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It is found that Hall's correction term exactly cancels another electrostatic term in the total energy of the

Wigner solid. Although Hall's correction is appropriate for the calculation of the potential at the Wigner

lattice site, it is Fuchs expression which should be used in the total electrostatic energy of the Wigner
solid. The origin of the controversy is clarified using physical arguments, and a simpler derivation of Hall' s

term is presented.

In a recent paper, Hall' has argued that the wide-

ly used method of Fuchs' for calculating the elec-
trostatic energy of a Wigner solid' contains an er-
ror. Hall finds a correction term which contri-
butes about a 20% change to Fuchs' value, and

more importantly, the magnitude of this term is
structure dependent.

The present paper concludes that Hall's calcu-
lation of the electrostatic Potential is correct, but
there is another term in the total electrostatic
energy of a solid which is not included in his cal-
culation, and this term exactly cancels the pro-
posed correction term. Since it is the total ener-
gy of the system which is to be compared in deter-
mining the relative stability of the Wigner lattice,
Fuchs' original result is basically appropriate
for calculations on solids.

The electrostatic energy of one point charge in-
teracting with all other point charges and with the
neutralizing uniform background of charge is, fol-
lowing Hall's conventions, given by

of a Wigner solid per unit cell is

(5)

K/2 contains the lattice-lattice interaction energy
and one-half of the lattice-background interaction
energy, whereas B/2 contains the remaining one-
half of the lattice-background interaction energy
and the background-background interaction energy.
We have assumed that there is one atom per unit
cell for simplicity, but generalization to many
atoms or many kinds of atoms per unit cell is
straightforward. Since Hall has evaluated K, the
problem reduces to the calculation of B. We are
now going to prove that B=-A, thereby establish-
ing the following relation from Eqs. (2) and (5):

where 0 is the volume per lattice point, q is the
value of the point charge, and P}is the Bravais
lattice vector. The subscript 0 refers to the cell
containing the origin. It has been shown that in
the three-dimensional case

K=S+A, (2)

1 "' 1S=q' t,t, Q exp(-t~')- —— dt, (3)

A = +
' r'd'r. (4)

S has been calculated for many crystal structures,
and several equivalent expressions for S are
available in the literature. ' A has usually been
neglected in the literature, and Hall refers to A
as a "correction" term.

On the other hand, the total electrostatic energy

The factor of one-half comes from the double
counting of the electrostatic energy. In a momen-
tum-space formalism for calculating the total en-
ergy of solids, ' the above relation is implicitly as-
sumed without proof. In Ref. 5, except for a
pseudopotential contribution n„ the electrostatic
energy y (which is called yE», in Ref. 5) is
equated to —,'S.

A direct evaluation of integral B is difficult.
Since B is the potential energy of the oppositely
charged uniform background in the total potential
field, it is convenient to express it as

a=-& I y(r)d'r.

Following Tosi's work, ' the potential g(r) is ex-
pressed as
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y(r) = —exp(-g G'/4+i' r)4mq
' 1

Q G

Maradudin' is obtained if we set q = I/v e . There-
fore we get

1 —erf(lr —7 l/q) qvq'
q

— — +C, K=S+qC. (12)

where 6's are reciprocal vectors, q is a parame-
ter to be chosen to render fast convergence of the
summation [P(r) is independent of the choice of ri],
and C is the average potential which was neglected
in Tosi's original work. ' To prove that C is the
average potential, we integrate g(r) over the unit
cell and divide it by Q. The first summation in
Eq. (9) gives zero contribution due to the exp(i4 r)
factor. The second summation contributes qeP/0
to the average potential, canceling the next term
which was introduced for this purpose, and we then
have

B=-qC.
To evaluate C, it is helpful to make a connection

between g(r) and K. K/q is, by definition, the po-
tential at r = 0 soithout the point chm ge q at the
origin. Using Eq. (9), we get

K/q = Q ~ exp(-g'G'/4) —q lim4' i 1 erf (r/g)
Q r o

' 1 —erf(7/q) qrq'
Q

~' 1 —erf(7/q) qvq'
Q

The first four terms on the right-hand side of Eq.
(11) give another expression for S/q. For ex-
ample, the expression by Coldwell-Horsfall and

Combining Eqs. (2), (10), and (12), we finally get

thus proving our assertion.
Now the reason why A. cancels in the total energy

expression becomes clear. Since the system is
neutral, the total energy is the difference between
the potential felt by the point charge and by the
uniform background. It is the relative potential
at the lattice site with respect to the total average
potential that contributes to the total energy. A

constant shift of the potential does not affect the
total energy.

It is not true, however, that the zero of the po-
tential in the solid is arbitrary. Hall correctly
calculated the absolute value of the potential. It
is instructive to rederive his correction term in
a simpler way with no less mathematical rigor.
The only problem in the evaluation has been that
the sums and the integrals cannot be interchanged
when they do not converge properly. This problem
can be avoided in the Fourier representation as
employed by Tosi. 6 (This originated from Ewald'
and Fuchs. ') In Eq. (9), the 5=0 component of the
total potential is left out in the summation, and a
constant C is added. As C represents the average
total potential, it should be identical to the 5=0
component of the total potential in the periodic
system. Callaway and Glasser' already noticed
that this component is a well-defined quantity.
Going back to the definition of the 6 = 0 component
of the total potential, we have

)im —
& 6(r) -—exp(iC r)d r=lim 5(r) -—1+i' r — d'r

1 4vq 1 . 3 . 4' 1 . 5 r'
g~o 0 c-o Q o

4wq 1 , 1 " . , G'
QG Q Q 2Q

=1'm, 1 —— d'r — i .rd'r+ —
I cos'8 -'d' )

2' cos'8y d'x
Q

=C. (14)

The condition JC rd r = 0 h. as been used in the
above equation, since we always take the unit cell
such that the dipole moment vanishes. For cubic
structures, (cos'8) =-,', and we get Hall's result.
For noncubic structures, C is not well defined as
pointed out by Hall. However, following his pre-

scription, it can be evaluated in a similar fashion.
In the two-dimensional case, the correction

term vanishes trivially because the Fourier rep-
resentation has 1/G instead of 1/G . More pre-
cisely, the average potential in the two-dimen-
sional Wigner solid is, if o is the unit area,
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lim — 5(r) ——exp(iC r).d'~1 "2nq 1

c-o V -o 0'

=lim l- — d x- — iG r.d r2mq 1 , 1

c o O'G O'
o 0 o

=0. (l5)

Physically, this happens because, contrary to the
three-dimensional case, the quadrupole contribu-
tion of the region far from the origin vanishes.

In the one-dimensional case, the potential of the

signer lattice diverges unless we define the uni-

form background (line charge) in a different way

from higher-dimensional cases; therefore the
correction term is not defined. Our method also
provides a unique way of calculating the correc-
tion term in higher than three-dimensional cases,
but we wiQ not pursue this subject here.

Finally, is it possible to test our calculation
(B=—A). Using a pseudopotential method, the to-
tal energy of Si for the bulk' and for the atomic
limit" (very large lattice spacing) has been cal-
culated by the authors, and the agreement with ex-
periment is within 0.05 Ry per atom in each case.
Since Hall's correction term would be on the order
of 1 Ry in these cases, these results also suggest
that the correction term should not enter the total
energy.
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Sciences, Office of Basic Energy Sciences, U.S.
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