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Linear energy-momentum relations for acoustic deformation-potential polarons
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Several variational theories for the energy-momentum (EP) relation of the acoustic deformation-potential

{ADP) polaron are considered. We show that the trial states of these theories need not be translationally

invariant to yield upper bounds to the actual EP relation. A theory which interpolates between weak- and

strong-coupling theories is thus shown to give an asymptotically linear upper bound to the ADP polaron

EP relation, as predicted by energy-crossing arguments.

I. INTRODUCTION

The nature of the energy-momentum relation
for the acoustic deformation-potential (ADP)
polaron has been the subject of several recent
papers. ' ' It has been pointed out that the onset
of degeneracy between the ADP polaron and the
acoustic phonon states occurs when the polaron
velocity reaches the sound velocity. ' Thus, on

the basis of energy level splitting arguments, one
might expect the energy-momentum relations of
acoustic-mode polarons to approach linearity, as
their velocity approaches the sound velocity. Such
behavior is found in many different approaches to
the piezoelectric polaron. 4 '

In the ADP-polaron problem, the results ob-
tained have not been as straightforward, due

largely to the short-range character of the de-
formation potential interaction. We show in Sec.
II that the classical theory does give the predicted
energy resonance as the velocity approaches the
sound velocity. The quantum theories are dis-
cussed in Sec. III, and substantial differences be-
tween the energy-momentum relations are found.
Perturbation theories are complicated by the nat-
ure of the degeneracies encountered and produce
questionable results. As a result, the approaches
to the problem have been primarily variational,
with the assumption that, at a given momentum,
the state of lowest energy represents the polaron.
A trial state which is an eigenstate of momentum
0 is varied to minimize the expected value of
energy, which then represents an upper bound to
the lowest energy at that momentum. As shown in
Sec. IIIA, a trial state which is not a momentum
eigenstate but has an expected value of momentum
0 is also an upper bound to the lowest energy at
the momentum ly.

The variational theory of Lee, Low, and Pines, '
appropriate to weak electron-lattice coupling, is
not found to have a linear energy-momentum re-
lation but only yields solutions for polaron veloci-
ties less than the sound velocity. The strong-

coupling theory of Pekar' does yield a linear EP
upper bound, although unphysically large lattice
dilations and a high degree of localization seri-
ously question the relevance of the results. A

theory of Buimistrov and Pekar' which interpo-
lates between the Lee-Low-Pines and Pekar states
is shown to produce a linear EP upper bound and
not to involve the questionable aspects of the Pekar
state above.

II. CLA'SSICAL THEORY

V;= [(D'/Vps)&d;iq i]"', (2)

where D is the deformation potential, p is the lat-
tice mass density, V is the crystal volume, and
s is the LA sound velocity.

Applying Hamilton's equations;
~ 0

mr =-g qV-e' ', p =mr,
a

~ 1 Jq V &-ia r p —qa a a -a ~ a -a'

A uniformly translating solution is

r= ro+vt, p=mv,

Q,.(t}=Q,-(0)e"", P;(t) = iq vQ;(t)-,

for which

Q.(0) = —V,-[~' —(q v)']-'.

The classical behavior of the polaron is given
by the classical analog of the usual Fr5hlich
Hamiltonian'

2

8 +~ z (-P-P -+ &d Q-Q -)p i~ p

2m a a
q

a q

+g V@~ia r (1)
a

Here r and p are the electronic coordinate and
momentum, respectively, Q; and P; are the lat-
tice normal coordinate and conjugate momentum
for the longitudinal acoustic (LA} modes, respec-
tively, (d,- is the LA dispersion relation, and V; is
the deformation-potential interaction:
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Using ~;-=s ~q~ gives

Q;(0) =-(8wn/V)"'s"' ~q ~

[s'q' —(q ~ v)') '

and we notice that the amplitude of the lattice
modes increases indefinitely as the velocity ~v

~

approaches s.
The polaron energy is

(4)

+-,' g V'. [&u;—(q ~ v)j '

2 ~2 q v 2

which gives

2m 37T S —5

III. QUANTUM THEORY

The ADP polaron problem is formulated in
terms of the Fr5hlich Hamiltonian, which in di-
mensionless units is

H= @2+ (o-ata;+ Q- (at +a ) e''I'. (7)
Q

a a

Here r and p=-iV' are the electron coordinate and
momentum, respectively, a~ and a; are the LA

a
phonon creation and destruction operators, re-
spectively, and &; is the LA dispersion relation.
The deformation-potential interaction term is

q,-= [(4va/V) ~q ~]"'

and the dimensionless coupling constant n is

a = Dem~/8mk~ps .

(8)

The z is the wave-number cutoff which arises
from the usual substitution,

(vis )-f d'e. '
II

0

This solution of the classical equation of motion
has the behavior predicted from the energy-cros-
sing arguments, where the polaron energy is un-
bounded as the polaron velocity approaches the
speed of sound in the lattice. This is due to the
fact that a lattice displacement moving at the
sound velocity is a stable configuration, even in
the absence of an attractive interaction with an
electron. The presence of such an interaction
results in a resonance for electrons approaching
the sound velocity s. Although the resonance will
be affected by anharmonic lattice terms which limit
the lattice dilation (proportional to in ~a —s ~), the
lattice energy grows much more quickly [propor-
tional to (s' —v') 'J and can become quite large
before the anharmonic limit obtains. We show
in Sec. III C that this classical electron-lattice re-
sonance is just that seen in the quantum strong-
coupling theory of Pekar.

The m is the band effective mass of the electron
and the other parameters are as given in the
classical theory. We use ms' as the unit of en-
ergy and K/ms as the unit of length (essentially
taking 5=m =s =1).

In using the Fr5hlich-Hamiltonian formalism,
we assume that all wave vectors are much less
than the lattice cutoff ~ in order to apply an ef-
fective-mass theory for the electron, and that the
lattice dilation is much less than unity, so that
anharmonic lattice effects are avoided.

In this theory, the Hamiltonian is translationally
invariant, so the polaron states are chosen to be
simultaneous eigenstates of total momentum

8=p+ gqa'a . (10)
0

We want to find the ground-state energy of H as a
function of the eigenvalues of 5. In keeping with
the assumptions above, we shaB only be con-
cerned with momenta 5 which are much less than
K,

A. Upper-bound theorem

We consider several variaiional approaches to
the ADP problem, assuming that for a given total
momenta, the state of lowest energy will repre-
sent the polaron. This is commonly done by as-
suming a trial state for the polaron which is a
momentum eigenstate and then varying the ex-
pected value of energy. The result represents an
upper bound to the actual ground state at that mo-
mentum. This is the procedure followed by Lee,
Low, and Pines for weak coupling and done here
in Sec. III B. The same procedure may be followed
for the adiabatic strong-coupling theory (Sec. III C)
by using a modified trial state due to the work of
H5hler. " However, the resulting analysis is in-
variably difficult, "and normally a simpl. er pro-
cedure is used. One assumes a trial state ap-
propriate for the moving Pekar theory which is
not a momentum eigenstate and then minimizes
the expected value of energy with the constraint
that the expected value of momentum be fixed. We
thus find the minimal polaron energy as a function
of expected momenta. It is not immediately clear
that such an EP relation represents an upper
bound to the actual values and this has been the
basis for skepticism concerning the results of
this procedure. We shall show that, under rea-
sonable assumptions, such EP relations do re-
present upper bounds to the actual lowest energy
of the Hamiltonian, evaluated at the expected mo-
mentum of the trial state.

Consider simultaneous eigenstates of H and P:
H ~p;t&=~, (p) ~$;~&
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and
Jl

may choose Y. such that P, (X) = (0& and have

Q l&ly&=E. ((&&), (12)

where the index ( symbolizes any remaining quan-
tum numbers in the system and gives bands of en-
ergy denoted by F~. We will take &

= 0 to give the
ground state of the polaron, E,(g) ~E,(g), and
find an upper bound to E,(P}

Define K =-8- X ~ 0, for which

k„l P;g& =K„-.,{P)IP;g&

and

K, ,,(P)=E (5) —X 0.
For some arbitrary X, we find the minimal value
of K-z(P) by

v~K, ,,(P) I, , = v f,E,(P) I, —x = 0

and note that the quantity vf)E~(P) I,
—=v, (P) is the

polaron velocity. To find minima for reasonable
E&(P} we require

v'„Kt.,(P) lr, = vr v~(P) I, =1/m„, )0.
Jh

Since the 5 is Hermitian, we take the
I
5;I& to

form a complete orthonormal basis and can write
an arbitrary trial state as

c, (&)I&;t&, (11)
sC'

with normalization

Ql&&= Z lc(RI'=I
~it

and expected momentum

))))=-p)'l, I)') I'

Consider the quantity

K, ;«&& Ic((V
iC'

By the definition of & =0, K&,,- K&.&, so that

Kr;0(II&
I ci(V

The minimal value of K&,,(P) is given by II = Iy, (7),
where V,(P,(7)) =7.:

In the case that Iy, (7) is multiple valued, we must
pick that value which gives the smallest K);.0(P,(K))
where c~(PD(X)} is not vanishing.

Using the definition of K&, we rewrite the in-
equality as

If (I(I& is in the range of Po over its domain 7., we

B. Weak-coupling theory

In the regime of weak coupling, the polaron en-
ergy-momentum relation is usually computed by
a suitable perturbation series or by a variational
method due to Lee, Low, and Pines. ""Use of
ordinary perturbation theory is questionable, as
it ignores the degeneracy due to phonon emission
at polaron velocities greater than the lattice sound
velocity. As discussed in relation to the piezo-
polaron, ' degenerate perturbation methods (such
as the Tamm-Dancoff theory) for acoustic polarons
account for this degeneracy, but place its onset
at the wrong energy. Owing to this problem, we
shall do weak coupling by variational methods.
Lee, Low, and Pines use a trial state similar to

) —e if) re R &r )
I
0) (13)

where

8(r)= g(f-e""a--ff e "'at)
Q

generates a lattice deformation about the electron
position and IO) represents the phonon vacuum.
Minimizing the energy ()})I)IH I)})f)& by varying f;
gives

f;=Q;('q'+~;-q v& ', -

where v=P+Q~ql f;I'. The energy and momentum
in terms of the velocity v, are

(E) = Iy ~ v v' —gQ';(-—'q'+ iv; —v ~ q) ' (l4)

and

5=v+ $ qQ';(-,'q'+iv; —v q) '.
a

Using ~;=
I q I

and Q- = (4vn/v) Iq I
we find (for v

(])

(15)

which is the desired upper bound.
VVe have found an upper bound to the actual

ground-state energy for all momenta in the range
of the function Il, (K}. Assume that m, i« = Vmf)E, (P))0
for all 0 where the c, (P) are significant. Pre-
sumably c~(P) will be peaked around (5&, which
is always much less than ~, so we want m, ', &0
for IP I

«)i. In this region we may invert v, (P)
to find that P, (X} can take on those values of IVI

This assumption about the actual ground-
state energy E,(P) is reasonable in that we con-
sider 0 only near the band edge and have no rea-
son to expect energy bendovers in this region.

(E) = P ~ v ——,'v'+ (1+3v'+ )i'/8)in
/

+ (1+3v')ln -v(v'+3)ln8n» )i/2+ 1 —v 1+v, ()i/2+ 1)'-v'
( /4 —2))37TV )i/2+ 1+v 1 —vi 1—

(16)
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1+, , (I —3 '+ 't'3))n n(I —3 ')ln +2 'ln, + ( 12 —I))
x/2+ 1 —v, 1+v 3 (x/2+1)' —v''

3w v x 2+1+v 1-v 1-v'

Examination of these solutions shows that as the
polaron velocity approaches the sound velocity
(v-1 in our units), the energy-momentum re-
lation does not become linear but rather ap-
proaches a critical value (momentum P, on Fig. 1),
beyond which no solutions exist. ' This is due to
the fact that Eq. (15) does not have a Cauchy prin-
cipal value when v &1 but has a finite value when
v- 1 for v& 1. This is unlike perturbation theories
where the onset of singular integrands usually
allow one to generalize the energy off the real
axis and find the principal value plus an imagin-
ary part, corresponding to a quasiparticle with
a lifetime. The meaning of the behavior here is
not clear.

generates a lattice deformation about 5, the aver-
age position of the electron. The electron wave
function is P~(r, H) = e'~'I)(r- 5), which gives a
nonvanishing expected momentum corresponding
to a polaron velocity v. We choose g so that g*
=I) and fd'r

~

I) ~' =1. As discussed in Sec. III A, we
minimize the expected value of energy with the
constraint that the expected momentum is fixed.
This is simply done by minimizing ((il& ~ K& ~ g) for
fixed X while varying d& and v.
We find

de =Q~o~()d. - I( g)
'

and

C. Strong-coupled theory

In the strong-coupling regime, one assumes
that the electron responds much faster than the
lattice (adiabatic approximation), so the lattice
sees only the average position of the electron. '
In this adiabatic limit, the quantum fluctuations
of the electron and lattice are neglected and the
resulting theory is similar to the classical theory.
We assume a moving Pekar state:

~
y ) —g(r g)es(% )

~

0) (18)

where

where

p, = fd're«')I(r))'.
In terms of the velocity v, the results are

&E)= T+ &0& ~ v- -',v'

—QQ~2 pm (~~- v ~ q)-'

and

)31)=i~ $1)I)tpl( I —2 2) *

(19)

(20)

I
I
I
I
I
I
I
I

I
I
I
II

sc(+ '-
I

Pc
3

I

P~
3

Pl'

E,sc(O}

g)R}— P(t)p'
' d*n. nt)i

ekar Theory(l)

K&~)
2w

Limit of
heory

kar Theory (2)
x~s2 )

&E) =~~'+% '

and

+ —x'(1 yx'R' ~ ~ ) (1 v')-' v-21n
3r 1-v

(21)

where

7 = ,' fd'rg "V-'/-.

Although ~|t)~) is not a momentum eigenstate, the
upper-bound theorem in Sec. IIIA implies that
(E) as a function of &0) represents an upper bound
to the exact solution E,(P) if it is well behaved

(in the sense that m, '„&0).
Evaluation of Eqs. (19) and (20) gives

2

I /
I ~/

-Low-Pines Theory

(P )= v 1+,x (1—yx'R' ~ ~ )
3wv

~ 2 1 —v' '—v-'ln 1+v
1-v, (22)

FIG. 1. Energy-momentum relations fir variational
theories of the ADP polaron (not to scale).

Here P and y are numerical constants" which de-
pend on the exact form of I)(r), R is a measure
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of the width of g, and ~ is the wave-vector cutoff
from before. When a» & 3p/2w, the stationary
self-energy [E„(0)on Fig. 1 will be negative and
a bound state exists for all . Even if the self-
energy is positive (and no bound state exists) at
zero momentum, at some critical velocity, the
Pekar energy-momentum relation will pass be-
low the free-electron curve and bound states will
occur. The value of 8 which gives ground states
of minimum energy approaches a value somewhat
less than the lattice spacing w/» and represents
a highly localized state.

Comparison of the Pekar energy [Eq. (21)] and
the classical energy [Eq. (f)], keeping in mind
the dimensionless units of the quantum theory,
shows very close correspondence, as mentioned
earlier. The curve of (E) vs (5 ) has the pre-
dicted linear behavior in the asymptotic region
v-1:

(E&- l(P&l+,
' ln, ' l(P&l-' + ~ ~ ~ . (23)

However, for reasonable values of the parameters
(n- 10-', »-300), this is a region of large (0&.
The behavior of the Pekar theory for meaningful
momenta is nearly quadratic, with an extremely
large effective mass:

m, «-—1+ (2a/9w)»'. (24)

We show in. Sec. IIIE that the large mass is due
to an unphysically large lattice dilation and re-
lated to the highly localized nature of the Pekar
state for this polaron. This extreme localization
is more appropriate to the theory of the small
polaron and represents a violation of one of the
basic assumptions involved in the Frohlich formu-
lation of the la, rge polaron.

D. Interpolation theory

We consider a variational theory similar to
Buiminstrov and Pekar' which combines features
of the Lee, Low, and Pines trial state [Eq. (13)]
and the Pekar trial state [Eq. (18)] in order to
find an energy-momentum relation which inter-
polates smoothly from weak to strong coupling
for increasing momentum. Our trial state is:

where

8, (m) = P (d;8""a;-d*;8 "na;') ~

a

S,(r) =Q (fwe'w'aw —ffe-'w'a/),

(25)

(E) r + (P) v 2V' -g Q;(fw+ p;*b;)

and

+ g ~-„(b;fr*,p &+ b& fop,.)
(» =v+2 q(lf; I'+ lb; l')

(28)

(27)

where v is the electron kinetic energy

r = 2fd2w tI-*&'0

As in the Pekar theory, (E& and (P) represent an
upper bound to the exact solutions if the exact so-
lutions are well behaved. If we approximate p; by
a sharp cutoff at q =2 p., representing an electronic
localization of radius w/p, we find

and v will be the polaron velocity. As in strong
coupling, we minimize (t/&&l Kr

~ g,-& by varying d&,

f&, and v and find

d., = Q,.(,—gw) pw[s,.(s,.] p, [' —wq)) ',
&w= @&(1-

I pel')(~w swl-p, l') ',
and

V=X )

where s&=&u, —Y ~ g, wr,-=s, +-', g, and

pz= fd'r e"'
l g l'. Note that where p& is small,

the lattice distortion approaches the weak-coupling
(Lee-Low-Pines) form, and when p&- 1, the
strong-coupling {Pekar) form is obtained. This
implies that the electron tends to couple adiabati-
cally to the long-wavelength components of the
lattice deformation and more rigidly to the short-
wavelength {high- frequency) components, so this
theory should be an improvement on the simple
adiabatic approximation of the Pekar theory or
the rigid coupling of the Lee, Low, and Pines
method.

The expected energy and momentum are

(E) =—pp. +(P) ' v ——,v +3 (1+3V +K'/8)ln —(1+3v2+ p2)ln
8n ', , (1+»/2) —v, , (1+ p, ) —v

37Tv 1+» 2)+V 1+/ +v

and

—v(v + 3)ln 2 2 +—(4 —K/2) —pv(4 —ir) —g2ln
(1+K/2)'- v' Kv, 1+v

1+p. —v 2 1 —v
(28)
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(P) =—v 1+ ~ (1 —3v'+K3/8)ln —(1 —3v2+ p.3)in8n» 1+v/2 —v» 1+ p —v

3vv~ 1+v 2+v 1+ p+v

+ 2 )n, , + ( /2 —)) —2ln(g —))+IP 2v() — ) '+)
~ I,

(1+«/2)' —v' 3 2-x 1 —V

1+p ' —v' 1+v )
(29)

As discussed in the description of the Frohlich
Hamiltonian, we assume that all wave vectors and

momenta are near the center of the Brillouin zone

(~ P
~

«v) and that the lattice dilation remains in

the harmonic limit [& u(r) «1 for lattice dis-
placement u(r}]." We must examine the behavior
of the Pekar and interpolation theories to insure
that these conditions are satisfied.

To examine the lattice dilation we use the fact
that the deformation potential interaction is

H„, =D& u(r}=+Q&(a~+a &)e"~. (3o)

The average dilation is given by

n=-D '(&vIH .t 1&v& (31)

where
~
g&) is the trial state for the theory of in-

terest. For the stationary Pekar theory (v=0), we
have

2mw3 wD

3 D 12M' (32)

where M is the lattice mass. For typical physical
systems, ~„-0.3, which is well into the anhar-
monic region for lattice displacements. This large
dilation is a result of the localization of the elec-
tron and indicates that the extreme effective mass
in the moving Pekar theory is due to neglect of an-
harmonic terms in the lattice Hamiltonian.

where P is a numerical factor. It may be easily
verified that the weak-coupling theory is given by
p, -0 and strong-coupling theory is given by
i(, - v/2. In principle, we should choose the }(, for
each value of (P} that gives the lowest (E). Even
with p, fixed, however, we still have an upper
bound with an asymptotically linear energy-mo-
mentum relation. Examination of the behavior of
Eqs. (28) and (29} reveals that the lowest energy-
momentum curve is given by i(, -0 for (P) & P', and

i(, =s/2 thereafter (see Fig. 1). Thus the theory
does not smoothly interpolate between weak and

strong coupling, giving an abrupt transition where
the coupling extremes cross. However, the theory
does give a suggestive extension to the Lee-Low-
Pines theory beyond the critical momentum P, due
to an infinitesimal, but nonzero, amount of strong
coupling as v-1 and p. - 0, and represents an up-
per bound in this region.

E. Lattice dilations for adiabatic theories

The weak-coupling limit of the interpolation
theory (i(, —0) gives

16m p,
3

. 1+v
iftt LLP 3~Dv

(33)

3v(P -P,}
8n p,

' (34)

Clearly for a suitably small choice of p, , we can
insure that &„,«1 for all momenta ~P

~

«~. This
behavior is due to the fact that the linear EP re-
gion is the result of rapid growth of the lattice en-
ergy and its associated field momentum and not
the lattice dilation, which grows at a much smal-
ler rate. Thus we can have a self-consistent lin-
ear EP upper bound for the ADP polaron.

IV. CQNCLUSIONS

On the basis of energy-crossing arguments, 4 one
expects to find an asymptotically linear energy-
momentum relation for the ADP polaron. Classi-
cal analysis of the problem does show this type of
energy resonance for velocities approaching the
sound velocity. Quantum theories, however, have
yielded mixed results. The weak-coupling Lee-
Low-Pines theory gives an EP relation which halts
beyond a critical momentum, corresponding to a
polaron velocity equal to s. The strong-coupling
Pekar theory gives linear EP behavior in princi-
ple, but for the range of reasonable momenta, it
exhibits an anomalously large effective mass.
This is seen to be related to the extreme localiza-
tion and the resulting large lattice dilation of the
theory, inappropriate for a large polaron. We
consider an interpolation theory which also gives
a linear EP relation, due to an adiabatic strong-
coupling component in the trial state. This theory
seems to provide a linear upper-bound extension
to the Lee-Low-Pines theory and does not involve
the anomalous localization and lattice dilation of
the pure Pekar theory.

By limiting the electron localization in adiabatic
theories of the ADP polaron, we find that an

where ~«p is the dilation of the Lee-Low-Pines
theory. In the linear EP region (P»P, ) we elimi-
nate the velocity to find

16m p.
' 16m p.

'„„;,)C
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asymptotically linear EP upper bound seems to
exist, consistent with the assumptions of the
large-polaron formalism. The linear EP region
arises from the growth of the lattice energy and

its associated field momentum, not from the size

of the lattice dilation and the electron localization.
This suggests that the inclusion of anharmonic
terms in the lattice Hamiltonian could naturally
limit the dilation and localization of adiabatic
theories, while retaining linear FP behavior.
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