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Simple parametrixed model for Jahn-Teller systems: Vacancy in p-type silicon
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We propose a simple and quite general model for charge states and their activated relaxation in localized
defects. Applying the model to the analysis of %atkins's electron-paramagnetic resonance and deep-level-

transient-spectroscopy observations of vacancies in p-type silicon, we obtain two constraints on the model's

three parameters. This allows us to conclude (1) that the vacancy is indeed an "Anderson negative-U"
system as we had earlier calculated, and (2) that the Jahn-Teller stabilization energy of the V neutral

vacancy cannot substantially exceed 0.8 eV.

I. INTRODUCTION

The detailed electronic structure of the isolated
vacancy in silicon is as fundamental a problem
for understanding deep-level defects as were the
isocoric donor levels in that same material for
understanding shallow defects. Much of what is
known about it has been obtained from Watkins's'
observations of the pressure and temperature de-
pendence of the electron-paramagnetic-resonance
(EPR) signal strength and its thermally activated
decay. His studies make it clear that Jahn- Teller
distortions of atoms near the vacancy are impor-
tant in determining the structure of this particular
point defect. We have recently proposed a model
for this system, ' based on Watkins's ideas and
certain extensions of them made necessary by the
results of our self-consistent calculations of the
silicon vacancy, ' and showed that, within our com-
putational accuracy (0.1-0.2 eV), our calculations
agree with Watkins's experiments in P-type ma-
terial. Qne of the interesting consequences of our
work was the prediction that the vacancy in silicon
might exhibit Anderson "negative-effective-U" be-
havior, 4 in which Jahn- Teller relaxation over-
comes the Coulomb-energy cost when a second
electron is added to the state. In such a system,
capacitance-transient experiments would charac-
teristically reveal the liberation or capture of
two holes for each vacancy.

In this present work, we approach the problem
from a complementary and more general direc-
tion. We make no theoretical estimates of model
parameters, but instead focus on general features
of the kinetics and statistical mechanics of the
model. itself, describing it for the first time in
adequate detail. In the end, we fit its parameters
to Watkins's experiments. The resulting fit, while
not unique, does put an upper limit of about 0.21
eV on the Jahn-Teller stabilization energy of the
V' center in silicon. This limit is appreciably
smaller than what Watkins's experiments led him

to infer. It must be understood, however, that
his inferences were based on theoretical estimates
of the motion of atoms adjacent to the vacancy in
response to externally applied strain. ' By con-
trast, the upper bound we obtain here depends in
no way on knowledge of lattice stiffness or re-
sponse, but is based directly on the thermal ex-
periments themselves.

The essential physics is that there are states
associated with the vacancy which, when they are
filled, cause the lattice to deform in response to
the presence of the added localized charge. The
resulting problem —interaction of a localized state
with a deformable imperfect lattice —is an old one,
and a series of important papers describe its
solution. Huang and Rhys' calculated the nonrad-
iative decay rate of the F center in the alkali hal-
ides, making the simplifying assumption that all
of the phonon modes involved in the transition had
the same frequency. Lax' critically analyzed the
approximations commonly made in studying prob-
lems of this type and developed a formalism which
could be used when the phonon modes involved in
the interaction were distributed over a continuous
spectrum of frequencies. Kubo and Toyazawa'
independently developed essentially the same for-
malism as did Lax for dealing with the phonon
continuum, and discussed its application to radi-
ative transitions in useful detail. Their formalism
is still widely used for studying specialized as-
pects of the problems. '

The papers cited above considered transitions
in which the electron changes from one localized
state to another. The idea that the same formal-
ism could describe nonradiative capture and re-
combination, i.e., transitions between delocalized
states and the localized state on the defect, was
contributed by Henry and Lang, "who calculated
activated cross sections for these processes using
the simplified form of theory in which a single
coordinate describes the response of the lattice.
This same sort of model is used by Pons and
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Makram-Ebeid" for calculating the effect of elec-
tric field on phonon-assisted tunneling rate of
electrons from deep levels in GaAs.

Qur intent here is to describe how the activa-
tion energy and the occupation of the localized
state depends on the Fermi energy of the system.
We also wish to describe a situation in which the
state of interest may be occupied by zero, one, or
two electrons. We abandon, at the outset, any
attempt to obtain actual cross sections or to de-
scribe transitions in which tunneling occurs. This
allows us to describe the lattice in completely
classical terms, a description which is simple
enough to make clear what the new features are
and yet direct enough to suggest how the rigorous
quantum-mechanical treatments should be extended
to include the ideas we are proposing.

In the next section of the paper, we describe the
basic model for the silicon vacancy in the simplest
possible way, using a single coordinate and its
conjugate momentum to describe the lattice, and

building in the essential features of the states
which we believe are associated with the vacancy
in p-type silicon. At the end of the section we
explain why we think our model may be applicabl. e
to a large number of other deep levels in addition
to the vacancy. In Sec. III we describe the statis-
tical properties of the model and in Sec. IV we
discuss fitting the parameters of the model to
experiment.

H. THE SIMPLEST CLASSICAL MODEL

Our basic model for the vacancy state in p-type
silicon builds on the fact that self-consistent cal-
culations of the neutral undistorted vacancy re-
veal that a three-fold orbitally degenerate state
of T, symmetry resides in the gap, and that for
neutrality, this state must contain two of the six
electrons it could accommodate. Although mech-
anically stable when empty (the V" charge state),
occupying that state with one electron, yielding
V, or with two electrons, yielding V', produces
a situation which is unstable with respect to Jahn-
Teller distortions. These split the T, level into
a singly degenerate low-energy state of B, sym-
metry and a doubly degenerate higher-energy
state of E symmetry. In p-type material, only
the lower-energy state can be occupied. This
picture is, aside from the reference to V", ex-
actly what Watkins has proposed for the vacancy
in p-type silicon. '

We treat the lattice motion classically, which
is all that is necessary to get activation energies.
We expand to second order in the singl. e lattice-
displacement parameter. This neglect of anhar-
monic effects is a simplifying assumption, justi-

fied at this stage only by the lack of compelling
evidence that they are needed here.

The coordinates of our model are Q, the amp-
litude of the Jahn-Teller distortion, P, the mo-
mentum conjugate to Q, and NT, the number of
electrons (0, 1, or 2) occupying the B, level. In
order to discuss the statistical occupation of the
vacancy, we must include an electron reservoir
as part of the system. We specify transfer ener-
gies as follows: p. is the energy to transfer an
electron from the top of the valence band to the
reservoir, &, (Q) is the energy to transfer an elec-
tron from the top of the valence band to the B,
level when the level. is initially empty and the
lattice distortion is Q, and &, (Q} is the energy re-
quired to transfer a second electron to the 8,
level when it already contains one electron. Equi-
librium transitions in which only XT changes,
leaving occupation numbers for all other states
of the system fixed, imply compensating changes
in the occupancy of the Fermi reservoir. The
total energy of this part of the system E(Q, P,NT}
is expanded to second order in Q. Because the
state of the crystal at Q =0 is of I', symmetry and
the distortion Q is purely symmetry lowering, the
linear term in the energy is contributed only by

&, and &,. Thus, we have

E(Q, P &NT
= 0) =P /2M+ ~kQ &

E(Q& P&Nr = 1)= P /2M+ qkQ + e, (Q) —I&&

E(Q, P, NT= 2) =P~/2M+ 2kQ +e, (Q)

+ ~.(Q) —2 I& ~

(»)
(lb)

(1c)

where

+E(Nr) -NTu & (2)

E(0) =0, E(l) =a~-E~&

E(2}= 2e„+U- 4E~ &

Because of e-e repulsion, we expect e, (Q} &e,(Q),
but we do not expect that this difference will be
strongly dependent on Q. Therefore, we shall
set e, (Q) =&,(Q)+ U, where Uis a constant. We
expand e, (Q) to first order so that &, (Q) = e„-VQ.
These last two assumptions render the quadratic
Q dependence of the system indepencent of NT.
Although we do not expect the spring constants to
depend strongly on NT, the assumption of neg-
lecting the NT dependence altogether should, at
this stage, be regarded as a plausible simplifi-
cation which will undoubtedly be reexamined when
it becomes possible to calculate total energies
with sufficient accuracy. Inserting the forms for
e, (Q) and &,(Q} into (1) gives

E(Q&P, NT)=P /2M+~k2( Q- NTV /k}
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and E~ -=V'/2k.
A useful configuration- coordinate diagram which

one might consider for this system is that in which
the potential-energy part of the total energy,
namely E(Q, P =0, NT}, is plotted as a function of Q
while NT labels the three curves. Such a plot cor-
responds to the usual configuration-coordinate
diagram in many ways. As we shall see below,
the minimum energy on each curve determines
the equilibrium occupation of each state NT, and
the lowest of the three minima identifies the
ground state of the system. Because E(Q, P, NT)
depends on p. , however, the state NT for which
the system energy is lowest depends on p, , as is
illustrated in Fig. 1 (top and middle) using para-
meters as calculated in Ref. 2.

We let E„(Ii)= E(NT) —Nr Ii denote the minimum
energy on the NT curve. By plotting E„(Ii)vs Ii"T
as done in Fig. 1 (bottom), we can determine which

NT is the ground state for any value of p, and thus
determine the p, dependence of the equilibrium
charge state of the vacancy.

Ne should note at this point that our model is so
simple that it is actually quite general. It assumes
a degenerate level at an energy e~ above the val-
ence band which necessarily produces a lattice
distortion when occupied (Jahn- Teller theorem).

I.O

We postulate a repulsive energy U between two
electrons occupying the level. Electrons in semi-
conductors are enough delocalized that one does
note expect the model parameters to depend
strongly on occupancy; hence the Jahn- Teller en-
ergy for double cocupancy is just four times E~,
the distortion energy for single occupancy. By
the same argument we expect U to be reasonably
small. If only energy is measureable, our model
is described by three parameters eL, U, and E»,
which are few enough to be fitted by a small num-
ber of experiments. The model may well be ap-
plicable to a great many deep levels in semicon-
ductors. Note that the well-known effective-mass
acceptor levels are formally of this type. How-

ever, the spread-out character of their wave
function is usually thought to reduce the Jahn-
Teller coupling. For heavy impurities such as
In in Si which are bound to about the same extent
as the vacancy, spin orbit splitting can quench
substantial Jahn- Teller distortion. Light elements
such as 0 in GaP might be another example for
strongly Jahn- Teller distorted systems.

III. STATISTICAL TREATMENT

Now we turn to the statistical description of the
system. The equilibrium probability distribution
is the canonic one, "

0.8 s(Q, P, N ) =C exp[ E(Q, P, N )/-k T] (4)

0.6
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with the normalization constant C being chosen so
that P J &dQdP =l. The probability that the
vancanc$ is occupied by NT electrons is given by
intergrating (4) over all phase space QP. Intro-
ducing uF =k/M, we ob-tain

&(Nr) = (2vksTC/~} exp(- [E(Ng-NT p]fksT)

(5a)
exp[-['E(Nr) Nr Ii]/ksT)-

P exp[ [E(Nr} Nr Ii-)/ksT)-
NT~

An alternative statement of (4) and (5} is

s'(Q, P, Nr) = &P(NT) exp[-&(P, Q, NT)/ksT],
lT Q

(6a)

where
—0.4 I

0.3 O4 e(P, Q, Nr) =P /2M+ ik(Q —NTV/k)'. (6b)

FIG. 1. Total potential energy E(Q,NT) as a function
of distortion q for three different charge states OVT

= 0, 1,2, i.e. , p~, P+, P ). Two situations for different
Fermi-level position are shown (top and middle figure).
The bottom panel shows the equilibrium energies as a
function of Fermi-level position. The parameters used
in the plots are calculated in Ref. 2.

This latter form is useful when the lattice has
achieved thermal equilibrium while the occupation
distribution a (NT) has not yet had time to eIluili-
brate to the form given by EIl. (5). This condition
may occur at l.ow temperatures when charge re-
laxation is a thermally activated process.

Consider some of the general features of such
a process. Suppose that the vacancy in the state
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Q, P, N~ undergoes a transition to the state Q',
P', N~=N~+1. There is some other state in the
system [call it ({)a(r),a„]which supplies that extra
electron. It can do so if it is filled, which brings
in its average occupation factor fo(ea). There is
an inherent rate for the transition, which we de-
note by M'„(QPNr; Q'P'Nr), using the subscript
R to denote the other state involved. According
to microscopic reversibility, M„ is the same for
QPN~-Q'P'N~ as for Q'P'N~-QPN~. The one-
electron transition conserves total energy, which
means that E~ =E~~, where

Eror = q(P, Q)Nr)+ E(Nr)+ ea,

E~r = e(P'Q'Nr)+E(Nr) -=e'+E(Nr).

(7a)

(Vb)

Thus R„(Nr -Nr}, the total rate of transitions
N~ -N~ via the state R, is obtained by multiplying
the initial probability fo(a„)sk(Q, P,N )rby the in-
herent rate M'„and a delta function to conserve
energy, then integrating over all initial phase
space QP and all final phase space Q'P':

Ra(Nr -Nr) = (P(NY)f/' )

x dQ dP dQ' dP' exp -~ k~T)

x M~ (QPN» Q'P'Nr) &(a( + &E-e)x

(8)

where

n, E =E(Nr+1) -E(N—r) —c„. (9)

For the reverse transitions, the role of primed
and unprimed states is interchanged, the sign of
4E is reversed, and the state gR must initially
be empty.

Ra(Nr Nr) =
2 dk(Nr)[1-fo(e„)]

1T

dQ' dP' dQdP exp —6' apT

x M'„(Q'P'Nr; QPNr) 6(c- nE-e') .
(10)

The integral in (10) is equal to exp(nE/ksT} times
the integral in (8); this follows by using the &

function to replace &' by & —AE and invoking the
microscopic reversibility symmetry of M'„.

When the situation is an equilibrium one, the
rates of forward and back transitions via the state
g„are equal. Equating the rates in (8) and (10)
gives

s'(Nv) fo(~R)
}
exp(-nElk T) .

Since in equilibrium, the occupation probability
for the state gR is given by the Fermi function

f (e„)=(exp[(& —p)jk, TJ+1}',

combining (9), (11), and (12) gives

(12}

&(N~ =N~+ 1) exp(-[E (Nr + 1)-g]/ksT}
(Nr) exp[-E(N~)jksT]

(13)

which is exactly what the statistical distribution
(5) predicts.

Now let us specify other general features of the
transition probability M„, arguing on the basis
of a classical picture which is closely related to
the Born-Oppenheimer adiabatic approximation.
We may suppose that the actual electronic transi-
tion is of short time duration, and that the force
F(f} it exerts on the lattice is an impulsive one
[np = f, ,F(f)dt « 0, n Q = f, Q/Mdt = 0] .
This introduces a 6(Q —Q') into the integrand.
Considering also the relative mass of the electron
and the lattice, even the change in P is likely to
be small. As an approximation to the small range
of P' that can result from a given P, we insert
a 6(P P') time-s a g(P), which represents the
range of P', into the integrand. This reduces
the integral in (8) to the form

exP( xX (kx-fdPe'xP( P'/2Mk T)e (P), -
(14)

where

x„=-',+nE/2E (15)

and where Cs(P) = $(P)M~a/V, the arguments of
M'„being fixed in accordance with the three delta
functions.

Since the exponential in the integrand of (14) is
sharply peaked about P= 0, we can replace Ca(P)
in the integrand by (1) (0} and complete the evalua-
tion of the integrand using"

tdP exp(-P' /2Mks T) = 2vMks T"'.
The expression for (8) is therefore

1/2

Ra(Nr Nr + 1) = -2 a'(Nr)f o(aa) 4 a(0)
7T Q

x exp(-x'„E~/ksT) (16a}

and the corresponding expression for (10), where
the integral differs by a factor of exp(n. E/k T), is

kR„(Nr+1-Nr) = (P{Nr+1)[1-fo(ga)]C)a(0)
7l

x exp(-yRE~/ks T), (16b)

where

&R&~ -&R&~ —~& ~
2 = 2

Again, a configuration-coordinate diagram is
useful, this time, to describe the transition pro-
cess. In Fig. 2 we plot the potential energy part
of E~r [Eq. (Va) with P set equal to zero] vs Q
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Since fo(es) is the Fermi function (12), while y is
given by (1V) and nE by (9), this second line can
be rewritten as
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FIG. 2. Total potential energy E(Q, N~) as a function
of Q for two different charge states Nz, N~+&. The
characteristic activation energies x2Ezz and y2Ezz are
indicated as defined in the text.

and, on the same axes, the potential energy part
of E~r [Eq. (Vb} with P set equal to zero and Q'
set equal to Q]. Then one finds that, just as in
the standard treatment of thermal-activated cros-
sings, the energy x'„E~ which appears in the ex-
ponent of (16a) is the energy difference between
the crossing point and the minimum of the initial, -
state curve (Nr), while the energy y'„E~ which
appears in the exponent of (16b) is the difference
between the crossing point and the minimum of
the initial-state curve (Nr+ 1).

Equation (16) contains another temperature-
dependent factor, namely fo(z„), whose tempera-
ture dependence may be sufficiently exponential-
like, that it alters the activation energy from the
&'„E~ or y'„E~ which appears explicitly in Eq.
(16). For example, suppose that at low tempera-
ture, (z„—p)/ks T is large enough that we can
approximate fo(e„) by exp[-(es- p)/ksT] and

[1-fo(za}] by 1 if a„)p, while for z„(p, we
approximate fo(e„) by 1 and [1-fo(r)] by exp
[-(p,-e„)/ksT]. Then the activation energies as-
sociated with (16a) and (16b), respectively, appear
to be

(Nr -Nr+1)«r =x'„Ezr+ (zs p)8(za- p)

( r+1-Nr)«r =yREzr+(p, —zs)8(p —qs),

(18a)

(18b)

where 8(z) = 1, 0 for z )0, (0.
The actual. transitions N~ -¹~will proceed via

all states gR which can supply or accept the elec-
tron needed. Thus, the total rates are

R(N )) +))=( ) tp(Nj-)

k
R(Nr+ 1 -Nr} = 8)(Nr+ 1)

x exP([E (N +r1)- P,-E(Nr)]/k T]

&&+f&&(zs}4s(0}exp(-x'„E~/ks T}.
R

(19b)

Note that the summations in (19a}and (19b}are
identical.

For the vacancy in p-type silicon, there are
only two types of states gR energetically available
to contribute to the transition rate. One of the
states gR might be an acceptor whose energy lies
low in the gap. For this state to be involved, the
inherent rate M'„(QPN„-Q'P)Nri) must not vanish.
But the quantum analog of this inherent rate is
essentially the matrix element of the nuclear ki-
netic-energy operator taken between the Born-
Oppenheimer adiabatic states. From this, we
can infer that the rate will depend strongly
on the overlap between the wave function gR and
the vacancy wave function g~~, i.e., the wave func-
tions of the two states whose occupancy changes
during the transition. Thus, direct transfer of
an electron between an acceptor and the vacancy
can be important only if the acceptor concentra-
tion is great enough that a given vacancy has an

acceptor sufficiently nearby.
At low acceptor densities, it is far more likely

that the state gR involved in the transition is one
of the valence-band states. Let us consider the
sum in (19}where the states contributing are those
in the valence band. At low temperatures and p,

in the gap, we can replace fo(es) by 1, and can
consider the exponential to be a sharp enough
function of z„so that we can replace 4„(0) in the
summation by 4)&(0), where R denotes the energy
which contributes most strongly to the sum. As-
suming a density of states p(e) at the top of the
valence band, we have

Qf (z„)4)„(0}exp( xE /k T)-
xg[f (z„)4„(0)exp(-x'„E /k T)

R

(19a}
where

0
=4 &(0) p(&)de exp[-(a —z)'/A], (20a)

x'„E~ =-(a- e}z/A (20b)



3568 G. A. BARAFF, E. 0. KANE, AND M. SCHLUTER 21

and where, from (9) and (15),

a = E (N~+ I) +E~ —E(N~},

A=4E k, T.
(21a)

(21b)

2

+ U 2

JT

(24c)

(24d}

The method of evaluating the integral in (20a) de-
pends on the sign of a (a numerical evaluation is
always possible). If a &0, then the main contri-
bution to the integral comes from & near 0, i.e.,
from the top of the valence band. An approximate
evaluation is then obtained by expanding the ex-
ponent to lowest order, after assuming a density
of state p(e) =cd-e near the top of the valence
band:

J p(e}de exp[- (a - &}'/A]
OO

Then (19) becomes

= c x"'dx exp[-(a~+ 2ax)/A]
0

c exp(-a'/A) .
21l' 20

R(N~ N~+I} k" 4 o(0)c
(PPlr) {I+[E(N~+ I)-E(Nr)]/E~}"' a

x exp(-nike 1) (22a)

R(N~+ I-N~) k" '4 o(0)c
(N +1) {1+[E(N +r1)-E(N, ))/E~}"' '

x exp( P/ka T), - (22b)

where Co(0) denotes C„(0}evaluated for a state at
the top of the valence band and where e and P, the
activation energies for the charge relaxation pro-
cesses, are given by

1 E(N~+1)-E(N~)
2 2E JT

JT

1 E(N, ) E(N, +1)-
2 2E n+ ~ ~

JT

(23a}

(23b)

(0 —1} =
(0

— )Z

(1 —2) =
(1

— }E

(24a)

(24b}

The activation energy o. is exactly the difference
in energy from the initial-state minimum (N~) to
the crossing of the N~ —M~+1 configuration-co-
ordinate curves, calculated as in Fig. 2 with the
state gR taken at the top of the valence band.
Similarly, P- p, is exactly the difference in energy
between the initial-state minimum (N~+ I}to the
crossing of the N~ —N~+ j curves. The extra en-
ergy p, is the added activation energy needed to
produce the hole which is captured inthe N~+ j.
-N~ transition.

In summary, we use (3) in (23) to obtain the four
activation energies associated with this system:

Clearly, when an activation energy less than p, is
observed, the associated process must involve
hole emission from the vacancy to the valence
band, and not hole capture.

I et us digress briefly to suggest what happens
in this classical model of the lattice if, instead
of a single lattice coordinate Q and its momentum

P, there is a continuum of lattice deformations
Q„with their associated momenta P„spring
constants k„and masses M, . In that case, the
lattice part of the energy in (1) and (2) would be-
come a generalized quadratic form which could,
in principle, be diagonalized. One would still
arrive at the same distribution function (5b) but
the distribution function (6a} would take the form

x exp[-e(Q„P„Nr)/kn T],

where co& is the frequency of the jth normal mode,
j=1,. . . ,N.

Although there is a (1/T)" dependence to this
distribution function instead of the I/T, there will
be more integrations over the coordinates when we
construct rates, as in Eqs. (8), (10), and (16),
and the result will be, as in (16), an overall T "'
prefactor. Kubo and Toyazawa show that the quan-
tity analogous to the &RE~ or yRE~ activation en-
ergy which appears in (16) is the difference be-
tween the lowest energy at which the two config-
uration-coordinate potential. -energy hypersur-
faces cross and the energy minimum of the initial-
state hypersurface. Their proof will apply here
when the algebra is generalized to include more
than one normal coordinate.

IV. FITTING THE PARAMETERS TO EXPERIMENT

The first experiment to be fitted is the acti-
vation energy for the decay of the V' EPR signal
in In-doped siiicen (p. =0.16 eV) which Watkins has
measured as 0.057 eV, ' and which he ascribes to
hole emission (a transition Nr =1 -2 via capture
of an electron from the top of the balence band).
Once we postulate the existence of V", another
channel of V' decay, namely V'- V" must be con-
sidered. However, the activation energy for this
channel (24c) is greater than p, because a hole
must be present in the valence band before it can
be captured by the vacancy. The numbers just
quoted rule out this channel for V' decay. The
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TABLE I. Characteristic energies of Jahn-Teller
distorted vacancies obtained by fitting two independent
experiments to the three parameters of the model {see
text). The magnitude of Ez& (column 1) is to be regarded
as the remaining independent variable. Values below
the dotted line can be ruled out by the existence of a
deep-level-transient-spectroscopy (DLTS) signal in
gallium-doped silicon.

2

fL, + U

3
E'I

4
U

6
E(0/++ )

0.0500
0.1000
0.1500
0.2000

0.2068
0.3510
0.4849
0.6135

0.1612
0.2280
0.2793
0.3225

0.0455
0.1230
0.2056
0.2911

0.0545
0.0770
0.0944
0.1089

0.0840
0.0895
0.0821
0.0680

0.2500
0.3000
0.3500
0.4000

0.7387 0.3606
0.8615 0.3950
0.9825 0.4266
1.1020 0.4561

0.3782
0.4666
0.5559
0.6459

0.1218
0.1334
0.1441
0.1541

0.0497
0.0283
0.0046

-0.0210

possibility of V' decay via direct transfer between
the vacancy and an In acceptor should also be
small, and so we are led to accept Watkins's as-
signment of the 0.057 activation energy to V' de-
cay via hole emission. From (24b), we have
[(&„+U)/2E» —1]'E» =0.057 eV. This condition
is conveniently regarded as fixing (a„+U) as a
function of E~, and we exhibit this in columns 1
and 2 of Table I.

The second experiment to be fitted is the activa-
tion energy of 0.13 eV which Watkins observes by
deep-level-transient- spectroscopy (DLTS) mea-
surements in p-type silicon. " Watkins has sug-
gested to us privately that the transition being ob-
served here might be the V"-V' transition which
we had proposed, ' and has suggested that at these
DLTS temperatures, after the initial V"- V'
transition, the subsequent V'- V transition is so
rapid that only the V"- V' step is observed as an
activated process in DLTS. This suggestion seems
reasonable, and from (24a), we obtain e'„/4E»
=0.13. This condition is conveniently regarded as
fixing &„ as a function of K», and we exhibit this
in column 3 of Table I.

Columns 4, 5, and 6 of Tabl.e I give certain quan-
tities which can be calculated from entries in col-
umns 1,2, and 3. Column 4 gives the Coulomb re-
pulsion term U=(e„+ U)-&L. Column 5 gives q
=-2E~ —U. If g)0, then there is no value of p. for
which V' is the ground state of the system, ' that
is, the equilibrium configuration changes directly
from V" to V' as the Fermi energy p, is raised.
Notice that g &0 for all entries in the table. This
implies that we do, in fact, have an "Anderson
negative-U" system in this entire range of E»
values. Column 6 gives E(0/++}=e„-2K»+U/2,
which is the value of p, at which the ground state

changes from V to V' as p, is raised.
Consider now the implications of being able to

observe a V"- V' transitions in DLTS. The es-
sence of a DLTS experiment is that the charge
state of the deep level should alter (producing an
observable change in the capacitance of a pn
junction} when all the mobile carriers are swept
away from the deep level. This means that its
charge state under equilibrium conditions (as de-
termined by the Fermi energy p.) and its charge
state under depletion (when all mobile carriers
are swept away) cannot be the same. Watkins's
experiments make it clear that the state is a hole
trap, close to the valence band, so that in deple-
tion, it is occupied with electrons, just as all the
nearby valence band states are fully occupied by
electrons when there are no holes present. For
this level to be observed, it must therefore be
in the state V' or V' during that brief time at the
beginning of the experiment when its occupation
is determined by p, . This requires that the value
of p be less than E(0/++) in the sample in which
the DLTS signa1 is observed. Watkins reports
seeing the 0.13-eV activation energy in p-type
silicon samples doped with boron (p =0.045), al-
uminum (p. =0.057), and gallium (p=0.065). We
conclude then that E(0/++) )0.065 eV. According
to Table I, this implies a value of E~ which is
less than 0.21 eV, and establishes, thereby, al-
lowable ranges of &~ and U.

Watkins also describes an attempt to measure
the excitation energy for the state V' in boron-
doped silicon by observing the strength of the EPR
signal from V' at a finite temperature and com-
paring it with the strength of the EPR signal when
the number of vacancies in the V' state has been
enhanced by flooding the sample with infrared
photons. ' The excitation energy for V' [i.e., the
amount by which the energy of the system in the
state V' exceeds the energy of the ground state
V when the Fermi energy p is less thanE(0/++)]
is, in our model,

E„=E,(P) Eo(P)=&L —E» -—I . ,

For a value of p, =0.045 eV and values of e„and
E'» from the allowed part of Table I (E» (0.21 eV)
we find 0.066& E„(0.077. If Watkins's measure-
ment does indeed determine the excitation energy,
then one wouM conclude that E = 0.006 eV. The
discrepancy, of 0.06 to 0.07 eV, between our pre-
diction and his measurements, would serve as a
measure of the validity of the assumptions, such
as those spelled out at the beginning of this paper,
on which our model is based.

There is interestingly a qualitatively new feature
which should be considered in redoing the excita-
tion energy experiment. If the equilibrium charge
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state in the boron-, or aluminum-, or gallium-
doped samples is V" as we believe, then the
mechanism for generating V' by flooding the sam-
ple with radiation cannot be capture of the holes
produced by ionizing the acceptors. It must be
instead direct optical excitation of an electron
from the top of the valence band to the vacancy.
This process requires a photon energy h~ &e„,
and so measuring the optical threshold for V'
production will give a direct measurement of one
of the parameters of our model. In In-doped
silicon, on the other hand, where p, =0.16, the
value F. (0/++ ) & 0.084 indicated in Table I predicts
that the ground state of the vacancy is V'. This
can be converted to V' by hole capture, so that
any illumination capable of creating holes in the
valence band should be effective in generating
the V' in an In-doped sample.

Qur conclusions are summarized in Table II.
Also included in Table II are the estimates of the
parameters which we had determined earlier. '
The largest discrepancy is in the value of eL,
which we had determined in part from the Green's
function self-consistent calculations and in part
from a guess that the atoms near the vacancy
might relax outward by an amount comparable to
that on the silicon (111) surface. It is likely that
our guess of an outward relaxation and the rise
of 0.1 eV, in the level position from 0.32 to 0.42
eV, was too generous an estimate. The main point
is that we have obtained a rather convincing de-

TABLE II. Comparison of calculated model parame-
ters (from Ref. 2) with bounds obtained by fitti~ to ex-
perimental data (from Refs. 1 and 14).

Model calculations
(Ref. 2)

Parameter fit to experiments
(Refs. 1 and 14)

E~T= 0.17 eV
&L, = 0.42 eV
U= 0.25 eV

V' metastable

EgT& 0.21 eV
E~~ 0.33 eV

U& 0.33 eV
V' metastable

ACKNOW LEDGMENTS

We would like to thank C. H. Henry and D. V.
Lang for their suggestions on an earlier account
of this work and G. D. Watkins for discussing his
work with us.

monstration that the Anderson effective U for this
system is indeed negative, and that we have ob-
tained a rather convincing limit on E~ of about
0.21 eV without relying on estimates of lattice
response and the uncertainties that they introduce.
We hope that by presenting this analysis, we will
stimulate further experiments which can uniquely
fix the parameters of this model. . We also suggest
a search for other systems which may be treated
in a similar way, in accord with the discussion
at the end of Sec. II.
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