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Band structure and thermodynamic properties of He atoms near a graphite surface
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The energy-band structure and thermodynamic properties (in the noninteracting limit) of He atoms on

graphite are calculated. Bound-state eigenvalues z„and matrix elements (n ~V»~n') obtained in

scattering experiments are used as input. The validity of the assumptions used to derive these quantities is

verified for self-consistency. The results of these calculations diAer from earlier studies in that the binding

energies are 15 percent smaller and the corrugation is 50-100 percent larger. The eA'ective mass

enhancement m~/m is 1.06 for 'He and 1.03 for 'He. Agreement with adsorption-isotherm determinations

of the chemical potential in the limit of low coverage and temperature is remarkably good for both isotopes.

These results, which are consistent with our previous analysis of the potential energy V(P), indicate that

band-structure effects cannot be neglected in treating He films on graphite.

I. INTRODUCTION

The subject of physical adsorption has received
intensive scrutiny in recent years among workers
in fields as diverse as chemical physics and sta-
tistical mechanics. ' ' One system of particular
interest is He on graphite, which exhibits a rich
diversity of phases in the submonolayer regime
of coverage. ' ' This paper presents a determina-
tion of the energy-band structure of He atoms on

graphite. For low coverage and high temperature,
this suffices to determine the thermodynamic
properties of the film, some of which we compute
here. These calculations serve more generally
as a basis for understanding effects on the film
of both lateral and perpendicular variation of the
atom-surface interaction V(r}.

The technique of atomic beam scattering has
evolved recently as an effective probe of such
interactions. '8 In a recent study~'o (denoted
henceforth as CC}, we have utilized extensive
data" for He-graphite scattering to determine
plausible forms of V(r) for this system. " These
potentials are 15-20 percent less attractive and

significantly more corrugated than potentials as-
sumed ' '3 prior to the scattering experiments. '

This difference suggested the desirabil. ity of per-
forming a band-structure calculation in order to
evaluate the energy spectrum E(R). Our results
are indeed different from those of earlier stud-
ies;"'" the first band gap is 56% as wide as the
lowest bandwidth, while the earlier work gives
this ratio as about 25%. The band structure is
still nearly free-particle-like.

As seen below, this calculation is essentially
empirical, based almost entirely on the scattering
data. The specific quantities used are the eigen-
values e„of the lateral average potential V,(z)
and the matrix elements of the lowest Fourier
component V»(z) of the potential (measured thus

far only for 'He). The experimental values are
summarized in Tables I and II of CC, to which
the reader is referred for our notation. " In ad-
dition to the values measured to date, a refined
calculation needs those of the (I) couplings to
higher bound states and to continuum solutions of
the Hamiltonian, and (2) coupling between bound
states by higher Fourier components. Wolfe and
Weare" have found that the corrections due to
coupling to continuum states are much smaller
than those due to coupling between bound states;
hence we neglect the former. The corrections due
to coupling to higher bound states and by higher
Fourier components of the potential are both quite
small, but we may extimate these from matrix
elements computed in CC using the potential V(r)
represented as a sum of anisotropic Yukawa-6

pair interactions. Similarly, the band structure
of 'He on graphite will be calculated using matrix
elements computed from the same potential.

Two major questions addressed in this paper
are (I) at scattering energies, how much does
E(R) differ from the nearly-free-particle approx-
imation used in deriving the experimental eigen-
values and matrix elements, and (2} what is E(R}
for the most strongly bound states'? By examining
the first question we obtain an estimate of the
corrections to the conventional approximation used
to determine the "experimental" eigenvalues and
matrix elements. The answers to the second ques-
tion provide the input for calculating thermodynam-
ic properties of low-coverage He films on graph-
ite. The agreement with experimental data' is
remarkably good.

The organization of this paper is as follows. The
next section presents our procedure for evaluating
the band structure E(R). Section III discusses the
results at high energy, comparable to that of the
incident particle in a scattering experiment. Sec-
tion IV presents low-energy results, which are
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used in Sec. V to compute thermodynamic pro-
perties. Section VI summarizes our results.

II. GENERAL FORMALISM

The atom-surface interaction V(r) is periodic
with respect of the component 5= (x,y} parallel
to the surface. Letting 5 denote a two-dimen-
sional reciprocal lattice vector, the Hamiltonian
is

8 = 1'+ V, (z) + g V&(z) exp(iC 5),

I{)x(r}=Q n„n(R} ln, G),
n, Q

(2a)

ln, 5) = (f „(z)exp[i(R+ 5) ~ 5]. (2b)

The functions (t)„(z) are taken as eigenfunctions
with eigenvalue e„of the one-dimensional Schro-
dinger equation incorporating the potential V, (z).
Multiplying by ln', 5') the Schrodinger equation
based on Eqs. (1) and (2) and integrating over a
surface unit cell of area a, yields

where 2' is the kinetic energy operator and IVn(z))
are the Fourier components of the potential at
fixed distance z from the outer atomic plane. Qur
treatment parallels that used to treat electrons in
crystals. " Here each eigenfunction is labeled by
a wave vector R appropriate to a two-dimensional
Bioch theorem. For a given R, the eigenfunctions
may be expanded in a complete set of basis func-
tions

tain an accurate E(R). For most of this work the
19 smallest 5 (/= 0 and 3 orders of 5 c0) values
were used for n=0 and only 6=0, and the lowest-
order nonzero 5's were used for n e0. In most
cases an even smaller basis set suffices, and the
large lC l

matrix elements contribute negiigibly.

III. BAND-STRUCTURE EFFECTS AT SCATTERING
ENERGY

E -=E'(R}-=(h'/2m)(R+0)'+z

with E, the energy .of the incident atom and R the
surface-parallel projection of its wave vector.
The resonance actually occurs when the incident
energy is equal to one of the eigenvalues K(R) of
the full Hamiltonian. That is,

(4)

The nearly-free-atom picture of the resonant
state is implicitly assumed when the values of
z„and (n lV» ln') are deduced from the data. This
is qualitatively palusible because of the high sur-
face-parallel energy of the resonant state. Here
this assumption is validated quantitatively by cal-
culating the band structure of He adsorbed on
graphite for energies typical of scattering experi-
ments. Using the band-structure calculation for
this purpose is both accurate and convenient, since
higher-order corrections and degeneracies are
automatically included. Experimentally, the eigen-
values of g(z) are determined by assuming the
free-particle (zero-order) description of the re-
sonant state. That is, it is assumed that a re-
sonance occurs when

a'- -,&

lz. + (R+G)'1666 6. +(nip-d I') "d (R)
)

tf

= ~„, (R)E(R}, (3)

where

(v, , l

') v fv (*)v,=,-.('*) v( )'v.-.
The eigenvalues E(R} of this matrix equation may
now be computed almost exclusively from exper-
imental data. That is, the eigenvalues &„and the
matrix elements of Vo, are measured" quantities
and only the matrix elements of higher Fourier
components are derived from the model poten-
tial. 9' This method of computing the band struc-
ture is particularly applicable to the problem of
He on graphite since the magnitudes of the Fourier
components are small (compared to the electronic
problem) and decrease rapidly with increasing

Thus the members of the ba.sis set are
good approximations to the eigenfunctions of the
full Hamiltonian (except quite close to degeneracy
points). For both reasons a relatively small num-
ber of terms in the basis set are necessary to ob-

E,(R) =(ji /2m)(R+5) +z„+(n
l Vo, ln); (6)

that is, the separation between the two bands is
assumed to be 2(n

l V„ ln). We can then compare
the barid gap calculated using the full band struc-
ture with that predicted by first-order perturba-
tion theory. In this way the band-structure cal-
culation is used to verify the model of the resonant
state used in the analysis of experimental data,

Figure 1(a) shows the free atom E'(R) obtained
from Eq. (4) for R along the [1,1] direction. Also
shown (by dots) are eigenvalues E(R) calculated
from Eq. (3). The eigenvalues follow the free-

E =E(R)=(5 /2m)(R+5) +z„+ 5E(R),

where

&E(R) =-E(R) —E'(R)

is the band-structure correction to the free-part-
icle energy and hence to z„. Similarly, the matrix
elements are usually evaluated with degenerate
perturbation theory. For example, along the line
of degeneracy of the n(1, 1}andn(0, 1) states, the
energies are given to first order by
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FIG. 2. The m=0 and 1 bands for He at /=30 (the
[1,2] direction). Each pair is degenerate in the free-
particle limit, shown by the curve.
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generate n = 1 bands as symmetric and antisym-
metric bands having wave functions given by

P=(I/~)(~1, 10) ~ ~I, OI) ),

respectively. The two bands do not couple and
have an energy splitting 2 ( 0

~
V»

~

0) of order 0.02
meV. However, as Chow has pointed out, "only
the symmetric band will couple to the 0(1, 1) band.
Therefore, as seen in Fig. 1(b), the antisymmetric
band does not mix with the 0(1,1) band. Hence one
set of points follows the free-atom curve, while
strong mixing of the other two states causes de-
viation from the free-atom curves.

Figure 2 shows the free atom Eo(R) for / = 30'
along with E(R) calculated with band-structure

3.6
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FIG. 1. (a) Energy bands at positive energy for He
for K along /= 0, i.e., the j1, 1) direction on graphite.
Dots are computed eigenvalues. Curves give the free-
particle bands labeled by n and G) which are dashed for
the degenerate states

~
I ~ 10) and

~
1, 00. (h) Greatly

magnified version showing crossing region. Note that
one state follows the unperturbed curve; the other two
states are split apart.

+
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atom curves closely except very near points of
degeneracy. Far from such regions, the devia-
tions are on the order of +0.05 meV, with the
sign varying with the azimuthal angle of incidence.
The experimentally reported eigenvalues are
averages over a range of angles; therefore these
deviations may be naively interpreted as scatter
in the data.

The portion of the band structure near the cros-
sing of the 0(1, 1) free-atom band and the com-
bination of the 1(1,0} and 1(0,1) bands is shown in
Fig. 1(b). It is convenient to think of the two de-
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IO
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FIG. 3. Energy splitting between the pairs of n= 0 and
1 states of Fig. 2, plotted as a function of unperturbed
energy.
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effects. Note the splitting of the states n(0, 1)
and n(1, 1), which are degenerate in zero order.
These splittings are plotted for n =0 and 1 in Fig.
3. The first-order perturbation theory used to
calculate the matrix element from experimental
data gives this splitting as 2 (n

~
V„~n ). As seen

in Fig. 3, this is essentially the splitting given
by the full band-structure calculation for large E .
Because the band-structure effects reduce the
splitting so slightly (-2 percent near F = 23 meV
where the data were taken, ) no correction to the
experimentally determined matrix elements seems
necessary.

Simil. ar calculations were done for 'He using the
matrix elements calculated in CC from the aniso-
tropic Yukawa-6 pair potentials. " Since the matrix
elements are somewhat smaller and the free-atom
energy bands are more widely separated, the band-
structure effects are smaller for 'He than for
'He. This has a simple interpretation in terms of
the larger zero-point vibration of the lighter atom,
resulting in smaller overlap with the region of
potential corrugation.

IV. BAND STRUCTURE AT LOW ENERGY

The thermodynamic properties of He films for
temperature T &20 K depend on the energy spec-
trum of states within approximately 5 meV of the
ground state. Figures 4 and 5 exhibit the spectrum
of 4He and 'He for this energy range computed by
the method of Sec. II. Also shown for comparison
is the free-particle spectrum obtained from Eq.
(4). Table I summarizes some of the important
quantities characterizing these results.

We note that if all matrix elements of Fourier
components larger than the smallest Pi= [0, 1] are
set to zero, none of the corrections given in Table
I change within the precision given there. The
band structure at these low energies is almost
entirely due to n = 0 states. If the coupling to the
higher states is completely neglected, none of the
corrections change by more than 30 percent. At
higher energies (--6 meV) the weakly perturbed
n = 1 state appears for 'He (Fig.4). No band can
be clearly labeled as due to the first excited state
of 'He since at K= 0 that free-atom band is nearly
degenerate with the n =0 bands.

The band structures calculated here are less
free-particle-like than those calculated prior to
the beam-scattering experiments. For example,
the lowest direct gaps at the Q and P points in the
Brillouin zone are approximately 50 percent lar-
ger than those found previously. "'" The non-
negligible effective-mass enhancements of Table
I have not been present in earlier work. These
differences reflect the larger degree of corruga-

E(mev)

—IO

tion in our potential. " For example, the site-
to-site potential-energy barrier across the saddle
point obtained in CC (Ref.10) is 3 meV, about twice
as large as the value present in earlier potentials.
As discussed elsewhere, " the difference is at-
tributable to previous workers' inadequate choice
of He-C pair-potential parameters and omission
of anisotropy from the He-C interaction. " It is
encouraging that the model-independent band
structure exhibits a correponding difference.

V. THERMODYNAMIC PROPERTIES

A very naive approach to the problem of sub-
monolayer He films treats the particles as non-

E(meV)

-IO—

-l2
P

FIG. 5. Same as Fig. 4 for He.

-l2—
I

P Q

FIG. 4. Band structure of He on graphite (full curve)
for K along symmetry lines in the two-dimensional Bril-
louin zone (shown). Dashed curve is the free-particle
result, which neglects lateral variation of p(r).
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TABLE I. Parameters of band structure. Energies are in me V. Values at specific points
are for the lowest bands.

4He 3He

Ep

QE~ —EI-
Bandwidth
Band gap (indirect)
m*/m

Computed
experimental ' -12.22

-12.27 + 0.2
—11.26
-10.33
-11.43
-10.70
-0.16

0.96
0.56
1.06

11,73
-11.72 + 0.2
-10.23
-9.37

-10.52
-9.88
-0.11

1.48
0.36
1.03

From Elgin et al. (Ref. 5).

interacting and moving in two dimensions across
a smooth substate. Several treatments" have in-
cluded interparticle interactions, but no finite-
temperature calculation incorporates a realistic
three- dimensional He- graphite potential. Here
we employ a complementary approach; the po-
tential is authentic, but interactions are omitted.
This last deficiency is serious unless the effect
of interactions is negligible (low coverage, high
temperature) or can be estimated accurately.

We begin by deriving the density of states N(E)
from the band structure. The procedure entails
evaluating E,(R) for a fine mesh of points in the
Brillouin zone and counting the number of eigen-
values lying in intervals of width, 4E =0.02 meV.
The results for the two isotopes are shown in Figs.
6 and 7. The "noise" in the output is statistical,
arising from the finite number (-100) of eigen-

I I I I I I I

values in each interval. Also shown in these fig-
ures is the free-particle density of states

N, (E) =2, gH(E c,), - (8)

where H(x) is the step function (unity for positive
x, zero for negative x). The prefactor preceding
the sum is the constant density of states associated
with two-dimensional motion for each state n of
perpendicular motion. This stepped structure due
to onset of successive n bands is also present in
N(E). Band-structure effects provide significant
differences between the functions N(E) and N, (E)
of Figs. 6 and 7. The clearest discrepancies are,
of course, the presence of band gaps and con-
tiguous peaks in N(E). Less dramatic, but quite
important, are energy shifts and effective-mass
enhancements at the bottom of the band.

The thermodynamic properties of a system of
N noninteracting atoms are obtained here from the
density of states using the grand canonical ensem-
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FIG. 6. Density of states for 4He (full curve). The
ground state represents the zero of the abscissa. Dashed
curve is No(E), the density of states in the two-dimen-
sional free-particle model.
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ENERGY / 4 g (K)

FIG. 7. Same as Fig. 6 for 3He; spin is not included.
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ble." The total energy of a system of N atoms is
given by

U'=gA N EE E, T dE,
0

(9)

where A is the total area of the surface, g is the
spin degeneracy (1 for 'He, 2 for 'He), and

f(E, T) =(exp[P(E —p)] +1}'.
Here —(+) refers to bosons (fermions), P '=ksT,
and k~ is Boltzmann's constant. The chemical
potential p, is determined by

Er-, p
{meV)

N=gA N Ef,T dE.
0

(10)

The isosteric specific heat C/N may then be ob-
tained from

10
T (K)

20

C/N=Ak~P'(I, —P/I )o/ N,

where

I& ——g N(E)E'e~+ "f'(E, T) dE.
0

The chemical potentials for the two isotopes de-
rived from Eq. (10) are shown in Figs. 8 and 9.
Results are shown for two coverages, 8 =N/N,
=0,2 and 1.0, where N, is that coverage for which
there is one He atom for every three hexagons in
the basal plane. Only at low coverage or high T
are our results reliable in general because the
effect of interactions are ignored here. T =0
provides an exception, however, because there
one can incorporate the known ground-state binding
energy. ' For 4He the chemical potential at ab-
solute zero is just E„(-12.22 meV). This com-

0.8
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I
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FIG. 8. Chemical potential of He relative to its zero-
temperature value computed for relative coverages
8= 0.2 and 1 (full curves). Dash-dot curve represents
results in the absence of band-structure effects.

FIG. 9. Chemical potential for He for two coverages.

pares very well with the value derived by Elgin
et al. from thermodynamic measurements' (-12.27
+0.2 meV) after a correction of 0.05 meV is made
for the binding energy per atom of the film. At
finite T our results diverge from those reported
recently by Taborek and Goodstein" because
this T =0 correction must be replaced by an un-
known quantity.

Qur ground-state energy for 'He, E~ =-11.73
meV, also agrees very well with the experimental
value -11.72 +0.2 meV obtained by Elgin et al.'
Note that Fig. 9 exhibits the strong dependence
(linear at T = 0 in the absence of band-structure
effects') of p, on coverage expected for a Fermi
system.

Figures 10 and 11 give the specific heat for these
coverages. The chief features of both curves are
peaks at low temperature and large increases of
C/Nks above unity at T &10K. The former arises
because of the gap in N(E), which causes a de-
pression in C for k~T about half the gap energy. '
The second feature occurs because of excitation
of states of perpendicular motion. These repre-
sent the expected deviation from the simple two-
dimensional view of He on graphite. In the latter
picture, the form of the heat capacity is identical
for both isotopes; C/Nks rises monotonically to
unity, reaching 0.9 at T =3 K and 0.5 K for 6) =1
and 0.2, respectively, for 'He. '

Because of the omission of the He-He interaction
from our calculation, it is unrealistic to expect
correspondence with experiment at low T. For
T &3 K, in contrast, the interactions contribute
negligibly to C." Recent experimental. results of
Goodstein and coworkers" show quite good agree-
ment with our calculated heat capacities for T
between 3 and 10 K. Discrepancies may con-
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ceivably be due to some inaccuracy in the very
large desorption correction required to analyze
the data. ' That procedure is tenuous because it
neglects implicitly the higher-n bands. Obviously
any conclusion concerning the origins of such dis-
crepancies is speculative.

VI. SUMMARY AND CONCLUSIONS

We have presented an energy-band calculation
for He atoms on graphite, focusing on two regimes
of energy. At high energy, our results confirm
the basic approach used to deduce the matrix
elements of the corrugation function V»(z). That
is, the splittings of the bound-state resonances
correspond accurately to the value predicted by
perturbation theory in terms of the matrix ele-
ments. The energy bands at low energy manifest
the nonuniformity of V(r) more dramatically. The
zone-boundary gaps of Figs. 4 and 5 are compara-
ble to the bandwidth. This contradicts, to some
extent, the simple two-dimensional picture of He
motion on graphite. Since that approach greatly
facilitates calculations of film properties, these
results are regrettable. Previous work"'" on
this system employed a less corrugated potential,
but the latter is quite inconsistent with the scat-
tering data. "'" We emphasize that our conclusions
are model independent since the present calcula-
tion is empirical. We reached the same conclusion
previously" by comparing with scattering data
the predictions of various models for the He-C
interaction. That analysis enabled us to pinpoint

the inadequacy of the assumption of an isotropic
He-C interaction in earlier work.

Particularly impressive is the agreement be-
tween the band-structure results for the ground-
state energy and its value determined from ad-
sorption data. Credit should be directed toward
the experimentalists, "' since the band-structure
correction is only 1 percent of the total binding
energy.

One prediction which can be tested by further
experiment (e.g. , thermodynamics or NMR) is the
large effective-mass enhancement of Table I.
It seems plausible, furthermore, that m* should
replace m in the calculations of film properties. "
The latter are not at present sufficiently accurate
to test the prediction however.

We may summarize the present results by say-
ing that the relatively corrugated potential ob-
tained by CC is responsible for rather marked
effects on the single-particle spectrum at low
energy. We urge experimentalists to explore the
regime of low coverage and temperature, es-
pecially on high-quality graphite substrates.
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