules in a solid has been the
subject of many investigations for over forty years.
Recently there has been increased interest in charac-
terizing this process in materials used for laser and

phosphor applications, Energy transfer can be used
to increase the pumping efficiency of the active ions
or molecules in these materials but it can also cause
decreased fluorescence emission through concentra-
tion quenching interactions. Despite the significant
amount of interest and research activity in this area
there are still some important aspects to the problem
of energy transfer which are not well characterized
and understood. The work described here treats two

aspects of this problem which have not been satisfac-
torily accounted for in previous developments.

Energy transfer is generally treated in one of two

limiting cases. The first is a direct transfer from an
excited "sensitizer" to an unexcited "activator. " The
theory describing this "single-step process" has been
developed in the classic papers of Forster' and
Dexter' with problems such as the effect of random
disorder being attacked recently. ' ' The second case
is that of energy transfer to activators after multistep
diffusion among sensitizers. The description of this
"exciton" diffusion energy transfer was first develop-
ed by Frenkel, Trlifaj, ' and Forster. ' A major prob-
lem in studying diffusional energy transfer is how to
separate the properties of diffusion among sensitizers
and the properties of trapping at an activator site
from the total energy-transfer properties which are
measured. Several theories have been proposed to
account for simultaneous sensitizer energy diffusion
and sensitizer-activator interaction' ' but the final
solutions of each of these theories involve assump-
tions which limit their validity to specific cases. One

important case to which the currently available
theories do not apply is one in which the direct
sensitizer-activator interaction is smaller than the dif-
fusional term but not small enough to be negligible.
A theoretical description of this case is developed in
Sec. II of this paper and several cases where it may

apply are discussed.
A second problem involving multistep migration of

energy concerns the spatial distribution of sensitizers.
All the standard theories assume a uniformly distri-
buted lattice of sensitizers so that the random walk of
the exciton can be described by a single average hop-
ping time. This picture should be valid for "host-
sensitized" energy transfer or other situations involv-
ing high concentrations of sensitizers but it is certain-
ly a poor approximation if the sensitizers are random-
ly distributed impurities with low concentrations. In
Sec. III of this paper we describe a Monte Carlo treat-
ment of this problem and compare the results to the
predictions of existing theories and experimental
results.

II. EFFECTS OF DIRECT SENSITIZER-ACTIVATOR
INTERACTION ON DIFFUSIONAL

ENERGY TRANSFER

In this section we consider the situation in which
energy transfer includes both diffusion among sensi-
tizers and single-step resonant transfer between
sensitizer-activator pairs. Yokota and Tanimoto
treated the limiting case in which the one-step
transfer is dominant and the diffusive contribution is
a small perturbation. They developed an interpola-
tion scheme for the time dependence of the excited
sensitizer concentration in this limit. On the other
hand, if diffusion is the more important of the two
transfer processes, the usual treatment' " is to as-
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Here P is the intrinsic decay rate of the sensitizers, D
is the diffusion coefficient, R; is the position vector
for a given activator, and v( r —R;) is the interaction
strength for a given sensitizer-activator pair. In this
development the interaction is taken to be of the
common electric dipole-dipole type, and thus
u( r —R;) varies inversely as the. sixth power of
i r —R;i. The solution to Eq. (I) must eventually be
averaged over the configuration of activator distribu-
tions, which is a difficult task. With the assumption
of a uniform activator distribution, however, Yokota
and Tanimoto' have shown that the problem is re-
duced to averaging the solution of a single-center
problem, in which an activator acting as an absorber
is located at r=0. For this case

f)n (r, t)/f)t = —Pn(r, t) +DR, n (r, t) —u(r) n(r t)

where
(2)

is the isotropic Laplacian operator. The general solu-
tion to Eq. (2) can be written as

n(r, t) = Xexp( —pt —Dk t)ItI„(r)
k

with $k(r) obeying the eigenvalue equation

[ V,'+ k' —D ' u(r) ]y„(r) =0

(3)

(4)

Because of the assumed r dependence of v(r), no
solution to Eq. (4) can be found that is regular at
r =0. Nevertheless, it is possible" to employ the

sume some finite trapping radius for the activators
outside of which diffusion takes place, while neglect-
ing any direct, single-step sensitizer-activator interac-
tion. Here we will consider the fast-diffusion regime
and specifically examine what effects the single-step
transfer might have on the time development of the
excited sensitizer concentration otherwise depleted by
diffusion.

The equation governing the excited sensitizer con-
centration n( r, t) including both diffusion and
single-step transfer is

f)n ( r, t) /f)t = —Pn ( r, t) + D 'vl'n ( r, t)

—gu ( r —R;) n ( rt),

Fermi pseudopotential method to find the lowest
eigenvalue and eigenfunction, k' and $k(r), respec-
tively, which according to Eq. (3) determine the
asymptotic behavior of the excited sensitizer concen-
tration. In this approach $k(r) thus determined is
identically zero for a finite distance, 0 ~ r ~ a, the
so-called scattering length.

The above remarks serve to justify the use of an
approximate potential in lieu of the exact dipole-
dipole interaction. Namely, we let

u(r) =up(r)+u(r) (5)

in which

0, r)a,
vo(r) ='

r «~a

fo, r a,
u(r) =' or, r)a

(6)

With the use of this approximate potential, the kinet-
ic Eq. (2) is solved exactly except for u(r) which is
treated in the Born approximation. Such a solution
clearly corresponds to the case in which energy
transfer via diffusive migration is stronger than
transfer by single-step electric dipole-dipole resonant
transfer,

The method of solution is based on the well-known
propagator expansion. " Upon writing n (r, t)
= e &'P(r, t), it is seen because of the linearity of the
operations in Eq. (2) that the temporal and spatial
development of P(r, t) is governed by

P(r, t) =fG(r, tarp, fp)Q(rp, lp) dtp'
in which the propagator or Green's function
G(r, t

harp,

tp) obeys the equation

[ a/at+D'7, —-u(r)]G(r, tarp, tp)

(7)

= 5(r rp)5(t tp), (8)

where 5(x) is the Dirac 5 function. If instead of the
full electric dipole=dipole interaction, one solves for
the Green's function for the approximate potential
up(r)

[ —f)/fit + D'7,' —up(r) ] Gp(r, t harp, tp)

= s(r —ro) S(i —to)

then the objective enunciated in the preceding para-
graph is accomplished by obtaining

Q(r. t) =—fp(r, t) +lilt(rt),
=fGp(r tlrp, tp)p(rp, tp) drp f Gp(r fift, tt)n(lt—)Gp(rt, ttirp, tp)p(rp', tp) drt dtt drp .

We determine Gp(r, t chirp, tp) by the method of image. Upon writing

Gp(I;t[rp, tp) = I' G(I', t[I p, tp)

(Io)
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Eq. (8) reads

[ —0/8t+D(8 /jr }—uo(r)]G(r, t(rp, tp) =rpg(r rp)5(t fp)

The effect of vp(r) is accounted for if it is required that G(r, t(rp, io) vanishes for r ~a. This may be accom-

plished by introducing a source of strength rp at r - rp and an image source at r =2a —rp, leading to

rp 8(t —tp)
Go(r &Iro. &o}=-

, , (exp[ —(r —rp)'/4D(r —tp)]
r [4mD (r —tp) ]'~'

—exp[ —(r + rp —2a) /4D (I —tp) ] }, r, r p
~ a

where 8(t) is a unit Heaviside step function. For uniform initial excitation of sensitizers, Q{rp, tp) = np at tp =0,
the result is

pp(r, t) = np 1 ——+ —erfa a r —a
{4Dt)' {i3)

which is identical to the result" describing the diffusive migration of excited sensitizers in the presence of a trap

of radius a.
The effect of concurrent single-step electric dipole-dipole resonant transfer from sensitizer to activator is con-

tained in the next term in the Born approximation

Pt(r, t) Jtdr~u(rt)K(r, t(r~)

where

K(r, i(rt}=, — (exp[ —(r —r~) /4D(t —r)] —exp[ —(r +r~ —2a) /4D(t —r)]}np r&
' d7 2 2

(4mD)'/ r p (t —7)'

(i4)

1

a a r~ —a
x 1 ——+—erf

(4DT)'

Further progress can be made with the aid of the following integrals (which are derivable from the results in the

appendix of Ref. 13):

]/2Jl, t exp[ —Ip( /4D(t —r) ] =2Jt exp( —Ip( /4Dt) —— Ip( erl'cd 2 Tf

(t ) j/2 D (4Dt) ~/2

1J,&,
exp[ —

I
p('/4D(t —r) ] erf' (r — )'" ) i/2

'I l [/2

=erf "
», 2Jt exp( —Ip('l4Dt) —— Ip(erfc

(4Dt) '" (4Dt)' '

(r —a) (r —a)2+ p2

( n. D) 'n 4Dt

4lpl Xdye ~ dxe"
( ~D) (r-a)/(4 gg)1/2 IPlx/(r —a)

in which Et(x) = e 'r 'dr is an exponential integral. Then Eq. (15) can be written as
X

3

K(r, t(rt) =
&&&

—$[F(r —r~) —F(r +r~ —2a)]np a
(4n D)' r
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where
f 4

4

F& (x) = ——1+erf 2 Jte 'D' (—n/D)' '&&x
(
erf

a (4Dt) ' (4Dt) '

r) —a x'+ (r) —a)'
F&(x) =

&/&
E]

—4(xf foo -z2F3(x)= dye ~
j dze '

(&rD) &/&, ~/(4D(&&/2 (Ixl/lf &-4) l&yr &-a

Rather than finding the explicit space and time
dependence of the excited sensitizer concentration
which entails a further integration in Eq. (14), it is

expedient to obtain the time-dependent energy-
transfer rate k(t) which is also accessible experimen-
tally. The latter is related to the total amount of ex-
citation N(t) via"

f f

N(t) = N(t)ea'=Npexp — k(t') dt' . (l7)
) 0

It is also customarily treated as the quantity that ap-
pears in the rate equation

dN{t)/dt = —k(t)Np (18)

It is clear that the two definitions are equivalent only

in the limit that k(t')dr' is much less than unity.
0

To proceed further, Eq. (2) is integrated over the
volume of the sample 0 and the first identity of
Green invoked to obtain

Comparison between Eqs. (18) and (19) leads to the
expression for the time-dependent energy-transfer
rate for the case of N, activators per unit volume,
correct to the first Born approximation

f

N, O 2 Bfo 8$~

No Br Br

+ Ju(r)(irp(r, t) dQ (20)

The three factors that appear in Eq. (20) have rather
obvious physical interpretations. The first factor has
the explicit form

kp{t) =4n DaN~[1+a (n'Dr) ' ']

and is simply the rate at which excitations arrive dif-
fusively at the surfaces of the activator traps. It has
been used as the standard result"' for the tirne-

dependent energy transfer in the fast diffusion re-
gime. The generalized random-walk model' which
includes an extended trapping region yields the same

44)lr)(8r= —4 D —J ( )4(r)d(),8y

, r-a

(19)

I

time dependence with a somewhat different interpre-
tation of the physical parameters involved. The last
factor in Eq. (20) is the integrated amount of excita-
tions weighted with the probability per unit time of
making a single-step transfer to an activator. This
represents the rate of energy transfer by a single-step
resonant process. The presence of such single-step
transfer has the consequence of diminishing the
amount of excitations available for transfer by dif-
fusive migration. This is accounted for by the second
factor in Eq. (20) which is intrinsically negative by
virtue of the fact that

Blp&

r-u

no r —a
dr u ( r) erfc

D a (4Dt)' '
4

f )

r 1 r —ax ———erfc . (22)
a 2 (4Dt)'~2

4

f

—8 AN a dr erfc—, /
. (23)

(4D/)'/'
4

At this point it is necessary to use numerical integra-
tion to extract the explicit time dependence of this
additional contribution to the energy-transfer rate.
However, since it is readily seen that the magnitude
of k&(r) varies from 4&rN, a/(3a') at t =0 to
—4mN, a/(15a') as t ~, a measure of the optimal
significance of the effects of single-step transfer in
the fast-diffusion regime may conveniently be chosen
as the ratio k&(r 0)/kp(t ~) =a/(3Da ). Table
I' ' lists values of this ratio for a number of sys-
tems for which fast diffusion has been identified.

It should be pointed out that in the absence of any
other theoretical considerations, the values of a, a,

Thus the time-dependent energy-transfer rate for
the case considered here may be written as
k(t) = ko(t) + k~(t) with ko being the usual diffusion
expression given in Eq. (21) and k~ accounting for
the two effects of direct sensitizer-activator interac-
tion discussed above. For electric dipole-dipole in-
teraction the latter term becomes

''2
4mN, a a r —akt(t) = +2mN, a dr—erfc3a' r (4Dt) '
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TABLE I. Estimated importance of direct sensitizer-activator interaction on energy transfer in

the fast-diffusion regime.

System e (cm6/sec) D (cm~/sec) a (cm)

Tb3A 150))
Yp 8gYbp ]Hop p5F3

Eu, Cr: Glassd

Anthracene in fluorene'
Tetracene in anthracene'

Tetracene in naphthalene'

1.2x10 35

1.8 x10
5.0 x 10-38

1.74 x 10-3~

1.78x10 "
3.52 x10 35

1.25 x10 "
2.2x10 "
6.0»0-~P
3.4 x10 ~

3.1 x10 5

3.1 x 10~

2.1x10 ~

2.03 x10 ~

1.2x10 '
3.69 x10 8

1.84 x 10~
1.37 x 10~

1.65 x 10~

1.61
0.134

9.2 x10
1.67 x10 5

1.07 x 10~

'Reference 16.
Reference 17.

'Estimated using a =0.676(a/D) from Ref. 8.

Reference 15.
'Reference 14.

and D listed in Table I have been determined by fit-
ting the experimental data with the standard diffusion
theory and are therefore not totally reliable for estab-
lishing or dismissing the importance of single-step
transfer in the fast-diffusion regime. [Note the in-
consistency indicated by the fact that the parameter
a/(3Da') is larger than unity in several cases. ] The
present calculation hopefully can provide some cri-
teria for assigning the values of these physical quanti-
ties and for assessing the significance of resonant
transfer either by using an independently determined
set of parameters or by comparing the full time
dependence of the energy-transfer rate to the experi-
mental results.

be correlated to, for example, the luminescence emit-
ted by the sensitizer. It should be noted that Eq.
(24) neglects the effects of back transfer from activa-
tor to sensitizer ions. This is justified for systems in
which relaxation processes on the activator take the
excitation out of resonance with the sensitizer which
is true for many cases that have been investigated.
For systems where back transfer is not a negligible
process an additional term is present in Eq-. (24).

If the excitations are incapable of migration among
the sensitizers themselyes, it is possible to solve Eq.
(24) and carry out an ensemble average over the uni-
form distribution of activators and the result, p(t),
for electric dipole-dipole interaction is

p(t) =exp [ /jt —(C./Cp)—(rtPt)' 'j (25)

III. HOPPING ON A RANDOM LATTICE

Another phenomenological approach to the treat-
ment of energy transfer which also enjoys rather fre-
quent use is based on the physical picture of excita-
tions hopping among sensitizers and from sensitizers
to activators. In the limit of many steps the results
of this random-walk approach are equivalent to those
of the diffusion approach. The basic premises of
random-walk treatments will now be briefly re-
viewed. p'p Let pt(t) denote the probability that an
excited sensitizer is located at R& at time t, the equa-
tion for excitation migration is

d p&(t)
ct

-—Ppt(t) —g v(K, Rt) pt(t) . —(24)

The meanings of the other symbols are the same as
those encountered in the last section except that R;
now denotes the position vector for either an activa-
tor or a sensitizer. The solution to Eq. (24) must be
averaged over the configuration of activator-sensitizer
distributions and the result designated by qb(t) may

where C, is the activator concentration and the "criti-
cal concentration" is Cp = ( , rtR p ) '. H—ere Rp is de-

fined as the distance between sensitizer and activator
at which the rate of energy transfer is equal to the in-
trinsic decay rate; i.e. , v(R) =P(Rp/R) . If, howev-
er, the excitations may hop among sensitizers, the in-
teraction strength v(R) that appears in Eq. (24)
abruptly changes each time a hopping takes place and
is therefore a random variable. By assuming that the
duration over which the interaction strength v(R)
does not change is distributed according to
Tp exp ( —t/rp), and thus identifying Tp as the mean
hopping time, Burshtein was able to arrive at an
equation governing $(t)

t I

P(t) =p(t)e '
+op' P(t')p(t —t')e Ct'

p

(26)

The solution for Eq. (26) can be obtained by numeri-
cal methods' and gives results equivalent to those of
the Yokota-Tanimota theory in the appropriate limit.
On the other hand, if Eq. (24) is to be augmented



3790 H. C. CHO%' AND RICHARD C. POWELL

with an additional term to account for the back
transfer from activator to sensitizer ions, the problem
is significantly more complicated and indeed no ana-
lytic solution has yet been found.

The merit of Burshtein's approach lies in its simpli-
city and its relative ease for numerical solution. It
remains, however, an approximation. For example,
it is easily seen from the probability distribution for
dipole-dipole interaction in a random system' that
the corresponding hopping time distribution is pro-
portional to t 'r2exp ( —h. r), where X is a constant for
a given concentration of sensitizers. For a small or
moderately large concentration of sensitizers this
function falls off much slower than the approxima-
tion used by Burshtein. The underlying difficulty in

studying hopping motion on a random lattice as
described above is this possible wide distribution of
hopping times. In the absence of better theoretical
techniques to handle such situations, we have resort-
ed to Monte Carlo methods to study this problem,
As will be seen, our study leads to rather different
results from those predicted by Eq. (26).

The essence of the Monte Carlo calculation will

now be described. %e generate a finite number of
excited sensitizers, allow the excitations to hop
around on a matrix of prespecified concentrations of
sensitizer and activator sites, and count the fractional
excitations that survive at various times. Intrinsic
decay of the excitations is easily accounted for and
thus is not explicitly considered in this treatment.
The disappearance of excitations therefore occurs
solely as the result of a jump onto an activator site
which has a jump probability dependent upon the
fractional occupation of sites by activators. The phys-
ical nature of the random distributions of the sensi-
tizers and activators and the ion-ion interaction
mechanism can be simulated by the generation of a
weighted set of random numbers to be used for hop-
ping times. The standard set of random numbers
generated by the computer are uniformly distributed
and must be transformed to have the desired charac-
teristics. For example, the sensitizers must obey the
law of distribution of the nearest neighbor in a ran-
dom distribution of available sites (the Hertzian dis-
tribution), " This law, in the representation of the
number of available sites, y, in a sphere centered on
a sensitizer site and interior to the nearest-
neighboring sensitizer, is c exp ( —cy), where c is the
fractional sensitizer occupancy of sites. The sequence
of numbers having such a feature is obtained from a
sequence of uniformly distributed random numbers r
via the expression y =c 'ln {1—r). (The last rela-
tion follows from equating the cumulative distribu-
tions of the two sequences. ) In a similar manner, we
require that the sequence of numbers reflects the na-
ture of an electric dipole-dipole interaction (which
falls off as r ) in addition to that of a random distri-
bution of sensitizers of a given concentration. The

set of weighted random numbers constructed in this
way are then used as hopping times for the simulated
random walk.

A computer simulation is thus constructed which
"observes" the hopping of each generated excitation
having first insured that the excitation was not creat-
ed on an activator site. The time for each hop is
selected from the weighted set of random numbers
generated by the method described above. This al-
lows the excited sensitizer on each step of the ran-
dom walk to interact with any of the other randomly
distributed sensitizer and activator ions which reflects
the electric dipole-dipole nature of the interaction. In
this manner any spatial correlation is accounted for.
Hopping is allowed to continue until either of the fol-
lowing two events takes place: an activator site is en-
countered or a particular hop takes a longer time than
the time of interest (in the present study, about ten
times the intrinsic lifetime). The survival time of
each excitation is determined by calculating the sum
of all its previous hopping times before being ter-
minated by one of the two criteria mentioned previ-
ously. In the end, a bin sort is performed to deter-
mine the fractional number of excited sensitizers that
have succeeded in avoiding any activator site at vari-
ous times. To ensure that correct random-number
sequences are used in the calculation, the sequences
are tested and seen to obey the Hertzian distribution.
Furthermore, the results are compared to test wheth-
er they are insensitive to different arbitrary cutoffs in
the random numbers used in the calculation, as they
should be if the proper distribution characteristics are
built into the hopping time and sensitizer position
distributions.

The results of some typical Monte Carlo calcula-
tions of this type are shown in Fig. 1. For each run
an average hopping time is determined and is used as
an input in Watts's program' for integrating
Burshtein's equation. The predictions of the Bursh-
tein approach, after being multiplied by exp (Pt), are
also shown in Fig. 1 for comparison. In general, for
the same interaction strength, the Burshtein approach
predicts a faster decrease in the excited sensitizer po-
pulation than does the Monte Carlo simulation. Note
that the concentrations used in curve (a) are those of
a typical case of energy transfer among Nd'+ ions in
yttrium gallium garnet crystals which has been inves-
tigated recently. 2' The data shown in Fig. 7 of Ref.
21 consist of the time evolution of the intensity ratios
of emission centers at two different crystal-field sites.
Ions in one type of site are selectively excited by the
specific laser frequency used, and energy transfer oc-
curs to ions in the other type of site. The intensity
ratios for the three different sets of spectral transition
shown in the figure are fitted with the same theoreti-
cal parameters. A good fit to experimental data
under discussion occurs for either the Monte Carlo

0
simulation with an interaction distance of 20 A or the
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FIG. 1. Comparison of Monte Carlo predictions of excita-

tion survival probability, $(t) e&', with the predictions of
Burshtein's theory. (a) For C, =8.33 X 10, C~ =1.67
x 10, P ' = 2.5 x 10~sec, and Ro = 20 A, 0 gives the

Monte Carlo predictions and gives the Burshtein-theory

prediction. . . . gives the Burshtein theoretical prediction for
0

the same concentrations but with Ro =11 A. (b) For

C, =8.33 x10, C~ =1.67 X10, 18 =2.5 X10~sec, and
0

Ro = 20 A, b gives the Monte Carlo predictions and ———is

the prediction of the Burshtein theory. For the same con-
0

centrations but R0=12 A the Burshtein-theory prediction is

given by ——. (c} For C, =8.33 x10 ~, C, =1.7 x10 ~,
0

P ' -2.5 x 10 sec, and Ro = 20 A, 0 represents the Monte

Carlo results and —"gives the Burshtein results.

gives the prediction of the Burshtein theory for the same
0

concentrations but with Ro =12 A.

IU. DISCUSSION AND CONCLUSIONS

A rigorous, complete solution to the problem of
energy transfer among randomly distributed sensitiz-
ers and activators is still lacking. This is especially
true if the additional complications of back transfer
from activators to sensitizers and random distribu-
tions of transition energies are included. Recently
there have appeared a significant number of theoreti-
cal works on these and related subjects, among which

Burshtein theory with a critical interaction distance of
11 A. Theoretical estimates for Ro for this system
are closer to the larger value but this must be con-
sidered as only a rough approximation because of the
complicated nature of the phonon-assisted diffusion
enhanced energy transfer in this system. '

may be mentioned the papers of Haan and Zwanzig, '
Huber, and Holstein, Lyo, and Orbach. ' These gen-

erally use more powerful mathematical techniques
and starting with the elemental interactions among
sensitizers and activators, they seek to elucidate the
connection between the behavior on the microscopic
scale and the somewhat more phenomenological dif-

fusion and random-walk models. The final exact
solution to this complicated physical problem has not
yet been obtained. In the preceding sections we have
concerned ourselves with several aspects of both the
diffusion and random-walk models of the energy
problem with the objective to supplement and clarify
some aspects of these existing models. The virtue of
these models has been their capability of being
brought into direct comparison with experimental
results and the more fundamental theories ' by and

large confirm in the appropriate limits the validity of
these phenomenological models. This provides the
justification and possible usefulness of the present
work.

W'e have developed here two important aspects of
the energy-transfer problem. The first is a theoretical
expression for treating the case'. The direct sensi-
tizer-activator interaction is a small perturbation on
the transfer of energy by diffusion among the sensi-
tizers. The second is a Monte Carlo approach to
simulate the migration of excitations on a random
distribution of sensitizers. It should be pointed out
that the approach to the Monte Carlo simulation used
here is similar to the continuous-time random-walk

model developed to explain anomalous transit-time
dispersion for charge carriers in amorphous
solids. "" It attempts to account for the possibility
of transfer from an excited sensitizer to any other
sensitizer in the system at each step in the random
walk by using the configuration-averaged distribution
of hopping times at each site. This is different from
the Monte Carlo procedure used previously' which

generates a specific lattice topology, assumes only
first nearest-neighbor steps and then forms a config-
uration average of the results. In that study' which

correlates the decrease in Auorescence emission from
ions in selective excited sites due to energy migration
to ions in different types of neighboring sites, care
must be exercised in dealing with excitations hopping
back to the original site since this offsets the time-
dependent line-narrowing effect. This clearly
presents no particular problem in the present study; a

return to the original site has no distinguishable ef-
fects from hopping to a fresh sensitizer site.

Table II compares the commonly used phenomeno-
logical models of energy transfer and indicates the
physical situation in which each model is valid. This
shows the important areas of usefulness for the two

theoretical treatments developed here. It should be
stressed that each of these models should be applied
only to the physical situations in which they are valid;
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Model Region of applicability Ref.

Forster-Dexter Direct s -a interaction;
no sensitizer energy diffusion

Strong s-a interaction;
weak sensitizer energy diffusion

Weak s -a interaction;
strong sensitizer energy diffusion
Equivalent to Yokota-Tanirnota

model and diffusion/random-walk
model in the appropriate limits

Strong sensitizer energy diffusion
with the effects of extended

trapping regions
No direct s-a interaction;

energy transfer by hopping onto
an activator site

No direct s-a interaction;
transfer by energy diffusion

on a random lattice

Yokota-Tanimota

Chow-Powell

Burshtein

Soos-Powell

Diffusion-
random walk

Monte Carlo

1, 2

8, 1

This paper

10, 14

7, 11

3,
this paper

TABLE II. Phenomenological models for the dynamics of
energy transfer.

Tanimota model in the weak-diffusion limit and
equivalent to the standard diffusion result in the
strong-diffusion limit. However, it does not correctly
account for the effects of direct sensitizer-activator
interaction when it is not negligible in the fast-
diffusion regime and it does not correctly account for
the distribution of hopping times when hopping takes
place on a random lattice. The models developed
here are most applicable in these regions where the
Burshtein approach fails. Also, of course, there are
special situations where none of the models in Table
II apply. An example of this is when high-resolution
laser experimental techniques, such as fluorescence
line narrowing are used and theories accounting for
differences in transition energies must be employed.

In summary, we have developed two new ap-
proaches to the problem of energy transfer of solids
which allow for the treatment of physical situations
involving strong diffusion with weak direct sensi-
tizer-activator interaction and migration of energy on
a random distribution of sensitizers. Both of these
situations have important applications to impurity-
doped laser materials and many of the previous
results on these materials should be reinterpreted us-

ing the new models described here.

this has not generally been true in the past. For ex-
arnple, the results of the preceding section show that,
if data involving energy migration on a random distri-
bution of sensitizers are analyzed with the Burshtein
model, the interaction strength one obtains is approx-
imately a factor of 2 smaller than the value found
from the Monte Carlo treatment which accounts for
the random distribution of hopping times. Note that
the Burshtein model is equivalent to the Yokota-
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