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Neutron-diffraction study of the static structure factor and pair correlations in liquid 4He
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An investigation of the structure of liquid 'He at saturated vapor pressure by means of neutron diffraction

is reported for 11 temperatures in the range 1.00 to 4.27 K. At each temperature, the static structure factor

S(Q) is obtained for 0.8 & Q & 10.8 A ' with an average statistical precision of 0.8% and with a residual

systematic error which is estimated to be &1%. Our results for S(Q) are in good agreement with the very

precise I-ray results of Hallock which cover the range 0.133 & Q & 1,125 A ' and with the requirement that
the corresponding pair correlation functions g(r), which we obtain from S(Q) by Fourier inversion, vanish

inside the core of the interatomic potential. The temperature variations of both S(Q) and g(r) show clearly

that the degree of spatial order in liquid 'He increases with decreasing temperature above the X point, 2.17

K, but then decreases with decreasing temperature in the superfluid phase. The latter behavior is believed to
be a consequence of the Bose-Einstein condensation. A comparison of our results for S(Q) and g(r) at 1.00
K with the results of theoretical calculations for T = 0 reveals significant discrepancies which indicate that

there is a greater degree of spatial order in liquid He than would be the case if the atoms interacted via

additive forces of the Lennard-Jones type.

I. INTRODUCTION

The static structure factor S(Q) and the corre-
sponding pair correlation function g(r) of liquid
'He have been extensively studied over the past
40 years by both x-ray-diffraction' "and neu-
tron-diffraction" "experiments, and the qual-
itative behavior of these quantities has been
reasonably well established. However, the quan-
titative accuracy of the results is not, in gen-
eral, sufficient to satisfy present requirements
for several different applications. One notable
exception is the very precise small-angle x-ray-
scattering results of Hallock" which, however,
cover only a very limited range of wave vectors,
0.133- tqI) - 1.125 A '. In addition, there appear
to be serious discrepancies among many of the
published values. For example, there exist
discrepancies among the reported values of the
height of the main peak of S(Q) of 16% near the
A, point and of 12% at lower temperatures.

One obvious need for accurate experimental
S(Q) and g(r) values is for the testing of theories.
In recent years there have been many theoretical.
calculations of S(Q) and g(r) for liquid 'He at
T =0. Most of these calculations have been based
on the use of variational wave functions of the
Jastrow type. ' More recently, results have
also been obtained by direct Monte Carlo integra-
tion of the Schrodinger equation ' and by the
use of Green's-function techniques. " A limited
number of theoretical results is also available
for finite temperatures. "'" The quality of the
results obtained from the more recent theoretical
calculations is now sufficiently high that the ex-
isting experimental values for S(Q) and g(r) are

no longer accurate enough to provide critical
tests or incentive for further improvements to
the theories.

Accurate values of the static structure factor
S(Q) are also required for normalization purposes
in experiments to determine the dynamic struc-
ture factor S(Q, ur) by means of neutron inelastic
scattering. An accurate absolute normalization
of S(Q, &u) is especially necessary if one wishes
to determine the effective pair potential in liquid
~He from an analysis of the frequency moments
of the experimentally determined S(Q, ~). The
lack of accurate experimental values for S(Q)
certainly hindered the attempt" to determine
the effective pair potential in this way.

A method was suggested some years ago""
for the experimental determination of the con-
densate fraction n, in superfluid 'He from the
temperature variation of g(r) at large r Once.
more, the values for g(r) obtained from existing
x-ray- and neutron-diffraction measurements
were found"' ' to be too inaccurate to provide
a critical test of the method or to yield very pre-
cise values for no.

In view of the above considerations, we under-
took a program to determine S(Q) for liquid 'He
at saturated vapor pressure over a wide range of

Q values with considerably higher accuracy and
at a larger number of temperatures than had
been done previously and, subsequently, to ob-
tain, by Fourier inversion, correspondingly
accurate g(r) values. In this paper we present
the results of this study and give a comparison
with available theoretical calcul. ations.

To determine S(Q) accurately by means of
neutron-diffraction measurements, the raw data
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must, in general, be corrected for empty-
cassette scattering, fast-neutron background,
various absorption and shielding effects, multiple
scattering, order contamination in the incident
neutron beam, inelastic scattering, variations
in the detector efficiency, incoherent scattering,
and instrumental resolution. The results must
also, of course, be properly normalized. In the
case of x-ray diffraction the correction for in-
elastic scattering is negligibl. e but this advantage
is offset by the existence of other corrections,
such as for brompton scattering and the atomic
form factor, which are not present for neutron
diffraction. In general, x-ray scattering is at a
disadvantage at large Q where the falloff in in-
tensity caused by the atomic form factor pre-
cludes accurate structure-factor measurements.
On the other hand, accurate neutron-diffraction
measurements are difficult at small Q owing
to the large background intensities which result
from the combined effects of the large beam areas
(typically 5 x 5 cm~) and the smail scattering
angles. The discrepancies among the previous
S(Q} results are, we believe, due more to dif-
ferences in the treatment of the necessary cor-
rections than to any basic disagreement among the
measurements themselves. The statistical ac-
curacy was also quite poor in many cases.

The high accuracy achieved in the present study
is due, in part, to improvements in the prescrip-
tions for making the above corrections and to the
availability of a modern high-speed computer
which al. lowed these prescriptions to be carried
out satisfactorily. A large amount of spectrom-
eter time (about three months) was also needed
to accumulate data which combine high statistical
precision with high instrumental resolution over
a wide range of wave vectors for several temper-
atures. In total we have determined S(Q) for
0.8 Q ~ 10.8 A ' at temperatures of 1.00, 1.38,
1.VV, 1.9V, 2.0V, 2.12, 2.15, 2.2V, 3.00, 3.60,
and 4.2V K with an average statistical precision
of 0.8% and with a residual systematic error
which is estimated to be less than lg.

Liquid ~He has a number of advantages over
other simple liquids as far as the determination
of S(Q) by neutron diffraction is concerned.
Firstly, He has ideal neutron properties, since
it is a totally coherent scatterer with zero ab-
sorption at thermal-neutron energies. Secondly,
the large zero-point motion resulting from the
very light mass reduces the density of l.iquid
4He to a point where it is structurally more close-
ly analogous to a dense gas than to an ordinary
liquid. As a result, the oscillations in S(Q) have
small amplitudes which decrease rapidly with
increasing Q so that the large-Q limit of S(Q)

can readily be reached. This enables one to ob-
tain a very accurate normalization and, at the
same time, avoid the truncation problems which,
for other liquids, complicate the Fourier analy-
sis required to determine g(r) from S(Q). In

the present study we have, for the first time for
any liquid, effectively reached the infinite-Q
limit since, to within the accuracy of our re-
sults which extend to Q =10.8 A ', the oscilla-
iions have died out beyond Q = 6 A '.

As a combined result of the high specific vol-
ume of liquid He (=46 A'/atom) and the small
scattering cross section (1.1 b/atom), the neutron
mean free path is very large (=42 cm). This al-
lows one to use a cylindrical specimen having a
diameter (4.44 cm in our experiments) compar-
able to the full beam width and still have high
transmission (=92@) and hence low muitiple scat-
tering (~1%). The advantage of cylindrical
geometry is that the shielding factors are, for
all practical purposes, independent of the scat-
tering angle and, together with the multiple scat-
tering, easily calculable. For other liquids,
high neutron utilization (which requires a large
specimen area) and high transmission can be
achieved only with slab geometry for which the
above corrections are much more complicated.

The only disadvantage of liquid 'He is the small
atomic mass as a result of which the correction
for inelastic scattering (i.e., the Placzek cor-
rection) is very large at the largest angles of
scattering (as much as =50% in the present
study}. The conventional method for making this
correction is not applicable to ~He so that we
have found it necessary to develop an alternative
method which is described in Sec. II together
with the other background material.

Details of the experiment are presented in
Sec. III and of the data anal. ysis in Sec. IV. The
results for S(Q) are given in Sec. V and the cor-
responding results for g(r) in Sec. VI. These
results are then compared with available theo-
retical calculations in Sec. VG, and some closing
remarks are made in Sec. VIII.

II. THEORY

The double-differential scattering cross sec-
tion, which describes the scattering of a neutron
of mass m„by a monatomic system of N atoms
from an initial state with wave vector k and ener-
gy ke = (Ilk}'/2m„ to a final state with wave vector
k' and energy Sc', is given by37

where b is the bound scattering length and S(Q, &u}
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denotes the dynamic structure factor. Here
Q=k —k' and (d =& —&' are the momentum and

energy (in units of I) transferred from the neu-
tron to the system in the collision and for a liquid

S(Q, (()) is, as indicated, independent of the di-
rection of Q.

In the present paper the quantity of primary
interest is the static structure factor,

s(Q)= f s(Q, )s
m co

20—

(h, s/2w)

from which one can obtain the pair correlation
function g(r) for the liquid via the relationship

s(r)=i ~ (S 'pr) 'f Q[s(Q)-i]si QrdQ,
0

,L
0 e

Q(A )

where p is the number density.
In principle, S(Q) could be determined ex-

perimentally from Eq. (2) using the dynamic
structure factor obtained from neutron-inelastic-
scattering experiments. However, in practice,
S(Q} can be determined more accurately from a
"diffraction" experiment in which one measures
the angular distribution of the scattered neutrons
without energy analysis. Apart from correc-
tions mentioned in the Introduction and discussed
in detail in Sec. IV, the observed scattering is
then proportional to the effective differential
scattering cross section,

'g 6 d6

where q(e') is the detector efficiency. It then
follows from Eq. (1) that

do'
=»'X(e, e},dQ err

where Q is the scattering angle and

(6)

6 j.(2

}((e,(}))= )I(e - (()) 1-— S(Q((d},&u}de,
~ CO

in which

(6)

Q((d) =k[2 —cu/e —2cosg(1 —(u/e}~']~'. (7)

Q((d) curves for the conditions of the present ex-
perimental study are shown in Fig. j. for various
values of (It}.

If the scattering were elastic, so that

S(Q, (s)) =S(Q)5((d),

where QQ=Q(0}, so that

QQ = 2k sin(p/2) . (10)

Although the scattering from a l.iquid is never
strictly elastic, the expressions (8} and hence
(9) are often good approximations for heavy
atoms.

In general, the integral (6) can be evaluated"
by first expanding the integrand in powers of ~
and then using the moment relations for S(QQ, (d).
In this way one obtains the familiar Placzek
expansion" in which the leading term gives the
static approximation, (9), and the remaining
terms represent the inelastic scattering correc-
tion. The latter constitute an expansion in pow-
ers of I/A, where A is the atom-to-neutron mass
ratio. This expansion is rapidly convergent for
many liquids but not for liquid ~He where A = 4.
For light atoms such as 'He one must, instead,
introduce a suitable model for S(Q, (d) and then
evaluate the integral (6}explicitly by either a
numerical or analytic method.

The dynamic structure factor of liquid 'He dif-
fers from (8) in two respects: Firstly, as a
result of recoil effects the center of the distribu-
tion is shifted to positive e in accordance with
the f-sum rule,

FIG. l. Kinematics of neutron diffraction in liquid
4He for the conditions of the present measurements. For
a given scattering angle ft}, the scattered neutrons follow
the corresponding Q(co) curve as shown above for selec-
ted (II values. The static wave vectors, Qo= Q(0), are
represented by the open circles and the corrected wave
vectors Q((d„) by the filled circles.

it would then follow from Eq. (6) that

X( P) =]i( )S(Q,), (9)

where R(s)„=(IQ)'/2m is the recoil energy, m

being the atomic mass. Secondly, the distribu-
tion has a finite width and a shape that is charac-
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teristic of th0 dynamics of the liquid. It is evident
from Fig. 1 that recoil effects are important at
large Q. On the other hand, the finite width of
S(Q, &u) and its precise shape give a negligible
contribution to the integral (6) for the present
experimental conditions since the incident neu-
tron energy (26.9 THz) is 2 orders of magnitude
greater than either the roton energy (0.18 THz) or
the average kinetic energy per atom (0.28 THz).
Thus we may adopt the model

1.2

1.0—

0.6—
O

X

0.4—

S(Q, s)) =S(Q)6((o —(u„/S(Q)), (12)
0.2—

which satisfies both (2) and (11). Since the recoil
term is important only at large Q where S(Q) = 1,
we replace &u„/S(Q) by &u„ in evaluating the inte-
gral (6). It then follows that

o.oL
0 30 60 90

f (deg]

120 150 180

(13)

where A = m/m„ is the atom-to-neutron mass
ratio. Finally, apart from a constant factor,
}(o(Q) is the free-atom differential scattering
cross section,

)
A [cosP+(A'- sin'P)~]'

(A+ 1)' (A' —sin'P) (15)

A comparison of the approximate result (13) with
results obtained from a numerical evaluation of
the integral (6) using a realistic model~ for
S(Q, ~) shows that the error in Eq. (13) is
s 0.5% for the present experimental conditions.

l.2
i

X(e, Q) =rl(e —s)„}S(Q}X.(@},

in which Q =Q(&u„) so that

I' 2A. ~2 cosP u2

Q =k~
A 1

1-
A 1

[cosQ+(A'- sin'Q}~']
~A. +1 A+1

(14)

FIG. 3. Free-atom differential scattering cross sec-
tion as a function of the scattering angle for various val-
ues of the atomic mass. The dashed line shows the re-
sult for an infinite atomic mass, i.e. , for a rigidly
bound atom.

Note that in the above treatment both the in-
tensity and the wave vector are corrected for
inelastic scattering effects. In the Placzek meth-
od,"'"on the other hand, only the intensity is
corrected, since the latter method is based on
an expansion about the static wave vector Q„
and the intensity correction depends on the deriv-
atives of S(Q,).

Figure 2 shows a comparison of Q for various
values of A (solid curves) with the static wave
vector Q, (dashed curve). A similar comparison
for go(Q) is shown in Fig. 3. A selection of
numerical values for the wave-vector correc-
tion Q, —Q, the inelastic scattering correction
1 —go(Q), and the detector efficiency q(e —&u, )
are given in Table I for the present experimental
conditions.

1.0
20

Ne III. EXPERIMENT

lU 06[
a

0.4

0.2

0.0
0 30

J
60 90 120 I 50 180

$ (deg)

FIG. 2. Corrected wave vector as a function of the
scattering angle for various values of the atomic mass.
The dashed curve show the static wave vector Qo which
corresponds to an in6nite atomic mass.

The measurements were carried out using the
triple-axis crystal spectrometer at the L3 ex-
perimental facility of the NHU reactor at the
Chalk River Nuclear Laboratories. The analyzer
crystal was removed so that the spectrometer
could function as a conventional double-axis
instrument. The scattering angle of the Be(110)
monochromator planes (mosaic spread 0.3') was
chosen to be 20& =44.1' which gave an incident
neutron energy Ife =111.1 meV. Thus e/2v =26.8V

THz, which corresponds to a wave vector k
= 7.323 A ' and a wavelength A = 2v/k = 0.8581 A.
At this wavelength the order contamination in the
incident beam is negligible (& 1%) so that no filter
was required. The scattered neutrons were de-
tected with a 'He proportional counter for which
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TABLE I. Representative values of various quantities used in the corrections to determine S(Q). The quantities are
dered in the text.

Effect Quantity 0.5 1.0 1.5 2.0 4.0 6.0 8.0 10.0

scattering angle
wave-vector correction
inelastic scattering correction
detector efficiency
empty-cassette scattering ~

fast-neutron background
multiple scattering '

0 (deg)
Qp-9 A ')
1 —Xp(ft') (%)
0(& —~„) (%)
Cp/C (%)
Cf/C (%)
C~/Ci (%)

4 8
0.01 0.01
0 0

69 69
97 53
41 19

3 3

12 16
0.01 0.02
1 2

69 70
20 6

5 I
1 1

25
0.04

70
10
1
1

51
0.08 0.26
7 15

71 73
8 8
1 1
1 1

73
0.66

28
76
11
1
1

103
1.48

45
80
15
1
1

Values for T=4.27 K.

the absorption efficiency at the incident neutron
energy was 69%. The angular collimations be-
tween the monochromator and specimen and be-
tween the specimen and detector were 0.37' and
0.31', respectively.

The liquid 4He specimen was contained in a
cylindrical aluminum cassette with its axis in
the vertical. direction and hence perpendicular to
the plane of scattering. The cassette had an
inner radius of 2.22 cm, a wall thickness of
0.025 cm and a length that exceeded the 5-cm
beam height. The transmission of the specimen
varied from 92% to 93@over the temperature
range of the present experiments. Cadmium discs
were suspended in the l.iquid at 0.74-cm intervals
to help reduce multipl. e-scattering effects.

The cassette was connected through a, large
valve to the bottom of a 4He reservoir which was
contained in a metal cryostat. The temperature
of the liquid 4He was controlled to within 0.01 K
by pumping on the reservoir and the temperature
was determined by measuring the vapor pressure
above the l.iquid. Measurements were carried
out with the He at 11 temperatures: 1.00, 1.38,
1.77, 1.97, 2.07, 2.12, 2.15, 2.27, 3.00, 3.60,
and 4.27 K. At each temperature, the number of
neutrons observed in the time required to ac-
cumulate a fixed number of counts in the incident
beam monitor was recorded for scattering angles
1.0' ~

Q
~ 124.0' in steps of 0.1 . The scattering

with the cassette empty at 4.27 K was similarly
determined for the same angles. During each
scan, the fast-neutron background was measured,
by automatically inserting a Boral and cadmium
shutter in the incident beam to absorb the thermal.
neutrons for 1.0' ~ fIt) - 20.0' in steps of 1.0' and at
larger angles in steps of 10.0'. Except at low

Q angles, the fast-neutron background was es-
sentially independent of angle, but it did exhibit
long-term variations with time due to changes in
the loading of the reactor.

Figure 4 shows a selection of our results. The

IO 000 —-————
y

———— —
t'
————~———

8000—

if) 6000

O~ 4ooo-

2000—

0
0 20 40 60 80 I 00 I 20 I40

SCATTERING ANGLE (deg)

FIG. 4. Observed scattered-neutron distributions.
The upper curve shows the total scattering with liquid
4He at 4.27 K in the cassette, the middle curve the total
scattering with the cassette empty at 4.27 K, and the
lower curves the corresponding fast-neutron back-
grounds. The latter appear as a single curve, since
th fast-neutron background is, except at very small
scattering angles, essentially the same for fu11 and
empty conditions

upper curve is the observed total scattering with
helium in the cassette at 4.27 K. This corre-
sponds to the quantity C in Eq. (16) below. The
middle curve is the total scattering with the cas-
sette empty (Cp) and the lower curve shows the
fast-neutron backgrounds for both full (C~) and
empty (C&) conditions. The latter appear as a
single curve on this scale since Cp f Cf.

The peaks in the two total. -scattering spectra
in Fig. 4 are the Debye-Scherrer peaks from the
aluminum cassette. At first sight, these peaks
might appear to present a serious problem but,
as we shall see in the following section, they are
actually an advantage, since they give a very
sensitive indication of whether or not one has
allowed correctly for the shielding of the cassette
by the helium. Aluminum, being a very weak
scatterer, is possibly the best material to use
for the cassette in such a study. One could use
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a material with essentially zero coherent elastic
scattering, and hence no Debye-Scherrer lines,
but the level of the incoherent elastic scattering
would then be considerably higher than the average
l.evel of the elastic scattering for aluminum. For
example, for vanadium it would be about four
times higher for the same wall thickness (which
is largely determined by machining capabilities}
and so comparable with the net scattering by the
helium. This would l.ead to poorer average statis-
tical accuracy as well as a possible systematic
error because of the uncertainty about the shield-
ing corrections. Note that the principal maxi-
mum in the 'He scattering is well clear of any
Debye-Scherrer lines and that a second weaker
maximum is also apparent in the raw data.

IU. ANALYSIS

The first step in the analysis of the diffraction
data is to determine the corrected single scat-
tering C„which is given by

C, = [(C —Cy) —B(C —C g)]D/A —C —C„.
(16)

Here C denotes the number of counts observed
in the time required to accumulate a fixed num-
ber of counts in the incident beam monitor when
the cassette is full. , C, is the corresponding
number of counts for the empty cassette, and
Cf and Co f are the corresponding fast-neutron-
background counts. The quantity B corrects for
the shielding of the cassette by the helium and"
A corrects for the shielding of the helium by it-
self and by the cassette. The factor D corrects
for the distortion of the monitor count by the
higher-order neutrons in the incident beam.
Finally, C corrects for the multipl. e scattering
and C„ for the order contamination. The theo-
retical expressions for A, B, D, C, and C„are
given in the Appendix.

Apart from effects of counting statistics and
instrumental resolution,

Ci=GX(e p}~

80

60 I.OO K

V)

40—
O

4. 27K

20—

0 I I I I

20 40 60 80
SCATTERI NG ANGLE (deg)

IOO I 20

the present paper.
The values of the shiel. ding factors A and B

depend on the density of the liquid and hence on
the temperature (see the Appendix). Thus, as
the temperature varies from 1.00 to 4.2V K, A
varies from 0.906 to 0.91V and B from 0.935 to
0.943. In the present experiment, order contam-
ination is negligible so that we can put D = 1
and C„=0. The calculated multiple scattering
C is shown in Fig. 5 for two temperatures. The
higher multiple scattering at the lower tempera-
ture is due primarily to the higher density. The
structure in the multiple scattering at 1.00 K
for /&40' is due to the presence of the sharp
phonon-roton branch in S(Q, ur) which is absent
above T„.

Figure 6 shows the corrected single scattering
C, at 4.27 K which was obtained from Eq. (16)
using the data shown in Fig. 4. The vertical
lines indicate the positions of the Debye-Scherrer

7000

6000—

FIG. 5. Calculated multiple scattering at 1.00 and
4.27 K. The arrow denotes the position of the main dif-
fraction maximum which has a corresponding corrected
single scattering of 7631 counts at 1.00 K and 6023 counts
at 4.27 K (see Fig. 6).

(16)

Combining Eqs. (13}and (1'I}, we see that

where G is the normalization constant which is
proportional to the density of the liquid and to the
monitor setting. The root-mean- square fluctua-
tion in C, due to the effect of counting statistics
is given by

[C+C~+B2(CO+ C»}]'2D/A .

4000—

O 3000—

2000—

IOOO-

20
I I I I I

40 60 80 IOO I20 I40

SCATTERING ANGLE (deg)

S(q) = /CG( rle&u„)XO(p) ~

This is the basic relation for the experimental
determination of the static structure factor in

(19) FIG. 6. Corrected single scattering at 4.27 K obtained
from the data in Fig. 4 as described in the text. The
vertical lines indicate the positions of the Debye-Scher-
rer peaks from the aluminum cassette.
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rl(e') =rl(0)(1 —e " '), (20}

where A.
' is the wavelength corresponding to the

scattered neutron energy Ac' and

A., = A. /p c d . (21)

peaks for the aluminum cassette. A small (=1/p)
adjustment (with respect to the calculated value)
in the value of the shielding factor B was neces-
sary to make the effect of the Debye-Scherrer
peaks vanish completely in C,. The need for such
an adjustment can easily be attributed to slight
inhomogeneities in the incident beam and the fact
that the cassette is not a "perfect" powder. The
large statistical fluctuations in C, at small scat-
tering angles are due to the fact that, in this
region, 0 anC and C are almost equal. and the fast-
neutron backgrounds are very large (see Fig. 4
and Table I}.

The detector efficiency is of the form

Here po is the 'He number density in the de-
tector, 00 is the absorption cross section per
atom at the wavelength ~0, and d is the thickness
of the detector. The constant factor rj(0) can be
absorbed into the normalization constant G in
Eq. (19). For the detector used in the present
experiments, X, =0.73 A.

The static structure factor S(Q) was determined
for each temperature from Eq. (19) with the
normalization constant G chosen such that S(Q)
=1 at large Q. The results for the range 0.8 ~ Q
~10.8A ' are shown in Fig. 7. The results for
Q &0.8 A ' have large statistical uncertainties
for reasons discussed above and hence have not
been included. Above 0.8 A ', groups of neigh-
boring S(Q) values were averaged to improve the
statistical precision as much as was possible with-
out significant loss of resolution. The final statis-
tical precision of the S(Q) results shown in Fig. 7
is on the average, 0.8%. The residual systematic
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error, which is due primarily to the approxima-
tions involved in the derivation of Eq. (13), is be-
lieved to be less than 1%. All other corrections
(detector efficiency, multiple scattering, etc. )
have an accuracy that is much better than 1%. The
various corrections are summarized in Table I.

2.0

l.6

l.2
O

S(0)= pksTKr,

where p is the number density and E& the iso-
thermaI. compressibility. Equivalently,

S(0) =yksT/mc2,

(22)

(23)

V. STATIC STRUCTURE FACTOR

Figure 7 shows a comparison of our present
S(Q) results (filled circles) with the earlier x-
ray results of Gordon, Shaw, and Daunt' for
temperatures of 1.4, 2.4, and 4.2 K (open cir-
cles). While there is approximate overall agree-
ment between the two sets of measurements, our
results for each temperature show a well-defined
second maximum in S(Q) near Q =4 A ' which is
absent in the x-ray results. The x-ray results
also give somewhat larger values for the height
of the main maximum.

The value of the static structure factor at
Q =0 is given by~

0.8

0.4

0.0
0 2 3 4

TEMPERATURE ( K }

where y is the specific-heat ratio, m the atomic
mass, and c the adiabatic sound velocity. The
triangles ia Fig. V show the values of S(0) cal-
culated from Eq. (23) using available data~'4~
for y and c.

The dashed curves in Fig. 7 have been obtained
by interpolating the smal. l-angle x-ray-scattering

FIG. 8. Temperature dependence of S(0) calculated
from Eq. (23) with the help of the data for y and c in
Refs. 43 and 44. The arrows denote the position of the
lamMa point (T„=2.17K) and the critical point (T~= 5.20 K).

TABLE II. Sxnoothed values of the static structure
factor of liquid 4He at 1.00 K. A complete listing of all
our S(Q) values, both smoothed and unsmoothed, is
available in Ref. 45.

I.6

l. 5—

Q (A.-&) S(Q) S(Q)

0.0
0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
F 05
2.1
2.2
2.3

0.037
0.043
0.051
0.073
0.099
0.123
0.145
0.165
0.184
0.204
0.227
0.256
0.293
0.340
0.399
0.472
0.566
0.695
0.865
1.069
1.263
1.377
1.387
1.365
1.290
1.203

2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.2
3 4
3.6
3.8
4.0
4.2
44
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8

1.116
1.061
1.021
0.989
0.965
0.949
0.941
0.942
0.959
0.978
0.997
1.012
1.018
1.014
1.005
0.995
0.988
0.985
0.986
0.989
0.992
0.995
0.997
0.999
1.000
1.000

l.4—

l. 2—

2.06—

C3
204 —0

2.02—

ii
II II ii

Ilail

II

2.00

TEMPERATURE (K)

FIG. 9. Temperature dependence of the position Q~
and the height S(Q~) of the main maximum in the static
structure factor of liquid 4He. The filled symbols are
obtained from neutron-diffraction measurements: pre-
sent results (circles), Ref. 14 (triangles), Ref. 15
(squares). The open symbols are obtained from x-ray-
diffraction measurements: Ref. 7 (triangles), Ref. 9
(squares), Ref. 10 (circle).
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results of Hallock'~ which cover the range 0.133
0

& Q- 1.125 A '. These results are in good agree-
ment with our present measurements in the region
of overlap and with the compressibility limit.

Finally, the solid curves in Fig. 7 were obtained
from our results by means of a cubic-spline-
fitting program. These curves represent, in ef-
fect, the best smooth curves that are consistent
with our S(Q} results within the known statistical
errors and which join smoothly onto the small-
angle x-ray results. The smoothed S(Q) values
for T = 1.00 K are listed in Table II. A complete
listing of the S(Q) results for all temperatures,
both smoothed and unsmoothed, is availabl. e in
Ref. 45.

There are only two regions where S(Q) shows
any appreciable temperature dependence. The
first is at small Q (s0.5 A '}where S(Q) in-
creases monotonically with increasing tempera-
ture. The temperature variation is strongest
at Q =0 where, as shown in Fig. 8, S(0) diverges
at the critical point T,. The second region in
which S(Q) varies significantly with temperature
is near the main diffraction maximum, Q =Q .
It can be seen in the upper part of Fig. 9 that
S(Q„}is largest near T& and decreases on both
raising and lowering the temperature. The in-
crease in S(Q) on cooling from 4.27 K in the
normal phase is a consequence of the increased
spatial order of the atoms resulting from the
increased density and the decreased thermal
motion. Our results show clearly that the spatial
order reaches a maximum at or near T& and
then decreases on cool.ing in the superfluid phase.
As discussed in Refs. 34-36, this decrease is
an expected consequence of the Bose-Einstein
condensation. This loss of spatial order on cool-
ing through T& has also been clearly observed
in a recent x-ray study by Robkoff et al."
and is also exhibited, though with somewhat
less clarity, by the results of several of the
earlier studies'"'"'" which are also shown in

Fig. 9. As we mentioned in the Introduction,
there is clearly a large degree of scatter in the
earlier results for S(Q ) and this was our main
incentive for carrying out the present study.
On the average, our new results are about an
order of magnitude more accurate. The lower
part of Fig. 9 shows that, to within our experi-
mental uncertainties, the wave vector of the
maximum is independent of temperature and
has the value Q =2.04+ 0.01 A"'. The earlier
estimates are in- reasonably good agreement with
this value although, as was the case for S(Q ),
they exhibit much more scatter than our new
results.

Note that our results suggest a dip in S(Q )

TABLE IH. Values of the pair correlation function of
liquid 4He at 1.00 K. A complete listinL of all our g(r)
values is available in Ref. 45.

g(&) g(&)

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.2
4 4
4.6
4.8

0.001
0.013
0.043
0.105
0.190
0.305
0.449
0.598
0.757
0.916
1.061
1.183
1.277
1.339
1.371
1.377
1.363
1.334
1.296
1.253
1.208
1.123
1.046
0.979
0.927

5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
9.4
9.6
9.8

10.0

0.892
0.879
0.886
0.910
0.942
0.976
1.006
1.029
1.042
1.047
1.045
1.037
1.025
1.011
0.998
0.987
0.979
0.976
0.977
0.982
0.988
0.995
1.002
1.007
1.010
1.011

at T =1.77 K. The results of Hurst and Henshaw"
(solid triangles) which, among the earlier results,
agree best with our new values are also consistent
with such behavior. This dip should, however,
be checked by further measurements and should
not, at present, be considered to be a well-
established feature.

VI. PAIR CORRELATION FUNCTION

The static structure factors obtained as de-
scribed in the previous sections have been
Fourier analyzed via Eq. (3) to determine the cor-
responding pair correlation functions g(r). Our
values for T =1.00 K are listed in Table III.
A complete listing of our g(r} values for all tem-
peratures can be found in Ref. 45.

The method of analysis is illustrated in Fig. 10.
The solid curve shows the smoothed S(Q) distribu-
tion for 3.60 K obtained as described in Sec. V.
The corresponding g(r) curve obtained by a nu-
merical integration of Eq. (3) is shown by the
solid curve in the inset part of the figure. The
variation in this latter curve for r &2 A ' is a,

spurious effect caused by the fact that the quantity
being Fourier analyzed is Q[S(Q) —1] rather
than S(Q) itself, and the quantity so obtained is
r[g(r) —1] rather than g(r). The errors in S(Q)



NEUTRON-DIFFRACTION STUDY OF THE STATIC STRUCTURE. . .

l.6

l.4—

l.2

I.O
C3

~ 08
I.6

l.2—

0.6

0.4

0.2 —--

0.0
0

0.8

~ 04

0.0

—0.4
0

l

6
Q (A )

I I

4 o 6
(A)

I I

8 10 12

FIG. 10. Static structure factor S(Q) of liquid He at 3.60 K and the corresponding pair correlation function, g(y) (in-
set). The dashed curves illustrate the degree of self-consistency of S(Q) and g(r) as discussed in the text.

at large Q are thus greatly amplified in the analy-
sis and this leads to an enhancement of the er-
rors in g(r) at small r. In fact, g(r) must be
essentially zero when r & 2 A ' because of the
strong hard-core repulsion of the atoms in this
region. We thus adjust g(r) as indicated by the
dashed curve in the inset part of Fig. 10, and
when we then perform the inverse Fourier trans-
formation we obtain the dashed S(Q) distribution.
The latter agrees with our original distribution
within 0.5% for Q & 1 A ' which is consistent with
our earlier estimate of the size of the possible
systematic error in our S(Q) results. Thus, to
within the experimental uncertainty, our S(Q)

results are consistent with the requirement that
the corresponding g(r) vanish inside the core of
the interatomic potential. [The deviation of the
dashed S(Q) curve from the correct solid curve
at small Q is simply a consequence of the trunca-
tion of g(r) at large r in performing the inverse
Fourier transform. j

Figure 11 shows a comparison of our results
for g(r) at 1.38 K (solid curve) with those ob-
tained from x-ray diffraction' at 1.4 K (dashed
curve). Note that the spurious oscillations in
g(r) at small r are very much larger in the x-ray
results and that there are also substantial dif-
ferences at larger r. The main discrepancy in
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FIG. 11. Comparison of our present results for the
pair correlation function of liquid 4He at 1.38 K (solid
curve) with those obtained by Gordon, Shaw, and Daunt
(Ref. 9) from x-ray-diffraction measurements at 1.4 K
(dashed curve).

FIG. 12. Temperature variation of the pair correla-
tion function of liquid 4He between 1.00 and 4.27 K. The
g(~) results for all 11 temperatures lie within the solid
band. The temperature variation at the main maximum
is shown by the inset part of the figure.
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the corresponding S(Q) distributions (Fig. 7) is
the presence of the weak secondary maximum in

0
our results near Q =4 A ' which was not observed
in the x-ray measurements. We see clearly that,
as expected, one must have good accuracy in
S(Q}at large Q in order to obtain good accuracy
ln g(r) at small r

When we plot our g(r} distributions for the 11
different temperatures on the same graph we find
that they all lie within the solid band shown in

Fig. 12. Aside from the spurious variations at
low r, the largest temperature variation in g(r)
occurs at the main maximum where it amounts
to only about 4%. The temperature variation
of this maximum is shown in the inset part of
the figure. The position of the maximum in g(r)
is independent of temperature and has the value
~ =3.47~0.03 A.

As was the case for S(Q ) (Fig. 9), the varia-
tion of g(r ) also shows (and even more directly)
that the spatial correlations of the atoms increase
on cooling in the normal phase, reach a maximum
at or near T„, and then decrease on cooling in
the superfluid phase. The latter behavior re-
flects the fact that when atoms condense into the
zero-momentum state they effectively no longer
contribute to the spatial correlations of the atoms
which give rise to the oscillations in g(r). Note
that g(r ) exhibits a typical "order-parameter"
type of variation with temperature in the super-
fluid phase. As mentioned in the Introduction,
a method for obtaining the condensate fraction
n, (T} in superfluid 'He from the temperature
variations of g(r) at large r was proposed"'"
several years ago. Following this method, values
of no(T) for seven temperatures in the superfluid

1.0
Cf

0.5

0.0
0 2 3

Q (A j

FIG. 13. Comparison of our unsmoothed results for
S(Q) at 1.00 K (circles) with the results of variational
calculations by Chang and Campbell (Ref. 27) for T= 0.
The dashed curve is calculated for the Lennard-Jones
potential and the solid curve for the MDD-2 potential of
Bruch and McGee (Ref. 48). These potentials are shown
in the inset part of the figure. Both calculations employ
the same Jastrow form for the ground-state wave func-
tion.

1.5—

1.0

0.5

0,0
0 2 3

Q(A )

FIG. 14. Comparison of our unsmoothed results for
S(Q) at 1.00 K (circles) with the results of variational
calculations by Chang and Campbell (Ref. 27) for T= 0.
The solid curve is based on the Jastrow form for the
ground-state wave function while the dashed curve in-
cludes three-body factors as well. Both calculations
employ the MDD-2 model for the pair potential.

phase have been obtained4' from the present re-
sults for g(r) in the range r a 6 A.

VII. COMPARISON WITH THEORY

In the past 15 years, following the pioneering
work of McMillan, "there have been many varia-
tional calculations" "of g(r) and S(Q) at T =0.
Most of this work is based on the Lennard-Jones
model for the interatomic pair potential. The
parameters in the assumed ground-state wave
function g are determined by minimizing the
energy integral, and the pair correlation function
is then obtained by integrating ( g~' over the po-
sitions of all but two of the atoms. The various
calculations differ both in the detailed form as-
sumed for g and in the numerical and analytical
techniques used to evaluate the many-dimensional
integrals which occur. However, they all yield
rather similar results for g(r} and S(Q), the
discrepancies being F10%.

In the present article we shal. l confine our at-
tention to the recent work of Chang and Campbell"
which, we believe, is representative of the best
of the variational calculations. Figures 13 and
14 show a comparison of some of their results
for S(Q) with our measurements at 1.00 K. In
Fig. 13 the wave function is taken to be a Jastrow-
type product of two-body factors. The dashed
curve is then obtained for the Lennard-Jones
potential and the solid curve for the Morse dipole-
dipole (MDD-2) potential of Bruch and McGee."
Although the latter potential leads to better agree-
ment with our results, the main peak is in both
cases lower in intensity and at a larger wave
vector than is observed. In Fig. 14 the calculated
curves are both based on the MDD-2 potential
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FIG. 15. Comparison of our unsmoothed results for
S(Q) at 1.00 K (circles) with the results of Monte Carlo
calculations by Nhitlock et al. (Ref. 30) for T= 0. The
calculations are based on the Leonard-Jones model for
the pair potential.

FIG. 17. Temperature charge of our S(Q) results be-
tween 2.12 and 1.00 K (circles). The solid curve is the
result of the theoretical calculation by De Michelis et al.
(Ref. 32) of the change between T= 0 and 2.1 K.

but differ in the structure of the wave function.
The solid curve employs the Jastrow form for g
while the dashed curve includes three-body
factors as well. The effect of the latter is to
improve the agreement with experiment but sig-
nificant discrepancies remain.

An alternative approach to the theoretical cal-
culation of g(r) and S(Q) is based on a direct
numerical integration of the many-body Schro-
dinger equation. ' ' Here one considers a finite
but reasonably large number of atoms (e.g., 256)
in a region of space whose dimensions are de-
termined by the density of interest. With peri-
odic boundary conditions, the Schrodinger equa-
tion is first transformed to an integral equation
by the standard Green's-function method and the
latter equation is then solved numerically with
the help of a Monte Carlo algorithm. The ad-
vantage of this method is that, for a given model
of the interatomic potential, the accuracy of the
final results is in principle limited only by

l.5—

I.O

0.5

0.0
2

r (A)

FIG. 16. Comparison of our results for g(r) at 1.00 K
(circles) with the results of Monte Carlo calculations by
Nhitlock et al. (Ref. 30) for T= 0. The calculations are
based on the Le»~~d-Jones model for the pair potential.

statistical sampling errors. At present, results
obtained by this method are available for both
the hard- sphere and Lennard- Jones
potentials.

The calculations of Whitlock et al."using the
latter potential give the S(Q) and g(r) curves shown

in Figs. 15 and 16, respectively. The agreement
with our results is certainly much better than
for any of the variational calculations. There
are, however, still significant discrepancies
as regards the heights and, to a lesser extent,
the widths of the principal peaks. These dis-
crepancies can probably be attributed to the in-
adequacy of the Lennard-Jones pair potential. It
is not cl.ear, however, whether one simply needs
to use a better pair potential or if it is also
necessary to include many-body forces. As one
can see from the curves in Fig. 13, the dis-
crepancies in Fig. 15 are very similar in size to
the differences that can result from using dif-
ferent pair potentials. Although our earlier at-
tempt" to determine the effective pair potential
in liquid He directly from neutron-inelastic-
scattering data did not give a unique result, it
did indicate that none of the commonly used pair
potentials (e.g. , Lennard- Jones, Buckingham,
and Morse) was adequate and that many-body
forces were probably very important.

It seems very improbable that the differences
between theory and experiment can be attributed
to the fact that the calculations are for T =0
while the experimental results are for T =1.00 K.
One would expect, and our new results certainly
suggest (see, e.g. , Figs. 9 and 12), that there
will be little change in S(Q) and g(r) below 1.00 K.
At present, the most we can conclude is that the
experimentally determined S(Q) and g(r) imply
that a somewhat greater degree of spatial order
is present in liquid 4He than should be present if
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the atoms interacted via additive forces of the
Lennard- Jones type.

De Michelis et al."have recently presented the
results of a calculation of the temperature varia-
tion of S(Q) due to the thermal excitation of rotons
out of a Jastrow ground state. Their results for
the change in S(Q}between T =0 and 2.1 K are
shown by the curve in Fig. 17 which is seen to be
in reasonably good agreement with our values
for the change in S(Q) between 1.00 and 2.12 K.
To the extent that the calculations are correct,
this agreement is further evidence that S(Q)
changes very littl. e below 1.0 K.

VIII. CONCLUSIONS

In this paper we have presented new results
for S(Q} for liquid 'He at saturated vapor pres-
sure covering a wide range of wave vectors
(0.8- Q ~ 10.8 A '}and temperatures (1.00 ~ T
~ 4.27 K). The values are, in general, much
more accurate than those obtained in the numerous
earlier studies, and this accuracy has been
achieved by applying improved correction pro-
cedures to raw data having high statistical. ac-
curacy and obtained under conditions of good
experimental resolution. These new results show
a weak but well-defined second maximum at
each temperature. We have al.so effectively
reached the infinite-Q limit since the oscillations
in S(Q} have died out beyond about 6 A '. Com-
bining our values with the values of S(Q) known

from thermodynamic measurements and Hal-
lock's" very precise values for 0.133 & Q & 1.125
A ' gives essentially a complete picture of
S(Q) for each of the 11 temperatures.

The achievement of the infinite-Q l.imit has
allowed us to obtain a very accurate normaliza-
tion of S(Q) and also, in inverting S(Q} to ob-
tain g(r), to avoid the usual truncation errors so
that the spurious oscillations in our g(r) at small
r are much smaller than in earlier studies. To
well within the estimated errors, self-consistency
between S(Q) and g(r) is obtained when one re-
quires that g(r) be zero for small r.

The variations with temperature of both S(Q)
and g(r} show clearly that the degree of spatial
order in liquid 4He increases on cooling in the
normal phase, reaches a maximum at or near
T„=2.17 K, and then decreases on cooling in the
superfluid phase. This reversal is undoubtedly
a consequence of the Bose-Einstein condensation.

Our new results for S(Q) and g(y) are sufficiently
accurate to provide critical tests of the excellent
theoretical. calculations that have appeared in
recent years. On detailed comparison, we find
that the results for S(Q) and g(r) obtained by
Whitlock et al."by direct Monte Carlo integra-

In this Appendix we discuss the calculation of
the correction terms in Eq. (16). In general, the
shiel. ding factors A and B depend on the scattering
angle Q and on the size and shape of the speci-
men container. In particular, for the cylindrical
cassette employed in the present experiments,
they depend on the dimensionless variables
Zr and Z, t, where r is the radius and t the wall.

thickness of the cassette, Z =po is the total cross
section per unit volume of the liquid (i.e., the
inverse mean free path), where p is the number
density and a the total cross section per atom,
and Z, is the corresponding quantity for the
cassette.

For situations such as those that occur typically
in x-ray diffraction where Zr and Z, t are ~1,
the expressions for A and B are extremely com-
plex, "especial. ly when the incident beam is
narrower than the cassette. " However, in the
present experiments where Zr = 0.05 and Z, t
=0.003 and where the incident beam is slightly
wider than the cassette, we can use the series
expansions"

1 —(8/w}(-', Zr+Z, t)+ $(Zr)'+ ~ ~ ~ (4 =0),
(A 1)

1- (8/w)( —',Zr+Z, t)+2(Zr}'+ ~ ~ ~ (Q =w),

and

B=(

r
1 —(4/w)(Zw) + (Zr)'+ ~ ~ ~ (P = 0),

(A2)
1 —(4/w)(Zr) + 2(Zr)'+ ~ ~ ~ (Q = w) .

The advantage of a cylindrical cassette is that
the g dependence of A and B enters only in second

tion of the Scrhodinger equation are in substan-
tially better agreement with experiment than the
results given by any of the numerous variational
calculations. They still, however, underestimate
the heights and overestimate the widths of the
principal peaks in S(Q} and g(r). There thus
appears to be a greater degree of spatial order in

liquid He than the calculations indicate there would

be if the atoms interacted via additive central forces
of the Lennard-Jones type. We feel that the cal-
culations can most readily be improved by using
more realistic interatomic interactions, and we

hope that the results presented here will en-
courage further calculations not only for T =0,
but for finite temperatures as well.
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(A4)

order. Since (Zr)'= 0.0025 we can, for all
practical purposes, neglect the Q dependence and

simply use average values for A and B.
The monitor-distortion factor is

Z „(~~) (A3)

where I„/I, is the ratio of the nth-order flux to
the first-order flux in the incident beam, and the
order-contamination term is given by

Ic =G Z ~ x(&'&, 4),I,
where G is the normalization constant in Eq. (lv).

The multiple-scattering correction is
c =G&x.(& 0) (A5)

where 4 is the multiple-scattering ratio" which
depends somewhat on the density but is typically
of the order of 0.02 for the present experiment
conditions. Finally,

X2(ey 0) = n(e') —&l(k& i ')«'i (A6}
0

in which ft, (k, k') is the double-scattering func-
tion. " This latter quantity is an integral over a
product of S(Q, &o)'s, one for each collision, and
is evaluated numerically with the help of an
empirical model for S(Q, ur} as described in Ref. 40.
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