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The site-percolation threshold has been calculated for randomly coordinated networks based on a model

of computer-generated randomly packed hard spheres (RPHS). Each network is generated by allowing each

sphere to coordinate to (i.e., be in contact with) every other sphere up to a given coordinating radius r, and

the percolation threshold is calculated for diA'erent values of r. When the percolation threshold is plotted

against the reciprocal of the coordination number, the results are well described by two straight lines

intersecting at a point corresponding to a coordination number of 12, in agreement with results of regular

lattices. It is suggested that this result forms a useful empirical rule for site percolation in random networks

with applications in, for example, random particulate systems.

In a recent paper' the author calculated the site-
percolation threshold in a random network of
equal-sized randomly packed hard spheres (RPHS)
using a computer simulation. Such a three-dimen-
sional structure has as well-defined packing densi-
ty (W.6) and a distribution of nearest-neighbor
touching contacts with a mean value of six per
sphere. The site-percolation threshold was found

to be 0.310 (%.005), and the critical volume frac-
tion (CVF) at the percolation threshold was 0.183
(&.003), a value rather higher than that suggested
by Scher and Zallen's empirical rule. '

It has been observed that, if the percolation
threshold of the common regular lattices is plot-
ted against the reciprocal of the coordination num-
ber, then the results are well described by a
straight line. The result for the RPHS structure
is in agreement with this, and it was suggested
that this line could form the basis of an empirical
rule for site percolation in random networks and

be used, for example, to determine the mean num-
ber of conducting contacts from a measurement of
the percolation threshold in random particulate
systems.

In this paper we examine this possibility in more
detail. We have taken the RPHS model as our basic
random network and measured the percolation
threshold as a function of increasing the coordina-
tion radius of each sphere from the initial value
of one sphere diameter.

Domb and Dalton' showed that, if a similar pro-
cedure is applied for the regular lattices, i.e., by
allowing coordination to second and third-nearest
neighbors, then the values of the percolation
threshold, when plotted against the reciprocal of
the coordination number, fit a second straight line
which passes through the origin.

For randomly packed hard spheres there are no
second- or third-nearest neighbors as such, but
we can increase the mean coordination number
smoothly and continuously by increasing the co-
ordinating radius of each sphere.

The computer program for constructing RPHS
structures has been fully described elsewhere. 4

The spheres are placed one at a time in a random-
ly chosen, locally close-packed site, and three-
dimensional structures are built up by a process
of sequential deposition. The structures have
periodic boundary conditions built in during the
construction such that any sphere placed at a point
with Cartesian coordinates (x, y, z) is also placed
at (x *L„, y +L„z). RPHS structures built by this
method are well characterized with a packing den-
sity -0.6 and a symmetric distribution of contacts
with a mean value of six.

The coordinates of each sphere in the assembly
is calculated when placed and subsequently re-
corded in a data file. It is relatively straightfor-
ward to determine any desired geometrical prop-
erty of the assembly by reading this file and per-
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forming some simple calculations. In particular
we can calculate the number of spheres "in con-
tact" with each sphere in the assembly, for any
value of the coordinating radius. Each sphere in
the assembly is numbered, and the number of all
the other spheres "in contact" with each sphere is
determined and stored in a two-dimensional array.
This array therefore contains the entire intercon-
necting network for the assembly of spheres and
can be used directly for calculating the percolation
threshold.

Figure 1 shows the distribution of coordination
numbers for different values of r, the coordinating
radius expressed in sphere diameters. These
distributions represent the bulk of the assembly,
and spheres on the boundaries are excluded. For
r = 1 the distribution gives the distribution of touch-
ing nearest-neighbor contacts. As r is increased,
the distribution becomes wider, and the mean val-
ue of coordination increases. We note, however,
that within experimental error the distribution
remains symmetric, and the mean and modal val-
ues are the same.

The percolation threshold for different values of
r was measured in an identical manner to the ear-
lier paper. ' Boundary regions are established at
two opposite faces of a cube of side l, and perco-
lation is detected by finding a connecting path from
a site in one boundary region to a site in the oppo-
site boundary region. The separation between the
two boundary regions is kept constant for all val-
ues of r, and the width of the boundary region is
large enough, such that all spheres that are not
boundary spheres are fully coordinated, i.e. , have
the same mean coordination as spheres in the mid

die of the assembly.
The percolation threshold is measured by ran-

domly replacing the spheres one at a time until the
addition of a single sphere forms a connected path
between the two boundary regions. The percolation
threshold measured in this way has a range of
values due to the finite size of the structure and
the smearing of a critical point in such a system.

Previously' we determined the percolation
threshold as a function of the size of the sample

cube and showed that for our RPHS structures, the
value of the percolation threshold and its size de-
pendence was identical to the results for simple-
cubic lattices with periodic boundary conditions.
Since the value of the percolation threshold for
simple-cubic latices is known to quite a high accu-
racy from previously published calculations, ' it
was found that the mean value obtained with a
small-sized cube of dimension 10X 10& 10 using
our method was 2% larger than the more accurate
value. We therefore assumed that the value for
the RPHS structure was 2% less than we calculated
for a cube of size 10xlOX10 (in units of sphere
diameters).

In the present work we have used the same small-
sized structures and have similarly calculated the
percolation threshold sixty times in each of nine
separate realizations of the RPHS structure, for
each chosen value of r. We have corrected all the
calculated mean values of the percolation threshold
by multiplying by 0.98 in the same way, before
quoting the final result. However, we have not in-
dependently checked the size dependence of the
percolation threshold for these RPHS structures
with increased mean coordination, and there is no
reason to believe the size dependence in all cases
will be identical and equal to the simple-cubic lat-
tices. We have taken this into account by increas-
ing the quoted errors to the values of the percola-
tion threshold (Table I). It should be noted, how-
ever, that the resulting values are perfectly ade-
quate for the purposes of this paper.

Figure 2 shows the calculated percolation thresh-
old as a function of the reciprocal of the coordina-
tion number (Z) corresponding to the RPHS struc-
tures with coordinating radius between r= 1 (mean
number of contacts equals 6.0) and r = 1.9 (mean
number of contacts, 30.2). Included in this figure
are the results of the common lattices with near-
est-, second-nearest-, and third-nearest-neighbor
coordination. For the sake of clarity, error bars
are not included in the figure, but can be found
from Table I.

The points for the random networks of the RPHS
structures are in extremely good agreement with
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FIG. 1. Distribution of coordination numbers for different values of r, the coordinating radius.
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TABLE I. Calculated percolation thresholds and mean coordination ~~~bers for different
values of r.

Coordinating radius
(sphere diameters)

Mean coordination
number

Percolation threshold
Pc

1.0
1.02
1.1
1.2
1.3
1.4
1.5
1.7
1.9

6.00
6.24
7.34
8.73

10.36
12.18
14.24
20.06
30.23

0.310 (+0.010)
0.304 (+0.010)
0.274 (+0.009)
0.246 (+0.008)
0.220 (+0.007)
0.198 (+0.007)
0.170 (+0.005)
0.124 (+0.004)
0.086 (+0.003)

those of the common regular lattices. The results
for the random networks also seem to be well de-
scribed by two straight lines intersecting at a
point corresponding to a mean coordination number
of 12.

The best straight-line fit to the points for values
of coordination numbers greater than 12 appears
not to pass through the origin. However, such
minor deviations could be due to a systematic
change in the size dependence of the calculated
value of P„and in any case are within the quoted
experimental errors.

Figure 3 shows an expansion of Fig. 2 covering
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the narrow range from r = 1 to r = 1.1. Calculations
were made for r =1.00, 1.005, 1.01, 1.02, 1.05,
and 1.10. These calculations were performed ex-
actly as before, although all points are not included
in Table I or Fig. 2. This range of r is of consid-
erable interest if these ideas and the proposed
empirical rule are to be applied to the ease of
random particulate mixtures. In our model this
range of r corresponds to the gradual conversion
of very near contacts into conducting contacts. The
straight line drawn in Fig. 3 is the same line as in
Fig. 2. In this diagram the error bars correspond
to the original errors in determining P, for the
small-size structures and do not include the reli-
ability of these values at representing the true val-
ue of P, (as'above). Again the results show a
smoothly decreasing value of P, for an increasing
value of coordination number, in agreement with
the trend line of the regular lattices.

It is interesting now to compare results obtained
with the computer-generated RPHS, with results
obtained on RPHS built as physical models using
ball bearings or some other suitable spherical
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FIG. 2. Site-percolation threshold as a function of the
reciprocal of the coordination number. x-points from
RPHS with different r, ~-regular lattices with nearest,
second-nearest, and third-nearest neighbors (an arrow
indicates a point for regular lattice superimposed on the
point for RPHS).
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material. Such physical models have been exten-
sively studied (see Ref. 6 for a review).

The geometrical properties appear to be slightly
different to the RPHS models simulated on a com-
puter, but a useful comparison of the distribution
of contacts in the two types of models is extremely
difficult and has not been performed. Part of this
difficulty has been attributed to an inability to mea-
sure the sphere positions in ball-bearing models
with sufficient accuracy and the tendency of the
paint method of Bernal and Mason' to be unreli-
able. In addition a comparison of the geometrical
properties of computer-generated RPHS with ball-
bearing models is further complicated by the two
states of random packing in ball-bearing models,
random loose packing (density = 0.60), and random
close packing (density = 0.64).

The percolation threshold has been measured for
the ball-bearing-type models. The measurement
is made electrically by using mixtures of conduct-
ing spheres and insulating spheres, with suitable
precautions being taken to ensure random mixing
and good electrical contact between touching neigh-
bors.

Fitzpatrick et al. ' report a value of P, =0.27,
corresponding to a measurement with a similar
geometry to our computer calculations. They also
report a value of p, =0.225 using a spherical geom-
etry with a single central sphere as one electrode,
but we consider the latter geometry does not rep-
resent the true percolation problem.

Ottavi et a/. ' report a value of p, = 0.30 in a sim-
ilar experiment. Comparing these results with
Fig. 2 suggests that the randomly packed hard-
sphere models of Fitzpatrick et al. ' have a mean
number of contacts -7.4 and those of Ottavi et al. '
-6.3. Fitzpatrick et al. ' used shaken stacks of
spheres with a density of 0.64 corresponding to
random close packing, while Ottavi et al. ' used
random loose-packed spheres with a density of
0.60. It is tempting to assign the difference in the
measured percolation threshold to a difference in

the effective number of contacts in the two states
of random packing.

Bernal and Mason' reported for loose random
packing a mean of 5.5 touching contacts and 7.1
very near contacts. For close random packing
they reported 6.4 touching contacts and 8.5 very
near contacts.

The above values of 7.4 contacts for close packing
and 6.3 for loose packing, determined from the
percolation experiments, form a reasonably con-
sistent picture, bearing in mind the limitations of
the direct method of determining contacts.

Another experimental determination of the perco-
lation threshold through electrical measurements
in random particulate systems was made by Clarke
et al." They measured the percolation threshold
in random mixtures of submicrometer-sized pow-
der-binder layers of conducting Zn0 and insulating
ZnS. Surface forces probably dominate the packing
of these submicrometer-sized particles, and the
reported packing density was only 0.45. However,
the measured percolation threshold was 0.30,
again suggesting a mean number of contacts close
to 6. In these systems of submicrometer-sized
particles, there is no direct method of determining
the number of contacts, and yet this quantity is
clearly important in determining the electrical
properties of powder photoconductors with com-
mercial applications.

In conclusion, we have shown that in random
networks, the site-percolation threshold is deter-
mined by the mean coordination number of the
network. The relationship between the percolation
threshold and the mean coordination number is
found to be well described by two straight lines,
when the percolation threshold is plotted against
the reciprocal of the coordination number.

We suggest that such a plot can be used to form
the basis of an empirical rule for site percolation
in random networks. Amongst some of the possible
applications of such a rule are random particulate
mixtures.
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