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The poling process in B-phase poly(vinylidene fluoride) is studied in two models in which the
reorientation of the electric polarization of a crystallite occurs through the propagation of a solitary wave,
or kink, of rotation along the chain. While a model considered by Aslaksen, in which the rotation is
through 180°, does not provide agreement with experiment, a model by Kepler and Anderson, in which
the rotation is through 60°, yields results not inconsistent with observed poling times.

I. INTRODUCTION

There is currently considerable scientific and
technological interest in the piezoelectric and py-
roelectric properties' of g-phase poly(vinylidene
fluoride), or PVF,. In order to prepare this ma-
terial in such a way that it exhibits these electric
effects, it is first necessary to prepare electrically
inactive g-PVF,, and then subject the sample to
large and enduring electric fields. This paper
discusses this nonequilibrium process, known as
poling.

Although there is still controversy about the
origin of the electric effects® in g-PVF,, it is
widely believed® that they are a result of align-
ment of the electric polarizations of local crystal-
lites within a macroscopic sample. The poling
process is then a process of realignment of the
crystallite polarizations. Before poling has taken
place the distribution of directions of polarization
of individual crystallites is random, whereas af-
terwards the polarization directions have a biased
distribution in space, and are biased toward the
direction of the applied electric field.

In this paper we study in detail two possible
models for the poling process. The first was in-
troduced by Aslaksen,? and involves a rotation by
180° of each chain about its axis. The second mod-
el is a more recent suggestion by Kepler and An-
derson,! who noticed that a rotation by 60° might
also occur. The discussion that follows is an at-
tempt to explore the consequences of each of these
models by developing predictions of the experimen-
tal behavior in the poling process. A preliminary
account of part of this work has already appeared.®

In the following section the 180° model is de-
scribed and solved in certain limits by an analy-
tical approximation. In Sec. Il a computer exper-
iment is reported that yields numerical solutions
to the intractable Langevin equation, and these
are compared with experiment. Section IV intro-
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duces the 60° model and reports the numerical
consequences of this mechanism, which are com-
pared with the previous results in the concluding
Sec. V.

1. THE 180° MODEL

The polymer backbone in p-PVF, has all seg-
ments in the {7vans conformation, while in a-PVF,
the fvans conformation alternates with gauche and
gauche’ conformations. As has been noted else-
where,® it is thus reasonable to consider that al-
ternate torsional angles suffer only small excur-
sions from zero, while the intervening torsional
angles are more to be considered as “soft” vari-
ables capable of taking on large values. Such an
approach has been successful® in understanding
the phase diagram of PVF,. In this spirit the
backbone chain of the g-phase material is de-
scribed in terms of the angles 6, of rotation of
CF,-CH,-CF, units from the plane of the crystal-
line b axis (“torsional angles”). A phenomenologi-
cal Hamiltonian may then be proposed of the form

H=T+U,

where
T=41 2 6 (1)
i
and

U= Z [A,(1 - cosb;) +A,(1 - cos26;)

+%k(6i_6i+1)2], ()

where I is the moment of inertia of a monomer unit
about the center-of-mass axis of the chain, and the
dot signifies differentiation with respect to time.
The first two terms in U represent the combined
influence of the local crystalline order (that is,

the interchain potential) and an applied electric
field. They constitute a potential having minima
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at 6 =0 and m, providing 44,> |A,|. In practice,
even with large applied electric fields, this condi-
tion is satisfied. The last term in U represents
the torsional rigidity of the chain. The interchain
potential for a monomer unit of a chain at the cen-
ter of the g-phase unit cell is shown as a function
of the rotational angle 6 about its axis in Fig. 1.

The time variation of J;, the angular momentum
of the ith unit, defined as

Ji =[éi (3)
obeys a Langevin equation” of the form
Ji=—0U/86;, =\J, +F,(t). (4)

This equation is the dynamical equation of the
system supplemented by a damping term -AJ; and
a random term F;(¢). The parameter X is a
phenomenological viscosity which represents the
effect of the interchain interactions in carrying
away energy from an individual chain. The term
F,(t) represents the random fluctuations in forces
due to thermal motion of the rest of the polymer
at temperature 7. In order that the Langevin equa-
tion lead to the correct equilibrium statistical
mechanics for the chain, we must stipulate that

(Fi(t) =0, (%)
(Fi(t)F;(t") =2D\kgT6,,6(t —t'), (6)

where the angular brackets imply a time average
and kg is Boltzmann’s constant.

Aslaksen® pointed out that any polymer chain in
the crystal field of its neighbors had two locally
stable orientations, in one of which, the stable
orientation, the polarization of the chain was par-
allel to that of its neighbors, and in the other of
which it was antiparallel to the neighbors’ orienta-
tion. For this reason he suggested that poling in-
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FIG. 1. Interchain contribution to the potential energy
of a monomer unit of PVF, as a function of angle of rota-
tion about its chain axis. The unit is located at the cen-
ter of the orthorhombic unit cell of the 8 phase. All
neighboring chains are aligned at §=0.

volved a possible reversal of orientation of the
polarization of a crystallite, rather than wholesale
rotations of crystallites. The poling field would
then lower the energy of the metastable antipar-
allel orientation of the chain polarizations in such
a way as eventually to reverse the orientations of
all polymer chains within a crystallite. The ad-
vantage of this picture is that the topological
structure of a polymer sample is preserved, and
large-scale motions of polymer chains, corre-
sponding to changes of orientation of the local
crystal axes, are avoided.

In this section we adopt the above picture of the
poling process. For simplicity we shall consider
a chain whose initial direction of polarization is
in the direction 6=0 and subject to a strong poling
field —-E. The conformation of lowest energy then
has the chain polarizations oriented in the direc-
tion 8=7. An individual chain in a crystallite is
then described by the Hamiltonian given in Eqgs.
(1) and (2). It is the first term in Eq. (2) that pro-
vides the poling force; its coefficient A, may be
written as

A =A-DE, (7)

where 2A is a crystal-field splitting between the
energy of a favorably aligned polymer unit in the
field of its neighbors, and that of an unfavorably
aligned unit, when there is no applied electric
field. The last term in Eq. (7) is the dipole energy
of the unit, with p the electric dipole moment in

an electric field E.

The values of parameters in the Hamiltonian
are shown in Table I. The angular frequency w,
of the undamped librational mode of zero wave
number is given by the expression w2=(|4,|+4A4,)/
1. Both w, and the width A of this spectral line are
known from infrared spectroscopy,® while a and I

TABLE I. Numerical values of quantities used in
text.

w, 13.2 THz

Iy 7.4 THz

I 1.305x 10~* kg m?
b 7x10-% cm
A, 4.46x10~20 3
A 2.99x10~20 J
A, 1.50x10-% g
k 6.48x10-20 g
a 0.256 nm

vy 1804 msec-!
EM = A, /p 4.27 GV m-!
E{D = A,/p 2.14 GV m™!
Nnono(per chain) 40

Ag 2.43x10-2% g
Ay 1.30x10~% J
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are calculated directly from the crystal structure
parameters.® The value of p is taken from Ref. 2.
The interchain potential and % have been deter-
mined approximately from conformational analy-
sis'® through the molecular-structure-determina-
tion system CAMSEQ-II.'' The atomic charge den-
sities were computed from the semiempirical mo-
lecular-orbital scheme CNDO/2.'? QOur value for

k fits the one which has also been calculated by
Kobayashi et al.® We consider two values of A,
corresponding to the case where all nearest-
neighboring chains are aligned in the direction 6
=0 (A=4,), and the case where three out of four
nearest-neighboring chains are aligned in this di-
rection, and one is oriented in the 6 =7 direction
(A=4,). These values have been determined using
conformational analysis, and allowing for a relax-
ation of neighboring chains. In a neutral environ-
ment A will vanish; such a situation might occur
on the boundary between two oppositely oriented
domains within a crystallite as illustrated in Fig.
2.

In order for it to be energetically favorable for
a chain to reverse its dipole orientation from 6
=0 to 7, we must have A, <0 in Eq. (2), and hence
from Eq. (7) have pE>A. This is equivalent to
requiring E to exceed a critical value of A/p.
Substitution of the appropriate numerical data from
Table I shows that for a chain in a non-neutral en-
vironment this critical field must be of the order
of 1 GVm~!. Because this value is at least an or-
der of magnitude greater than typical fields in
which poling has been observed''*® we are led to
restrict our attention to chains for which A=0,
and which are thus expected to be found only in
a domain wall as shown in Fig. 2.

When the potential defined in Eq. (2) is inserted
in Eq. (4) one obtains a set of coupled nonlinear
differential equations of motion which have not
been solved analytically, even in the absence of the

8:=0 | 8= 180°
I |e
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|

FIG. 2. At the boundary between oppositely polarized
regions some chains are in a neutral environment for
which the energies of either of two opposite orientations
are approximately equal.

thermal-fluctuation term. There are, however,
some known special solutions to the equation that
is obtained by taking the continuum limit of Eq.

(2) at zero temperature. That is, one replaces the
difference 6,,, — 26, + 0,_, by the differential
a®9%0/8x?, with a the repeat distance along the
chain direction x, and ignores the thermal term
F(t). The equation that results,

I6== A, sinf - 2A, sin26 + ka*(626/8x%) =16 ,
(8)

is known as the double sine-Gordon equation,!*!5

Two trivial solutions to this equation are the
constant values 6(x,¢)=0 and 7, which represent
the system in a state of rest in either the absolute
or subsidiary minimum of potential energy. More
interesting are the “kink” solutions which describe
the motion of the boundary between two regions of
the chain, in one of which 6 ~0 and in the other of
which 6 ~7, In the present case the potential en-
ergy is lower for 6~ 7 and so this region advances
at the expense of the region in which 6 ~0. This is
illustrated in Fig. 3. The form of this traveling
solitary wave of electric polarization is

6(x,¢)=2arctan {exp[2(x +vt)/d]} . 9)

Here v and d are, respectively, the velocity and
width of the kink, and are given by

v

VT A+ 4Ap /A0 (10)

m/2

1 1 1 1
-10 -5 o 5 10 X/a

FIG. 3. Solution of the double sine-Gordon equation
represents a kink traveling to the left.



21 KINK PROPAGATION AS A MODEL FOR POLING IN POLY... 3703

and
d=2In/|A,]|, (11)

with v, = (ka®/I)*/?, the maximum velocity a kink
assumes in an undamped chain.

The constant A, represents the effects of both
the electric field E acting on a monomer of dipole
moment p and also the short-range interchain po-
tential. For a monomer in a position in which the
short-range interactions favor equally the 6 =0
and 7 positions the constant A, will be entirely due
to the electric field, and we have |A,|=pE. Then
we find that Eq. (10) may be written in the form

v =0/ [(ES+E?)?], (12)

with E,=2x(4,)/?/p. Use of the data in Table I
leads to the conclusion that v,~1.8 km sec™* and
E,~16 GVm™. Thus in a poling field of 100
MVm~, for example, the speed of propagation of
the kink would be about 11 m sec™.

The electrical potential energy that is lost as
the chain is poled is consumed by the damping
term in Eq. (8), which is the phenomenological
representation of the transport by phonons of kine-
tic energy to distant chains. The propagation speed
v is governed by the balance between these two
mechanisms.

III. NUMERICAL RESULTS

The approximation that yields the double sine-Gor-
don equation has a number of obvious weaknesses.
One knows, for example, that the poling process
is temperature dependent, and so the exclusion of
the Brownian-motion term F(¢) from Eq. (4) al-
lows only a zero-temperature result to be pre-
dicted. One must also expect the discrete nature
of the polymer chain to play a significant role in
the motion of a kink of polarization. From Eq. (11)
one finds the predicted width d of a kink to be about
0.3 nm, and thus roughly equal to the repeat length
along the chain, clearly invalidating the continuum
approximation.

In view of these inadequacies of the analytical
approach, a series of computer experiments were
performed in which the discrete nature of the
chain and the thermal fluctuations were taken into
account, A chain of 40 monomer units was chosen
for study, in accord with experimental observa-
tions of lamellar thickness.! The equations of mo-
tion, Egs. (4), were solved by linearization and
direct integration over a small time increment
At. The thermal forces defined in Egs. (5) and (6)
were included by adding an impulse of fixed mag-
nitude (2xIkgzT/At¢)*2 but of random sign during
each time increment. Because of the random na-
ture of the force all the finite-temperature exper-

iments were performed repeatedly and average
values taken. The error bars in the graphs below
indicate the statistical spread of the results.

Some results of these computations are shown
in Fig. 4, in which the speed of propagation v of
a 180° kink is shown for various temperatures as
a function of electric field. At zero temperature
the discrete nature of the chain makes its presence
felt in the form of a critical field E_, below which
no motion of the kink can occur. At finite tem-
peratures v is proportional to £ for small fields
with a coefficient that varies exponentially with
inverse temperature, as is to be expected in a
process that is an analog of hopping conductivity
in semiconductors. At very large fields (E>E_)
the speed becomes independent of temperature and
equal to the prediction of the continuum theory.

At the typical poling temperature of 373 K and at
a field of 200 MV m™* the speed is about 9 msec™*.
Having established that a kink may be expected

to propagate fairly rapidly through the lamellar
width, we must now consider the more difficult
question of the creation of kinks. The most prob-
able location for a kink to originate is at the point
where a chain emerges from the crystallite and
enters the amorphous region; because kinks can
only be created in pairs in the body of the cry-
stallite, twice as much energy would then be re-
quired.,

The forces acting on a chain at the crystallite
boundary are to some extent an unknown quantity.
The absence of crystalline order in the amorphous
region may well provide an opportunity for a kink
to form at only a small cost in energy; on the
other hand, the very existence of the boundary
suggests the presence of torsional forces resisting

Ve
(10® msec™)

E (10GVv m™")

FIG. 4. Propagation speed v of a 180° kink in a finite
discrete chain is plotted as a function of electric field
E for various temperatures; + =0 K, 0=187.5 K, A
=373 K, O=750 K. The uppermost line is the analytic
result for the continuum approximation at T=0.
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further growth of the crystal surfaces, and these
forces might be inimical to kink formation. In the
absence of clear knowledge of this environment
we make the simplest neutral assumption and
suppose the chain simply to terminate at the lamel-
lar boundary with no external intrachain forces
present. With this assumption we can then per-
form a computer experiment to determine the
waiting time 7, that on average elapses between
application of the field E and passage of a kink into
the crystallite along a given chain. The results
of this study are shown in Fig. 5, in which In{, is
plotted as a function of inverse temperature for
various fields. These results show ¢, to be con-
siderably larger than the transit times of a kink
across a lamella, From Fig. 4, for example, we
see that the 10-nm width of a lamella would be
traversed in about 20 psec at 373 K in a field of
10 GVm™!, whereas ¢, is about 70 nsec under
similar conditions. We thus interpret Fig. 5 by
assuming the propagation of the kink to occupy a
negligible time in comparison with that necessary
for the appropriate energy fluctuation to occur to
create a kink, The approximately linear behavior
suggests that a picture of thermally activated kink
creation is valid, with

t,=Ae?T, (13)

The “attempt frequency” A~', found from the
common extrapolations of the lines to infinite
temperature, yields a value of about 7 THz, which
is to be compared with the figure of 8.4 THz ob-

'N
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FIG. 5. Logarithm of the average waiting time ¢, for
creation of a 180° kink is shown as a function of T"! for
various fields E in units of 10 GV m~-!.

tained by multiplying twice the librational frequen-
cy at zero wave number of 2.1 THz by a further
factor of 2 to allow for the two ends of the chain.
The activation energy Bkg, found from the slope

of these lines, canbe interpreted satisfactorilyin
terms of the contributions of the various termsin

the Hamiltonian given in Eqs. (1) and (2).

The average waiting time for a chain to reverse
its electric polarization under typical poling con-
ditions (7=313 K, 500 MV m-!) and in a neutral
crystal environment is predicted by this model to
be of the order of 7x10* sec. The theoretical
poling time for the entire sample will clearly be
much larger than this, in disagreement with the
experimentally observed poling times.?® This in-
dicates some inadequacy either of the model as a
whole or of the assumed nature of the crystallite
amorphous boundary.

IV. THE 60° MODEL

In calculating the interchain potential energy of a
chain in a particular orientation the question nat-
urally arises of how many neighbors need be taken
into account. Because the structure of the 3 phase
is orthorhombic it is tempting to include only the
four nearest-neighboring chains. This, however,
would be inaccurate because the two next-nearest-
neighboring chains are located at a distance only
0.1 percent further away than the nearest ones,’
and the structure is, in fact, close to being equi~
lateral triangular or centered hexagonal.

The closeness of the structure to a hexagonal
form led Kepler and Anderson' to make an ingeni-
ous suggestion of an alternative mechanism of
poling, namely that a rotation of the chains through
60° rather than 180° plus a small distortion of the
lattice might be the correct model. This possibil-
ity is illustrated in Fig. 6, in which the boundary

/
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FIG. 6. Boundary between regions of f-phase PVF,
differing in direction of polarization by 60°.
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between such twinned regions is shown. Some
support for such a mechanism has recently been
given in the form of infrared studies in which the
optical properties of a PVF, surface were shown
to be modified by poling.’® A simple reversal of
chain orientation through 180° would presumably
have left these unchanged.

The first step in studying this model was the
calculation of the interchain potential of the chain
labeled 1 in Fig. 6, for which by symmetry the po-
tential for 6=0 is approximately equal to that for
6=60° The result of this computation, which
again was performed using the methods of con-
formational analysis,'® is shown in Fig. 7. The
striking aspect of this potential is the subsidiary
minimum that occurs at 6 =30°, which shows that
a partial rotation of the chain between the polari-
zations of the two parts of the twinned crystal can
be metastable. This complicates the analysis to
some degree, and renders the double sine-Gordon
equation an inadequate description of the model.

It was thus necessary again to turn to a computer
experiment to determine the behavior of this mod-
J

v(8)

-20

(10 J)

me w3 8

FIG. 7. Potential energy as a function of rotational
angle 6 for the chain at the center of the dashed hexagon
in Fig. 6. The zero of 6 is the vertical direction.

el in a poling electric field. The interchain po-
tential was modeled by replacing Eq. (2) with the
expression

U= Z [A6(1 = cos66,) +A,,(1 — c0s126,) =pEcos(n/3~6,) +5k(0; — 6;,,)%], 6<6,<mu/3. (14)

1

The constants A, and A,, chosen as the best fit to
the calculated potential are given in Table I. The
direction of the field E is shown in Fig. 6.

The results of the computation indicate that the
30° minimum in Fig. 7 has a marked effect in
facilitating the formation of kinks. In the 180°
model no kink-antikink pairs were formed at nor-
mal temperatures near the middle of the chain
because of the double energy required. In the 60°
model, however, the intermediate minimum in the
potential appears to trap segments of the chain
with comparative ease, which then separate and
complete the transition to 60° independently. A

8
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FIG. 8. Chain segments released at 6=0 in an electric
field approach the 60° orientation by first entering the
potential minimum near 30° marked by a dashed line. A
typical set of rotational angles along a chain is shown at
0.4 psec in a field of 20 GV m™ at 373 K.

typical conformation is shown in Fig. 8, which was
generated from a chain at rest at =0 after 0.4
psec at 373 K in a field of 20 GV m™?,

A summary of the computations on this model
is shown in Fig. 9, in which #;', the reciprocal
of the total overturning time of a single chain is
shown as a function of electric field and tempera-
ture. A limitation of the direct computational ap-
proach is seen when one notes that the regime
covered is one in which exceedingly large fields
(of the order of 10 GVm~') are present, with con-

~
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./:%4 i
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FIG. 9. Total overturning time (per chain) ¢, is plotted
for the 60°-rotation model as a function of electric field
for various temperatures.
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sequent overturning times of the order of psec.
Because the motion of the chain takes place in a
time scale of the order of the librational period of
about 0.1 psec, the time increment used in the
computations must be much less than this and was
typically 1 fsec. It is thus not possible to follow
the motion for times much longer than a few tens
of psec within reasonable computational limits.

In order to obtain an estimate of the behavior at
more modest electric fields it was decided to ex-
trapolate the high-field results, and to this end
the semilogarithmic graph shown in Fig. 10 was
plotted. The straight lines are again the result

of the thermal activation process. If these lines
are then continued down to fields of the order of
100 MV m™!, then at a temperature of 373 K an
overturning time of the order of 50 psec is pre-
dicted. The validity of this extrapolation depends
on the criterion np E> k, T, with n the number of
monomer dipoles constituting the average kink-free
segment of chain. This criterion should be satis-
fied down to fields of the order of 20 MVm™ at
373 K.

Because only a chain in a neutral crystal en-
vironment is free to rotate in modest fields, there
will only be very few chains in a crystallite at any
time that can participate in the poling process.
Such chains will be at the boundary surface be-
tween differently polarized sections of the cry-
stallite as shown in Fig. 6 and will also be on the
line of advancing polarization in that surface. The
poling process will thus proceed in a more or less
sequential way, one chain at a time. This allows
us to estimate a poling time for the sample as a
whole by merely multiplying ¢, by the number of
chains in a crystallite, which may typically be of
the order of 10°. The poling time produced in this
way is of the order of 1 msec.

V. CONCLUSION

We have examined the poling process in p-phase
PVF, in terms of propagation of a kink of rotation
along the length of a chain and through the width
of a lamella. In the first model studied this kink
represented a rotation of 180°, The calculation
led to a prediction of extremely long waiting times
before such a kink could be activated at normal
temperatures, and thus did not provide good ac-
cord with the observed poling times for real sam-
ples which are apparently of the order of a few
seconds.'® In the second model studied a rotation

10710~
tp
( sec) 125 K
373 K

10°1 - 250 K
500 K

|0-I2 -

|O-I3 1 1 | 1 |
0.5 1.0 1.5 2.0 25

E (I0GY m™")

FIG. 10. This plot is used to estimate by extrapolation
the value ¢, might have under typical poling conditions.

of 60° was considered and in this case rather ra-
pid poling times of the order of 1 msec were
predicted.

While neither theory provided immediate agree-
ment with experiment, one must remember that
both were based on highly idealized models and
thus are likely to provide only lower bounds to the
actual poling times. The existence of head-to-
head defects in the chain of the form CH,-CF,~
CF,-CH, would certainly impede the progress of a
propagating kink and slow the poling process. It
is also likely that the small change in crystal
axis dimension that occurs.in the 60°-rotation mod-
el would cause internal strains in the crystallite
that would impede the transition.

Our conclusion is that we have been unable to
reconcile with experiment a model in which chain
rotations through 180° occur as part of the poling
process. A model involving rotations through 60°,
on the other hand, appears to give results not in-
consistent with observed poling times.
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