PHYSICAL REVIEW B

VOLUME 21,

NUMBER 8 15 APRIL 1980

Comments on the electrostatic energy of a Wigner solid

F. W. de Wette
Department of Physics, University of Texas, Austin, Texas 78712
(Received 19 June 1979)

A recent contention by Hall that Fuchs’s calculation of the electrostatic energy of an infinite Wigner solid
contains a fundamental error is not true. Fuchs calculated the average electrostatic energy per electron &,
while Hall derived this quantity from the energy of the interaction of one electron with the rest of the
lattice &, by use of the relation ®; = (1/2)®P,;; however, this relation is not valid in the case studied by Hall.
Preliminary results for finite Wigner solids are discussed.

I. INTRODUCTION

In a recent paper,’ Hall has claimed that Fuchs’s
calculation? of the electrostatic binding energy of
an infinite Wigner solid contains a serious error;
this is not so. Fuchs calculated the binding ener-
gy per electron &, of a Wigner solid by using the
Ewald method and he obtained the correct answers
(-1.79172»;' Ry for fcc and —1.791867;' Ry for
bce). The discrepancy arises because Hall derives
®, by first calculating the interaction energy of
one electron with the rest of the lattice ®.,, and
then using the relation

d’i::%(bel' (1)

However, Eq. (1) is valid only when the average
potential in the lattice is zero,® which is not the
case in Hall’s calculation.

In Sec. II we discuss Fuchs’s and Hall’s calcu-
lations in terms of the so-called spherical approx-
imation,* which is extremely simple but at the
same time sufficiently accurate, to check the re-
sults of fancy summation methods without having
to carry out a lattice summation. Examined in
that way, the source of the discrepancy between
Fuchs’s and Hall’s methods becomes immediately
clear. In Sec. III we give a preliminary discussion
of the situation for finite lattices.

II. SPHERICAL APPROXIMATION

The Wigner solid (electron lattice) consists of
a regular lattice of electrons embedded in a uni-
form background of compensating positive charge.
Here we are only interested in the static lattice.
The potential energy of the system is
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where e is the electronic charge, ep the charge
density of the neutralizing positive background,
and ﬁ,. the position of electron i. The three terms
in the right-hand side are the electron-electron
interaction, the electron-background interaction,
and the self-energy of the background, respec-
tively; V is the volume occupied by the lattice.

If (with respect to the r ; integration) we divide the
total volume in Wigner-Seitz cells with total posi-
tive charge +e and centered on the electrons we

may write
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For an infinite lattice all ®; [defined by Eq. (3)]
are equal and represent the electrostatic energy
of the system per electron; &, is the quantity eval-
uated by Fuchs.

We write &, as follows:
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The first term in Eq. (4) is small; in a cubic lat-
tice it represents, as a result of the cubic sym-
metry of the lattice, in first approximation, the
energy of interaction of a hexadecapole with a lat-
tice of identical hexadecapoles (cf. Ref. 3, Appen-
dix).

The spherical approximation assumes that the
Wigner-Seitz cells are spheres for which the over-
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lap is neglected; then the first term in (4) van-
ishes and we have

Psh=_ ¢ pf
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Using ﬁ,.=0 (centered cells) these integrals are
easily evaluated, giving

3e? 3e? e?

‘I’"’"——"&‘ B -0.97“—, (6)
where ® is the radius of the spherical cell. Ex-
pressing ® in Bohr radii a, (=/%/me?), i.e., ®
=7,a,, and the energy in Ry (=e?/2a,) we find
$Ph=_ L8 gy (7
L

Because of the accuracy of the spherical ap-
proximation, the real value of ®; should be quite
close to ~1.87;' Ry, and this is indeed so: &%
= ~1.7918607;' Ry (Ref. 5). This shows that Fuchs
has applied the Ewald method correctly.

To analyze Hall’s method in the same way, we
now consider the energy of one electron with the
rest of the lattice, ®,,. We have

“’ZR Rlepf!-Rl (8)
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This can be written as
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In the spherical approximation the first term van-
ishes and we have
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To obtain the value of ®; Hall then implicitly uses
Eq. (1), which gives in this approximation

& 5Ph(Hall) = —~1——5 Ry. (11)
rS
Thus the spherical-approximation equivalent of
Hall’s “correction” term A becomes

0.3

s

A®Ph = $3h(Hall) — $Ih=

Ry. (12)
The error in Hall’s method, and consequently
the appearance of the correction term A, results
from the use of Eq. (1), which is not justified in
this case; Eq. (1) is valid only when the average
potential in the crystal is zero. This can be seen
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by evaluating the expression for the total electro-
static energy of the crystal,

b=} fepdea'r, (13)

where ep,,, = — e8(R,)+ e/v,,, is the total charge
density and V the potential in the crystal; the inte-
gration is over the entire volume of the crystal.

In an infinite crystal all Wigner-Seitz cells con-
tribute equally to ® so that

. 14
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Using the expression for the average potential
Vo= (l/vcm)fc,“Vd3v, evaluation of Eq. (14)gives

®,=3[-eV(0)+eV,, ]=3(&,,+&,), (15)
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where @, is the energy of the positive background
in the average potential of the lattice. From Eq.
(15) it is clear that Eq. (1) is valid when Vv, =0.

Returning to the spherical-approximation equiv-
alent of Hall’s calculation we now have to evaluate
®5°, This is very simple, because 3™ is simply
the energy of the background in the average po-

tential in an isolated Wigner sphere; it is found
to be #3""= — 0.6»;' Ry. Using Eq. (15) we thus
find the familiar value 3= - 1.87;' Ry.

Two comments are in order.

(1) The reason for the frequently made tacit
assumption of the validity of Eq. (1) (cf. Refs. 1
and 6) is the apparent ease with which Eq. (1) can
be derived. The usual argument (cf. Ref. 3, Ap-
pendix) is, that for an infinite crystal, the third
term in the right-hand side of Eq. (2) cancels half
of the second term; comparison of this modifica-
tion of Eq. (2) with Eq. (8) then leads to Eq. (1).

It is now clear that taking a simple difference of
these two infinite terms is not justified.

(2) Birman* has shown that in the Ewald method
the average potential is implicitly chosen to be
zero. This explains why the evaluation of &,, with
this method,* ¢ together with the use of Eq. (1),
leads to the correct results for ;.

III. FINITE WIGNER LATTICES

When rapidly converging summation methods
are employed to evaluate Coulomb sums, such as
for the electron lattice,'*?*® these are necessarily
always carried out over infinite lattices and the
question of the boundaries of the crystal does not
arise. The spherical approximation applies to
both finite and infinite crystals, since only effects
due to the central Wigner-Seitz cell enter into the
result; but the method assumes that all electrons
are surrounded by identical Wigner-Seitz cells.

If we consider a finite Wigner lattice, it is some-
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TABLE 1. Values (in 73! Ry) of the potential energy of the central electron €S, in cubical
and spherical samples of sc-, fec-, and bee-structured electron lattices.

No. of electrons summed

Structure over Cube Sphere
132650 -~2(1.43532)
se 1030 300 -2(1.43533)
523 304 -2(1.757179)
1767062 ~2(1.75970)
fee 515150 -2(1.588 82)
261562 -2(1.79187)
bee 257650 -2(1.86215)
131018 —-2(1.80154)

what problematical as to how the background
should be terminated at the surface, but in apply-
ing the spherical approximation it is implicitly
assumed that the background terminates abruptly
at the boundaries of the Wigner-Seitz cells at the
surface. For finite fcc- and bec-structured elec-
tron lattices this procedure will lead to waffled
surfaces, which would not correspond to “real,”
smooth surfaces. In contrast, for a rectangularly
shaped electron lattice with simple cubic (sc)
structure, the surfaces that obtain for the back-
ground are pairs of (100)-, (010)-, and (001)-ori-
ented planes, because the Wigner-Seitz cells are
cubes.

In order to get an idea of how the choice of sur-
face and the boundaries of the background effect
the results for the potential energy of the central
electron ®¢,, we have carried out computer sum-
mations for cubical and spherical samples of sc-,
fcc-, and bece-structured electron lattices. In
each case the size of the cubical or spherical
background followed from the condition of charge
neutrality. The results are summarized in Table
I. We notice that the results fall into two groups:
those close to "= - 2(1.5)r;' Ry and those close
to -2(1.8)r;' Ry. It is noteworthy that the results
for sc (cube) are virtually identical to Hall’s re-

sult —2(1.43504). This is not surprising because
this is the only case in which the Wigner-Seitz
cells give rise to the proper flat background
boundary at the surfaces of the crystal. What is
surprising, however, is that the other cases, with
the exception of fcc (cube), are all close to
-2(1.8),i.e., close to the results of infinite sum-
mations in which the average potential is chosen
to be zero. Apparently, the surface smoothing
and redistribution of surface charge in the finite
summation is equivalent with the choice of zero
average potential in the finite summation. For a
full understanding of this problem, the question

of the redistribution of both positive and negative
charge at the surface needs to be studied in detail.
This problem has been discussed by Kleinman’

in a different context. Similar problems for ionic
crystals have been considered by von Laue®

and Ewald and Juretschke.®
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