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Scattering-theoretic method for defects in semiconductors. II. Self-consistent formulation and
application to the vacancy in silicon
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A self-consistent-field method for calculation of the electronic structure of localized defects in
semiconductors is described. The method is based on Green's-function theory and follows the original idea
of Koster and Slater and its developments by Callaway and coworkers. The Wannier functions of the
original formulations are, however, replaced by a more flexible set of linear combination of atomic orbitals.
This choice and an accurate evaluation of the perfect-crystal Green's function bring this method to the level
of sophistication, accuracy, and rigor characteristic of state-of-the-art band-structure and surface

calculations. The efficiency of the method stems largely from the fact that it exploits both the translational
symmetry of the host crystal and the short range of the defect potential. Thus, all bulk properties (e.g.,
band gaps, bandwidths, etc.) are built in from the start via a band-structure calculation and are preserved.
One then focuses on the changes produced by the defect potential, so that the interpretation of the results is
straightforward and unambiguous. In this paper, we report an application of this method to an isolated
vacancy in Si assuming no lattice relaxation. The unrelaxed vacancy introduces a bound state of T,
symmetry at 0.7 eV above the valence-band edge and a number of resonances and antiresonances within the
valence bands, A detailed analysis of these states in terms of their origin, orbital content, and of state and
charge densities is presented. We find that, while many of these states are individually quite extended, they
combine destructively to produce a very localized net change in the charge density. We also find that the
resulting localized potential can be well approximated by a negative of an atomic silicon potential extracted
from a self-consistent bulk calculation. Finally, we compare the relative merits of the three increasingly
more sophisticated, but also more costly, approaches to the defect problem, namely, (1) tight-binding, (2)
non-self-consistent, and (3) self-consistent calculations.

I. INTRODUCTION

The calculation of the electronic structure and
properties of a perfect crystalline semiconductor
is at present routinely carried out by using band-
theoretic techniques, which exploit translational
periodicity (Bloch theorem). Defects, on the other
hand, break the translational symmetry of the
host crystal, and, as a result, the calculation of
their electronic properties is a considerably more
complicated problem.

One class of point defects is treated very suc-
cessfully by the well-known effective-mass theory
(EMT}.' The theory works best for shallow donors
and acceptors whose perturbation potential is
dominated by the screened Coulombic tail re-
sponsible for the hydrogenic spectra near band
edges. The corresponding wave functions are very
extended in real space and hence highly localized
in k space. Recently, new developments in EMT
suggest that some moderately deep levels can also
be handled by similar techniques. ' For many
deep levels, however, the EMT assumptions are
not suitable and alternative techniques are neces-
sary to describe wave functions which are highly
localized in real space.

Two distinct approaches have thus far been
pursued for the study of deep levels in semicon-
ductors'.

One of them approximates a defect in a
perfect infinite solid with a finite cluster. The
3chr5dinger equation for the cluster is then solved
directly. A variety of techniques differing in the
way the cluster is terminated have evolved: free
clusters, e saturated clusters, " repeated
clusters, ' etc. Most of the work has been car-
ried out on clusters consisting of 4-70atoms. Clus-
ters of that size, however, do not contain the usually
quite extended defect wave function "" and are
therefore only suitable for qualitative analysis.
Recently, techniques became available for calcu-
lating local densities of states of clusters of 2000
or more atoms. 3'4 These techniques, however,
have thus far been used only with semiempirical
tight-binding Hamiltonians. Furthermore, none
of the cluster methods has proven to be particular-
ly efficient. The main shortcoming of all these
methods is that they must produce not only the
defect-induced states, but also all the bulk states
of the host, without exploiting the underlying trans-
lational periodicity.

In the second approach, the main shortcoming of
the cluster methods is eliminated by first calcu-
lating the host-crystal properties using band theo-
ry and then focusing on the defect-induced
changes, i.e., bound states, resonances, anti-
resonances, etc. A variety of techniques have
evolved along these lines as well. '"" With the
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exception of effective-mass theory, all other tech-
niques are variants of a method that is usually at-
tributed to Koster and Slater. " These techniques are
in principle especially efficient when the perturba-
tion potential U is localized, even though the in-
dividual wave functions may be extended. They
therefore complement EMT-type theories, which
rely on U having a dominant Coulombic tail.

Since the time of the original papers, the Koster-
Slater method has been generalized in the language
of scattering theory and Qreen's functions by Cal-
laway ' Both Koster and Slater' and Callaway'
developed the theory by introducing the host-
crystal Wannier functions to expand wave functions
and represent operators in matrix form. Callaway
and Hughes'9 subsequently applied the method to the
single vacancy in Si, but the construction of the
Wannier functions proved to be very tedious and
difficult, thus severely limiting the efficiency of
the method. For that reason only a few other ap-
plications have been made. A simplif ied tight-
binding description of the vacancy in diamond and
silicon was subsequently reported by Lannoo and
Lenglart'3 and by Rouhani et al. ,

4 but the approach
was not pursued further.

More recently, a variant of the Koster-Slater
method introduced by Qassani, Iadonisi, and
Preziosi (BIP) (Ref. 25) has been used extensively
by Jaros and Brand and by Lindefelt. " The rela-
tionship between the BIp method and the Koster-
Slater method is discussed in Refs. 5 and 28.
Even more recently, there has been renewed in-
terest in the original Koster-Slater method.
Bernholc and Pantelides28 (paper I) discussed the
use of an operator formulation which reveals
clearly that the role of the Wannier functions is
simply to represent operators in matrix form.
Thus, instead of the Wannier functions, other
more convenient sets can be used. A particularly
convenient choice is a set of linear combinations
of atomic orbitals (LCAO) which are appropriate
to carry out a band-structure calculation for the
host material. Using the same I.CAD set for the
point-defect problem is then equivalent to ex-
panding the perturbed-crystal wave functions in
terms of the host-crystal Bloch functions or
Wannier functions. In paper I, empirical tight-
binding Hamiltonians were used to study the ideal
vacancy (simple removal of an atom without lat-
tice reconstruction) in Si, Qe, QaAs. Since then,
we have extended the same basic idea to include
accurate self-consistent pseudopotential Hamil-
tonians for the host and to allow for electronic-
charge redistribution that accompanies the re-
moval of an atom, i.e., self-consistency for the
defect as well. The resulting self-consistent
Qreen's-function method for point defects has

been used to obtain a detailed description of the
unrelaxed vacancy in Si. The main results have
been reported in a Letter. 29 The publication of
that Letter coincided with the publication of a
Letter by ]3araff and Schluter who reported the
development of a similar LCAO self-consistent
Qreen's-function method and an application to the
unrelaxed vacancy in Si.

In this paper we give a full account of our formu-
lation of the self-consistent Qreen's-function
method and its application to the unrelaxed vacancy
in Si. This work brings the method to the same
level of sophistication, accuracy, and resolving
power as achieved by the most recent band-struc-
ture and surface calculations. In particular, the
iteration to self-consistency frees our results
from any dependence on the assumed similarity of
interactions in the perturbed system to those in the
unperturbed bulk crystal. In this work we prove
for the first time that the vacancy potential is very
localized, while the individual vacancy states are
quite extended. We also provide charge-density
maps of the various states and make a detailed
analysis of the electron distribution in the vicinity
of the vacancy. Finally, we examine the effects
of self-consistency and propose the bulk silicon
potential to be used in inexpensive semiquantita-
tive studies of vacancy complexes in silicon.

This paper is organized as follows. In Sec. II,
the general Qreen's-function formalism is de-
scribed. This section is based mainly on the
papers by Koster and Slater, '" Callaway, ' and on
general results of formal scattering theory. "' '
The representation of operators is dealt with in
Sec. GI and the choice of basis functions is dis-
cussed in Sec. P7. Our computational procedures
are outlined in Sec. V. Section 7I contains the re-
sults of the unreconstructed vacancy in silicon and
is followed by a brief summary and conclusions
(Sec. VII). In a series of appendices we give addi-
tional details of our calculations and compare our
formulation and results with those of Ref. 30.

II. SELF-CONSISTENT GREEN'S-FUNCTION METHOD

The Qreen's-function method assumes the
knowledge of the solutions of the perfect-crystal
Hamiltonian Ho:

where E~ and $~0- denote the band energies and
wave functions, respectively. The corresponding
Schrodinger equation for the imperfect solid is

Hg = (H'+ V)P=Eg.

We define the perfect- and perturbed-crystal
Qreen's operators by the relations



21 SCATTERING-THEORETIC METHOD FOR DEFECTS. . . . II. . . .

Go(E') =lim(E+ie —H0) '
p+

G(E') =11m(E+z —H) '.
6~ Q

Combining Eqs. (2)-(4), one immediately gets
Dyson's equation, i.e. ,

G (E ') = G (E ') + G (E ') UG (E ') .
The formal solution of Eq. (5) is

G(E')=[1—G (E')U] ~G (E').

(4)

(5)

(6)

induced by the defect

Ep

[p(E) —p'(E)] «
E~=—Im (I —[1—G'(E)U] ')G'(E)dE.r

This expression is of central importance for self-
consistent calculations. Similarly, the state
density N(E) is altered in the vicinity of the defect.
Using the relations '

Using the above definitions, one can immediately
obtain formal solutions of Eq. (2). For energies
within the band gapa, where G o(E) is real, the
solution is

0= G'(E)U4.

Within the band continua, one must add a solution
of the homogeneous Eq. (1) to Eq. (7). We thus
obtain the Lippman-Schwinger equation

4~= 4~+ G'(E')U4~ (8)

(n and k are not conserved in the perturbed crystal,
but are convenient labels for the scattering states).
The condition for the existence of bound states
is, from Eq. (7)

nN(E) = Tr[p(E) —p'(E)],

[G (E)] = —(d/dE)G (E),

(14)

(15)

and Eqs. (6), (11), and (12), one obtains

EN(E) = (2/&)Im Tr((d/dE)[G (E)] U[1 —GD(E)U] 'j

(16)

by cyclic properties of the trace. Since the deriva-
tive of the density of states is infinite at a critical
point, one should in general expect some structure
in nN(E) at those points (dependent on the strength
and details of the potential). The potential will
also introduce additional structure through the
factor [1—GD(E)U] '. It can be shown~8 that the
change in the state density is also given by

D(E) =detlll —G (E)Us =0, (9)

[ I —G'(E') U] 4w = 0': (10)

The determinant of 1 —G'(E') U is now nonzero be-
cause the imaginary part of Go(E') is nonzero
within the band continua. As a result, the opera-
tor is always invertible and solutions exist at all
energies within the energy bands of the perfect
crystal. Band edges, therefore, are not shifted
by the perturbation. The wave function $ corre-
sponding to a solution at E=E~ is not, of course,
equal to qP&.

The density operators for the perfect and per-
turbed crystal are related to the respective
Green's operators by"'

p'(E) = —(2/w) ImG (E)

p (E) = —(2/&) ImG(E) . (12)

Using Eq. (6), we now obtain the following ex-
pressions' for the change in the charge density b p

when the operator 1 —G0(E) U is expanded in any
complete set of states. This condition determines
the energy of the bound state. The corresponding
wave function is then obtained as the nontrivial
solution to Eq. (7) at that energy. For states within
the band continua, we write Eq. (8) in the form

aN(E) =-
dE (17)

(spin included) where the phase shift 5(E) is de-
fined by

5(E) = —tan '[ImD(E)/ReD(E)] . (18)

It follows that 6(E) goes through an odd multiple
of &/2 every time ReD(E) =0. An expansion
around such an energy Ep gives

tan5(E) = —I'/ [ 2(E —Eo)], (19)

where

I' = 2ImD(EO)/Re D'(E0) (20)

and the prime denotes differentiation with respect
to energy. In the region close to ED, SN(E) be-
comes

l 1
2w (E —E )2+ —' I' (21)

This characteristic Breit-Wigner form indicates
that for l & 0 one has a resonance or a peak in
n N(E) with a half width I'. For I' & 0, one has
an antiresonance, i.e., a negative peak with half
width

~

I' ~. (This analysis applies only for isolated
resonances or antiresonances. If the spacing be-
tween a resonance and an antiresonance is smaller
than the width, a more complicated spectrum oc-
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curs. ) The above considerations also assume that
the background state density (i.e. , the state density
of the perfect crystal) is smooth. The resonances
and antiresonances associated with the critical
points, i.e. , originating from the factor (d/
dE)G0(E) in (16), will be called quasiresonances
and quasiantiresonances, respectively.

According to I.evinson's theorem3' the total
number of states remains unchanged in the pres-
ence of a perturbation, i.e. ,

(22)

Vfhen the states in the gaps are counted separately
from the state density changes within the bands,
Eq. (22) becomes

nN(E) dE = —N0,
baads

(23)

where N~ is the total number of bound states in the
gaps,

Let us consider a continuous group of bands
separated by band gaps, e.g. , the valence bands
of a semiconductor. Denoting by E~, and E«, the
bottom and the top of this group of bands, oneob-
tains from (17)

E
nV(E) dE= —[6(E0,0) - 6(E0,t)] .

E

Since the Green's function and therefore also the
determinant D(E) are real at the band edges it
follows from (18) that

(24)

f

�6
V(E) dE = 2m,

bot

where m is in integer, (including spin) indepen-
dently of either the strength or the details of the
potential.

(25)

III. REPRESENTATION OF OPERATORS

For applications to particular problems, the
operators of the preceeding section must be repre-
sented in a basis set. The operator equations (7),
(9), and (13) then become matrix equations. In
order to exploit the limited range of the defect
potential, we will assume that the individual basis
functions are localized in space (for example,
Wannier functions or LCAO's centered at the
atomic positions). The subject of the specific
choices of the basis sets will be discussed in the
next section. In such a representation [y,}, the
matrix elements of the potential U ~ will be non-
zero only if both y and yz are centered on atoms
close to the defect, so that they both overlap with
the potential. The space spanned by this basis set
can therefore be divided into two subspaces: sub-

space A which overlaps with the potential and sub-
space B in which the potential is effectively zero.
The potential matrix may then be written sche-
matically as

t'U„„oi
E») (26)

(Note that the size of the subspace A depends also
on the range of energies one wishes to study. For
high-energy scattering, a larger subset would be
necessary. ) After writing the Green's-function
matrix as

G 0(E) l AA( ) G AB( ) )
!

l, G'BA(E) G'BB(E) /

(27)

the matrix of the operator 1 —G'(E)U becomes

I G0
GO(E)U

!

AA AA (28)
~ -G 'BA(E) UAA I I

[ I —G AA(E0) UAAI 4A =

gB can then be obtained from [cf. Eq. (7)]

PB GBA( 0) UAA~A '

(30)

(31)

The correct normalization of p„can be obtained
without calculating t(B (Refs. 34, 30) as follows:
From Eq. (7) we get

I =
& t lt) =&tUG'(E)!G'(E) U4)

=& 41U[G'(E)I 'U
1 0) . (32)

Using the relation.

UP = (U„„(0„,0] (33)

and Eqs. (15) and (27), one obtains the normaliza-
tion condition

& PA I UA„G„A(E) UAA14) = I ~ {34)

Since the self-consistent total change in the charge
density cannot extend further than the defect poten-
tial, 00 it is sufficient to calculate &p in Eq. (13)
only in the subspace A. It follows from Eqs. (26),
(27), and (28)

From (28) it is now evident that

detll1 —6 0(E)Ull = detll1 —G 0 „(E)U„„ll, (29)

so that the size of the determinant reduces to the
size of the nonzero part of the potential matrix. " Let
us write the bound-state wave function/ as(l) A, l)IB],
where pA and gB are the components of p in the
subspace A and subspace B, respectively. If Eo
is the bound-state energy, g„ is the nontrivial
solution to the matrix equation
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&p'„„=Im — dE 1 — 1 —G„„EU„~
val baads

xG„„(E). (35)

A'(E) =g ~nk)(nk~6(E —E„g),
nk

and using the Dirac identity

f(t) dt f(t) dt
+ f+$E

(37)

(38)

where P denotes the principal part of the integral,
we obtain

G~(Z')=Pf dZ' —i A(E) (39)

IV. THE CHOICE OF THE BASIS SET

The selection of the basis set for the expansion
of the operators in actual calculations is obviously
problem-dependent and must be guided by physical
considerations. It also constitutes one of the most
important choices that determine the efficiency of
the method.

The traditional basis set, i.e. , the Wannier func-

tions, have proved very convenient for the formal
development of the method. "' For actual calcula-
tions, on the other hand, they pose problems be-
cause their construction is quite laborious. '+

In this work we chose to use a set of LCAQ's.
Such sets have recently proved to be quite power-
ful and efficient in band- structure calculations"
and a great deal of experience for their use has
been amassed by atomic and molecular calcula-
tions.

The first step is to determine an LCAQ set that
is capable of yielding an accurate charge density
and band structure for the perfect crystal (see
Sec. lf for the actual basis set used). The same
set is then used to represent the operators Go(E)
and U for the description of an unrelaxed vacancy.
This choice can be justified as adequate for de-

The relations (39), (30), (34), and (35) show ex-
plicitly that the size of the problem in the Qreen's-
function method is determined by the range of the
perturbation potential even for self-consistent
calculations.

In order to complete the operator formalism for
the present Qreen's-function method, we give some
general expressions for the evaluation of G . By
introducing the Bloch functions $0;= ~nk) as a com-
plete set, G can be written in the form

Go(E ) = Ink&&nkl
(36)E' —E„f,

Defining the spectral density operator Ao(E) (Ref.
31}by

scribing the perturbed crystal by invoking the
usual quantum-chemical practice of using LCAQ's
characteristic of particular atoms only at the
atomic sites. It is also adequate to describe the
perturbation, because U is expected to be essen-
tially the negative of an atomic- like potential. In
other words, since the LCAQ's at atomic sites in
the perfect crystal are adequate for the description
of bond formation, the same orbitals at the vacant
site and the neighboring sites can be expected to
describe the breaking of the bonds.

Qur choice of a common LCAQ set to describe
both the perfect and the perturbed crystal has a
number of useful consequences: in particular, by
using an orthonormal LCAO set (see Sec. V for
details), the operator equations of Secs. II and III
can be read directly as matrix equations. The
matrix elements between basis orbitals and Bloeh
functions necessary to evaluate the Qreen's-func-
tion matrix [cf. Eq. (36}]become very simple.
Finally, because the perfect-crystal Hamiltonian
has a finite spectrum, any ambiguities3~ associated
with the termination of the energy integral of Eq.
(39) are completely removed.

In order to exploit the point-group symmetry of
the vacancy, we form symmetrized linear com-
binations of LCAQ's on each shell of atoms sur-
rounding the vacancy (shell orbitals). Finally,
since the LCAQ's, and therefore the shell orbitals
are not orthogonal, we orthogonalize each shell
orbital to all shell orbitals closer to the defect
site, forming a set of orthonormal shell orbitals
(OSO). This procedure, in contrast to the sym-
metric I.owdin orthogonalization, has the advan-
tage of preserving the localization of the basis
functions and allows an easy and systematic study
of the contributions of various shells and of con-
vergence with respect to the number of shells.
Also, additional shells may be added to the basis
without the need of recalculating any of the matrix
elements between existing orbitals. The ortho-
normalization process by itself avoids the need for
carrying the overlap matrix in Eqs. (30)-(36),
leading to large savings in computer time. The
details of the symmetrization and orthogonalization
procedure are given in Appendix A.

V. CALCULATIONS

In this section we will describe the calculational
procedures used in applying the Qreen's-function
method to study an ideal (undistorted) vacancy in

Si. The calculations consist of three major steps:
(I) Solution of the bulk problem and the calculation
of the perfect-crystal Qreen's function G, (2)
solution of the Qreen's-function equations for a
given potential, and (3) construction of the self-
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consistent potential. The methods of calculation
employed at each step are described and tested
in Secs. V A-C below.

A. Perfect crystal

1. Energy bands

In the self-consistent pseudopotential formal-
ism, ~ the interaction between the valence electrons
and the ionic core is modeled by a potential whose
short-range form is fitted to the bulk properties, 4'

atomic term values, 42 or atomic calculations. 43

The valence charge density, and thereby the
valence crystalline potential, is then determined
self-consistently within the local-density theory. 44

Usually, such calculations are carried out using
a plane-wave basis set. One of the advantages of
this set is that convergence studies can be carried
out in a straightforward and systematic manner.
We have therefore used a plane-wave basis set to
calculate fully convergent energy bands for Si to
serve as standards against which to compare our
LCAO calculations. Such a calculation is neces-
sary because we wish to use a minimal I.CAO
basis, optimizing the orbital exponents to yield
bands that are in good agreement with known ac-
curate calculations. We have carried out plane-
wave calculations using the ionic potentials deter-
mined in Refs. 42 and 43. Both these potentials
are specified in terms of the same analytical ex-
pression, namely,

V, (q) = (a,/q')[cos(aiq) +a,]e'" . (40)

In Ref. 43, the coefficients in Eq. (40) were fitted
to experimental atomic term values, whereas in
Ref. 43 they were fitted to atomic calculations.
Both sets of coefficients are given in Table I. The
charge density for each iteration was calculated
using ten special k points of Chadi and Cohen. '
We found 65 plane waves in the wave-function ex-
pansion to be sufficient to obtain a converged ex-
pansion of the crystalline charge density. The
crystalline potential was calculated using the
same exchange correlation as in the atomic cal-
culations used to fit Eq. (40), i.e. , the X ap-

proximation with n =0.8. The band-structure en-
ergies for the high-symmetry points are given in
the first two columns of Table II. In particular,
one should notice that the fundamental band gap is
0.6 and 0.8 eV for the two potentials. The dis-
crepancy with the experimental value of 1.17 eV
is attributed to the failure of the local approxima-
tion in the Kohn-Sham44 density-functional formal-
ism. In the following, we will use the ionic poten-
tial from Ref. 43, which is derived from atomic
calculations. This choice makes our calculations
both free from any empirical adjustments, and
internally consistent, i.e., every quality has been
calculated entirely within the local-density theory
with the same exchange. In our defect calculations
we use the LCAO's of Chadi which consist of s,
p, andd orbitals, and onef orbitaltransforming as the
potential (-xyz). We have carried out fully self-con-
sistent calculations for silicon in this basis with-
out any shape approximation for the crystalline
potential. The band energies of the LCAO cal-
culation with an LCAO self-consistent potential
are compared with the fully converged plane-wave
calculations in Table IJ. The largest discrepancy
between the two calculations is about 0.2 eV, in
the band-gap region, i.e., the same as obtained
by Chadi using a different potential. In particu-
lar, the band gap is 1.0 eV.

2. Green's function

Once the band-structure calculation is carried
out, the matrix elements of the Green's operator
Go(E) between any pair of basis orbitals (the OSO's)
can be evaluated using Eqs. (37) and (39). For a
point defect of T„symmetry, as is the case of the
unrelaxed vacancy, the k-space summation has to
be done only over one irreducible wedge 8', with
the summand chosen by symmetry considerations
so that the result is equivalent to a full-zone sum-
mation. If we denote ea,ch OSOby ~nil), where n
is the representation, i is a running index for
OSO's, excluding partners, and / is a partner in-
dex, it is straightforward to show that

& na ~A(E)
~
n i'I )

TABLE I. The values (in atomic units) of parameters
defi~&~the ionic Si pseudopotential V;,„[Eq. (41)] and
bulk pseudopotential Vb„g, [Eq. (43)j. The normaliza-
tion volume for VIQQ is 135.1 (a.u.) .

Re g p g ( iln"~ )n(nkk~ 'iln")
d g arm r

"~e-E (a» s j(4.i).;„,
ai
a2
a3
a4

VIQft pt ef 42)

-1.12507
0.79065
0.35201

-0.01807

v;,', (Ref. 43)

1~ 233
0.7370

-0.3969
-0.0177

Vbuu
Si

20.0
0.633

1707
0.459

where d is the dimensionality of the oth repre-
sentation. [It is 0 . and 0». in Eq. (41), which
arise from symmetrization of the basis orbitals,
that provide the savings in labor. ] The evaluation
of the matrix elements of A(E) as given by Eq.
(41)was carried outusing the Gilat-Raubenheimer"
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TABLE G. Band-structure energies for the high-symmetry points using potentials from Ref. 42 and Ref. 43. The
point along the E axis is k=(0.85, 0, 0). The number of plane waves corresponds to an energy cutoff Ik+ GI&9 ity.
The Slater orbitals are those of Chadi (Ref. 37). The band energies for those orbitals have been shifted by 0.14 eV
with respect to the plane-wave results (see Ref. 37).

Plane waves' Plane waves
Slater

orbitals Deviation from plane-waveb results

Tfy

125' v

~is c
~2c
Xr„
X4„
Xg

X4

L2v
Lrv
Lsv
LIc
L3c

4v

&2c

-12.79
0.00
2.88
3.49

-8.48
-3.14

Q. 78
11.83

-10.39
—7.52
—1.36

1.60
3.69

—9.63
7e21

—3.04
0.62
1.20

-12.89
0.00
2.98
2.72

-8.63
-3.06

0.95
11.67

-10.55
—7.52
—1.34

1.38
3 ~ 89

—9.76
—7.38
—2.97

0.78
1.39

-12.52
0.00
3.10
2.92

-8.38
-2.95

1.11
11.93

-10.25
7027

—1.29
1.59
4.07

—9.50
7 12

—2.86
0.97
1.56

-0.37

-0.72
-0.2
-0.25
-0.11
-0.16
-0.26
-0.3
-0.25
-0.21
-0.21
-0.13
-0.26
-0.26
-0.11
-0.19
-0.17

'Potential from Ref. 42.
Potential from Ref. 43.

technique. Convergence tests were carried out and
it was found that 308 k points in the irreducible
wedge were adequate. Once the matrix elements
of A(E) were calculated, the matrix elements of
G0(E) were obtained using Eq. (39). The large
number of Hilbert transforms of rather strongly
varying functions with sharp peaks has been
handled using a fast-Hilbert-transform (FHT)
algorithm developed by Cooley and Bernholc. 9

The use of the FHT resulted in a very accurate
determination of the Green's-function matrix ele-
ments on an energy mesh spaced by 0.07 eV. This
mesh mas found dense enough to allow interpolation
for intermediate energy values when needed. The
Green's-function matrix elements mere calculated
once and stored.

B. Solutions for a given defect potential
(the non~lfwonsistent vacancy)

For the purpose of testing our computational
scheme of determining the solution for a given
defect potential, we first used the negative of a
bulk self-consistent "atomic" pseudopotential, ob-
tained by decomposing the full crystalline pseudo-
potential into a sum of atom-centered spherical
pseudopotentials, neglecting nonspherical terms.
The resulting atomic pseudopotential was fitted
to an arialytical expression of the form

30—
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FIG. 1. Comparison of the truly self-consistent bulk
silicon potential (dashed line) to the superposition of the
atom-centered spherical potentials (solid line) along the
bondiag and-antibondiag, directions. See text.

2
(y) e e-a2r +e s a4-

The a, 's are given in Table I. Superposition of
these atom-centered spherical potentials repro-
duces the total bulk pseudopotential quite ade-
quately (Fig. l). Thus, using the negative of one
of these atom-centered potentials as a model defect
potential corresponds to an approximation for the
vacancy that amounts to removing an atom from the
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crystal without allowing the remaining valence
electrons to redistribute (absence of self-con-
sistency). The calculations using the non- self-
consistent vacancy potential, as defined above,
serve two purposes. First, they allow us to test
the convergence properties of our computational
procedure for a given defect potential, and,
second, to assess the importance of self-con-
sistency and the resulting screening fields once
the fully self-consistent solutions are obtained
(Sec. VC below).

Given the defect potential, its matrix elements
between pairs of orthogonalized shell orbitals
(OSO's) were calculated numerically on a cubic
mesh. Symmetry was again used to reduce the
integration region by a factor of 24. We found

that 1000-2000 points per atom in the irreducible
part of the cube were sufficient for an accuracy
of 2-3 mRy in the potential matrix elements. '
Having the matrix elements of both Go(E) and the
defect potential U, the quantity D(E) given by Eq.
(9) is evaluated in a straightforward way. Making
use of symmetry once more, one gets"'

(43)

where D (E) is defined as in Eq. (9), but evaluated

in the subspace of QSQ's of the nth representation.
Accordingly, bound states in the gap belonging to
the o.th representation are obtained by locating the
zeros of D (E). Similarly, one can show that

n.N(E) = Q nN (E), (44)

where bN (E) is again defined as oN(E), but with-

in the subspace of QSQ's of the nth representation
(AN is defined so as to contain the degeneracy
factor d ).

The calculations were carried out using one,
two, and three shells of orbitals (one shell means
orbitals at the vacant site only). In all cases, we

find only one bound state of T~ symmetry. Its en-

ergy level is at 0.75, 0.75, and 0.76 eP for one,
two, and three shells, respectively, indicating an
adequate convergence with respect to the number
of shells. The corresponding changes in state den-
sities within the band continua, shown as dashed
curves in Fig. 2, were also found to be indis-
tinguishable for one, two, and three shells on the
scale of the figure. (Only changes in densities of
states of A, and T, symmetries are shown.
{ hanges in the densities of states of the other
symmetries are of order 0.1 and thus insignificant
by comparison. These results are interpreted in

Sec. VI, where comparison is made with fully self-
consistent results. ) Integrals of the state-density
changes provide an additional check of the calcula-
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FIG. 2. The density of states of silicon (top panel)
and the charge in the density of states ofA& and T2
symmetries. The curves are broadened by 0.2 eV and
the reference energy is the top of the valence bands.

tions. It can, easily be shown that Levinson's
theorem [Eqs. (32) and (33)] is valid for states of
each symmetry separately. Thus, the state-den-
sity changes for each symmetry ought to integrate
to the number (integer} of bound states of the
same symmetry. Indeed, we found that the change
in the density of T2 states integrates to —6, com-
pensating the sixfold degenerate T2 bound state in
the fundamental gap. The changes in the densities
of states of the remaining symmetries integrate
to zero, as they should. Thus, since the creation
of a neutral vacancy involves the removal of four
electrons, we conclude that the T~ bound state
contains two electrons.

C. Fully self-consistent solutions

After the calculations have been initiated with a
starting potential (e.g. , the non-self-consistent
potential described above or some other convenient
form), the Green's-function equations have to be
iterated to self-consistency. At every iteration the
construction of a new potential consists of the
following steps: (l) calculation of the change in
charge density in the valence bands and of the
charge density associated with the bound states,
(2) solution of the poisson equation, and (3) cal-
culation of the exchange-correlation term (within

the local-density theory44).
The change in the charge density associated with

the valence bands was obtained by carrying out the
matrix integral (35). Since the integrand is a
rather singular function (see below}, the integral
was calculated by the adaptive (variable-step size)
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(45)

The charge density associated with the two elec-
trons in the bound state was obtained from the
bound-state wave function within the region
spanned by Eq. (30}, and the normalization con-
stant was calculated from relation (34). It will be
shown in the next section by explicit construction
that the rather extended tail of the bound-state
wave function is canceled by the charge redistribu-
tion within the valence bands localizing the total
change in the charge density almost entirely with-
in the cavity defined by the nearest neighbors.
This localization is important to the efficiency of
the method and has been exploited in the next
stages of the calculation.

The Hartree part of the defect potential VH can
now be obtained by solving the poisson equation

&2 Vg
———8FAp,

with the boundary condition, for large r,

where

{46)

(47)

trapezoidal rule. The average step length was
0.07 eV and was monitored by examining Trhp(E),
which is equal to the change in the density of states
at that energy. The change in the charge density
in real space is now

tained by subtracting the potential V' corre-
sponding to the charge density p'. In our calcula-
tions, we choose

1 Zp'(r} = 3/2 3 exp(—r /r, )
vT r

p

whereby

}}2Z f(}})

(50)

(51)

VI. RESULTS AND DISCUSSION

In this section we present the results of our
self-consistent calculations for the unrelaxed
vacancy in Si. The calculations were brought to
self-consistency using one, two, and three shells
for the purpose of checking convergence of charge
densities and wave functions with respect to the
number of shells.

Finally, the exchange-correlation potential is
calculated in the local-density approximation. Be-
cause of the p'~ dependence of this potential on the
charge density, it is necessary to calculate both the
perfect-crystal chargedensityp'(r) as well as 4p(r)
at each mesh point. The defect exchange-correlation
potential is then proportional to [p'(r)+ &p(r)]' '
—[4p(r)]'~'. The calculation is done numerically"
on the same mesh points used for the Hartree part
of the potential.

g= — d3r Ap r). (48} A. Energy levels and state densities

In order to facilitate a numerical solution, it is
convenient to add and later subtract a neutralizing,
positive, and spherically symmetric charge den-
sity p'. The charge

p"=~p+ p' (49)

is then neutral and the corresponding potential V"
behaves as constx r "'"at large distances where
/ is the lowest multipole component of the defect
potential allowed by symmetry (I =3 for the T~

group). V" is determined by solving Poisson's
equation in a large cube (cube side = 18 a.u. )

around the vacancy. Because of the smallness of
the r 4 and higher-order terms on the surface of
the cube, the boundary condition is taken to be
V"=0. This geometry allows us to use the very
efficient fast- Fourier-transform ' techniques in
order to solve the poisson equation numerical-
ly, s ' ' the only constraint being that the nu-
merical mesh must be equally spaced (see Ap-
pendix B for the discussion of the algorithm).
This algorithm defines the cubic mesh for the
calculation of the potential matrix elements (cf. Sec.

and Ref. 50). The Hartree potential is ob-

As with the non-self-consistent calculations de-
scribed in the previous section, we obtain one
bound state in the gap of T2 symmetry. Its energy
level was found to be at 0.63, 0.66, and 0.68 e7
for one, two, and three shells, respectively. Con-
vergence is therefore somewhat slower, but still
quite adequate. %'e note that self-consistency has
lowered the position of the bound state by approxi-
mately 0.1 eV. This lowering is the result of
screening arising from the response of the valence
electrons to the removal of the atom, which re-
duces the strength of the defect potential. The
final self-consistent vacancy potential is shown in
Fig. 3 and compared with the non-self-consistent
vacancy potential defined in Sec. p. Note that the
effect of self-consistency is very small, as re-
flected by the lowering of the bound-state energy
level by less than 0.1 eP.

The changes in the densities of states of A& and
T2 symmetries are shown as solid curves in Fig.
2. On the scale of the figure, the curves obtained
from the one-, two-, and three-shell calculations
are indistinguishable. Changes in the densities of
states of the other symmetries are again insignifi-
cant by comparison. The change in the densities
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FIG. 3. Comparison of the fully self-consistent va-
cancy potential to the negative of the spherical atom-
centered potential extracted from bulk data. See text.

of T2 states integrates to —6, as required by
Levinson's theorem, and the changes in the densi-
ties of states of the remaining symmetries inte-
grate to zero. The self-consistent state-density
changes are compared in Fig. 2 with the corre-
sponding changes obtained without self-consis-
tency, indicating once more that the effect of self-
consistency is small.

In Fig. 2 we have included a plot of the density
of states of the perfect crystal (top panel), against
which the calculated changes induced by the
vacancy can be compared. We note that a sharp
resonance of A& symmetry appears at —8 eV,
where the perfect-crystal state density has a mini-
mum. The antiresonances appear at or near maxi-
ma in the perfect-crystal state densities. These
results are consistent with the general analysis
given in Sec. II B, since extrema in the perfect-
crystal state density correspond to critical points
in the band structure. The A& resonance at —0.7
eV, on the other hand, is caused by the particular
nature of the vacancy potential and will be dis-
cussed further later on.

B. Wave functions and charge densities

For further analysis of the nature of the solutions
we examine wave functions and charge densities.
The most convenient and informative way to dis-
play these results is in the form of contour maps
in a (110) plane. All the results that will be pre-
sented were obtained from three-shell calcula-
tions. The three-shell basis is sufficiently large
to allow plotting beyond the second neighbors of
the vacancy.

In Fig. 4 we show the charge density of the
perfect crystal, the charge density in a crystal
containing a single vacancy, and the change in the
charge density produced by the introduction of the

(c)

-l6

FIG. 4. Contours of constant electron density (in
electrons per bulk Si unit cell) for (a) charge density
of perfect silicon. (b) Charge density in the presence
of the vacancy. (c) The change in the charge density
i.e., the difference between (b) and (a).

vacancy. As an internal check of the calculations,
the change in the charge density is found to inte-
grate to —4, corresponding to the net number of
electrons that have been removed from the crystal.
We note that the change in the charge density is
localized almost entirely within the cavity defined
by the nearest neighbors. This charge produces a
potential that becomes equal to —4e2/r beyond the
nearest neighbors and cancels exactly the 4e'/r
tail of the ionic part of the vacancy potential. The
net vacancy potential is therefore almost com-
pletely localized within a distance Of a bond length,
as we already saw in Fig. 3. These results are
consistent with the fact that orbitals on the second
and the third shells of atoms do not contribute
signif icantly.

We turn now to examine the wave functions of
individual states. In Fig. 5 we show a contour plot
of the square of the wave function of the T2 bound
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TABLE III. The integrated changes in the valence-
charge density for each representation.

Representation Charge(electrons)

Af
A2
E
Tf
T2

-0.10
0.00

-0.04
-0.03
-5.20

state. In contrast to the total change in the charge
density [Fig. 4(c)], we see that the charge density
associated svith the bound state is quite extended.
In fact, the basis orbitals on the three shells of
atoms included in the plot of Fig. 5 contain only
approximately 70+ of the total bound-state charge
(1.4 bound-state electrons lie inside the three-
shell volume). Note that this result does not imply
that additional shells of orbitals ought to have been
included in the calculation. Recall that an im-
portant virtue of the Qreen's-function method is
that it does not require a basis set capable of ex-
panding individual wave functions. The role of the
basis set is to represent the defect potential and

change in the charge density. As we saw already,
both of these quantities are quite localized. 53

The rather delocalized bound-state charge den-
sity might at first glance appear to be inconsistent
with the fact that the total change in the charge
density is highly localized. Note that previous
non-self-consistent calculations assumed a local-
ized vacancy potential and obtained a delocalized
bound state. The present self- consistent calcula-
tions confirm this assumption and provide a justi-
fication: In addition to the T2 bound state in the

gap, the defect potential induces a series of reso-
nances and antiresonances in, the valence bands,
which we already saw in Fig. 2. Contour plots of
the charge density associated with some of the
resonances are shown in Figs. 6 and 7, revealing
that the corresponding charge density is quite de-

localized. It is a subtle cancellation of the tails of
individual states that produces the strong localiza-
tion of the net charge disturbance. Another illus-
tration of this fact is provided by plots of the total
change in the charge density for each type of sym-
metry separately (Fig. 8). Each of them is quite
delocalized [ the solid contours are the sum of all
positive changes (resonances), whereas the dashed
contours are the sum of all negative changes (anti-
resonances)] and not necessarily contained in the
volume defined by three shells of atoms. In fact
their integrals within the three-shell basis are
given in Table III. All five together add up to
-5.4. Recall that the bound state contributes
only 1.4 electrons in the volume defined by three
shells of atoms. The net change within this volume
is therefore —4, indicating that indeed the net
change outside the box is zero and providing an
additional internal check of the calculations.

The above results for the total charge densities,
the defect-induced change in the total charge den-
sity and individual wave functions provide a clear
illustration of the advantages of the Green's-func-
tion method over cluster methods. Cluster meth-
ods attempt to describe the perturbed crystal di-
rectly [ Fig. 4(b)] and terminate it as a matter of
necessity to make the calculation feasible. In con-
trast, the Qreen's-function method describes first
the infinite perfect crystal [ Fig. 4(a)] and then
focuses on the change [ Fig. 4(c)] which is natural-
ly localized. Furthermore, whereas the Qreen's-
function method needs a basis set capable of de-

-0.38

FIG. 5. Contours of constant electron density for the
T2 bound state. Units as in Fig. 4.

FIG. 6. Contours of constant electron density for the
Af resonances at (a) -8 and Q) —0.7 eV. Units as in

Fig. 4.
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T& quasiresonances at (a) -8.4 and (b) -6.8 eV- Units
as in Fig. 4.

scribing accurately only the total change in the
charge density, which is highly localized [ Fig. 4
(c)], the cluster method needs a basis set capable
of describing accurately individual wave functions
(Fig. 5) which are considerably more extended.
Qnly when the size of the cluster is large enough
to contain individual wave functions would a cluster
calculation give reliable quantitative results.
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TABLE IV. The decomposition of the bound-state
wave function of the undistorted vacancy into the bands
of perfect silicon c„=gz I(sk I4') [ .

Band no.

1
2
3
4
5
6
7
8
9

10

0.4
4.8

23.7
51.1
10.9
4.1
2.2
1.4
0.6
0.3

C. LCAO analysis

The use of an LCAO basis for the calculations
provides a convenient framework for exploring
the structure and origins of the solutions. First,
we observe that the valence electrons in the perfect
Si crystal have mainly s (A, ) and P (Tt) character
about each atom. This is a well-known result that
has often been exploited in constructing simple

I5 /

i4 I
// /

FIG. 8. Contours of constant electron density for the
change in the charge density of sy~~etry (a) A&, (b) E,
(c) Tt, (d) T2. Units as in Fig. 4.

semiempirical tight-binding Hamiltonians. 54 Our
self-consistent calculations reveal that the valence
electrons also have a small d (E+ Tt) character. "
Since the creation of a vacancy amounts to re-
moving four valence electrons from the crystal,
one can expect that the major changes in the charge
and state densities occur in the A, and T2 repre-
sentations. Qur results, Figs. 2 and 8, confirmed
this simple LCAO prediction. In particular, note
in, Fig. 8 that the A& and T2 changes in the charge
density are large and concentrated in the cavity
defined by the nearest neighbors. (The T, change
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does not have a P-like shape because it is an
average of the "x» "y», and "s» components. )
Note also the small change in the E representatio~
(d-like) in Fig. 8(c) in agreement with the LCAO
analysis given above. Figure 8(d) shows the change
of charge density in the T& states. This change,
which is also quite small compared with the
changes in the charge density of A& and T2 states,
comes from linear combinations of orbitals on the
nearest neighbors and is therefore localized about
those sites. Finally, the change of charge density
of A2 states is too small to be seen on the scale of
Fig. 8, because it arises from linear combinations
of orbitals on the second-nearest neighbors.

We now focus our attention on the A& and T2 re-
sults and show that they can be understood in terms
of some very elementary I.CAQ models. For the
perfect crystal, one can use s and P orbitals on
every atom and combine them into tetrahedrally
directed sp3 hybrid orbitals. These hybrids can
then be combined in pairs to form bonding and
antibonding orbitals, which in turn give rise to the
valence and conduction bands, respectively. For
the crystal containing a single vacancy, one can
again use s and P orbitals on every atom and form
sP3 hybrids. Bonding and antibonding orbitals can
again be formed by pairing hybrids, with the ex-
ception of the four hybrids on the nearest neighbors
pointing toward the vacant site. We will refer to
these orbitals as «dangling hybrids" (the charge
associated with such an orbital is often referred
to as a «dangling bond»). As a first approxima-
tion, one would expect that the states associated
with the vacancy are linear combinations of these
four hybrids. This assumption forms the basis of
the "defect-molecule" model, originally proposed
by { oulson and Kearsleye for the vacancy in dia-
mond. Symmetry requires that the four hybrids
be combined into an A, singlet and a T2 triplet. In
fact, our self-consistent pseudopotential calcula-
tions reveal that the T2 bound state (Fig. 5) and
the A, resonance at —0.7 eV [ Fig. 6(b)) are essen-
tially linear combinations of the dangling-hybrid-
like orbitals. The remaining resonances and anti-
resonances are mainly associated with critical
points in the band structure (cf. Secs. II and VIA).
The A, resonance at about —8 eV appears precise-
ly at the point where the density of states has a
cusp. (This cusp arises from the ZC& point in the
valence bands and is a peculiarity of the diamond
lattice. It may be viewed as a pseudogap, since it
is precisely at the point where a gap opens up in
the zinc-blende structure )In fact, .this resonance
is a band-structure effect and appears at the same
place for several substitutional acceptors. The
contour plot of the charge redistribution corre-
sponding to this resonance is shown in Fig. 6(a).

Note that it is quite localized since it is essentially
a bound state. It consists mainly of s-like orbitals
on the nearest neighbors.

In Fig. 7 we show the changes in the charge den-
sity corresponding to the two T2 quasiresonances
at (a) —8.4 eV and (b) —6.8 eV, as obtained from
the self- consistent calculations. The quasireso-
nance at —8.4 corresponds to a strengthening of
the back bonds [recall however, that, overall, the
back bonds are not strengthened because the total
change is localized entirely within the cavity de-
fined by the nearest neighbors; cf Fig. 4(c).] The
quasiresonance at —6.8 eV shifts some of the
charge into the antibonding direction in the nor-
mally empty interstitial regions.

D. The effective-mass nature of the bound state

In the self-consistent Green's-function calcula-
tions, we obtain the bound-state wave functions in
terms of our LCAQ basis set in the form

4(r)=g C 4 (r) (52)

where Q„ is an OSO (for simplicity, we use g
=[n, i, f} as a composite index for an OSO). A
common expansion of the P, e.g. , in the case of
effective-mass theory, is in terms of Bloch func-
tions in the form

(53)

Combining (52) and (53), we immediately obtain

(54)

An alternative expression can be obtained by using
Eqs. (7) and (36):

F„(k)=g C„(nk
~

U
~
f„)/(E —E„-) . (55)

This expression shows that only those QSQ's for
which the matrix elements of U are nonzero need
be kept in calculating E„(k). We have calculated
these quantities and summed them over the Bril-
louin zone for each band in order to establish the
relative weight of each band in the expansion of P.
The results are given in Table IV. We note that
80% of the wave function comes from the top three
valence bands, with the remainder distributed over
a total of seven more bands. The lowest conduc-
tion band contributes 11%, whereas the rest of the
conduction bands together contribute less than 9%.

In Fig. 9 we give plots of the various E„(k) func-
tions along two important symmetry directions in
k space. Qnly the E„(k) for bands 2, 3, 4, and 5
can be plotted on the scale of Fig. 9. This figure
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FIG. 9. The band structure of silicon of the vicinity
of the band gap and the envelope functions E„(k) plot-
ted along the A and 4 directions. See text.

illustrates clearly that g is composed mainly from
Bloch functions in the vicinity of the valence-band
maximum at k=0, very much like effective-mass-
like bound states. We may recall at this stage that
effective-mass equations have recently been re-
derived for an arbitrary impurity potential by
making only two approximations: (l) restricting
the number of bands that participate in the expan-
sion of the bound-state wavefunction, and (3) evalu-
ating all matrix elements to order k' (thus in-
cluding the so-called umklapp terms '). The re-
sults shown in Fig. 9 for the vacancy bound-state
wave function indicate that the new generalized
effective-mass equations might be applicable even
for quite deep levels, Numerical work would have
to be carried out to establish their actual useful-
ness. It should be noted, in any case, that the
effective-mass equations would be useful only if
the defect or impurity potential were known (the
theory cannot determine the potential self-con-
sistently) and then only for the bound state(s) in
the gap. Further discussion of the connections
with EMT is given in Ref. 60.

E. Comparison with tight-binding models

So far, we have carried out Green's-function
calculations of three different degrees of com-
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FIG. 10. Comparison of the tight-binding and self-
consistent results for density of states (DOS) of per-
fect silicon and for the DOS changes of A& and T2
symmetries. The curves are broadened by 0.2 eV
and the reference energy is the top of the valence
bands.

plexity: (l) using a semiempirical tight-binding
Hamiltonian, reported in paper I,"(2) using a
non- self-consistent vacancy pseudopotential taken
to be the negative of a bulk atomic pseudopotential,
and (3) using a fully self-consistent vacancy
pseudopotential. (ln the last two cases, the under-
lying band structure is also based on self-con-
sistent pseudopotentials. ) We have already seen
in Sec. V B that the results of calculations (3) and

(3) differ only in their details. We therefore turn
now to a comparison with the tight-binding results
of Ref. 28. In Fig. 10 we compare the tight-binding
results for the changes in the densities of A& and

T2 states with the results of the fully self-con-
sistent calculations described above. The two
curves in each case are remarkably similar, con-
firming the usefulness of the tight-binding calcula-
tions. We may recall that in. the tight-binding
model2 all Hamiltonian matrix elements are as-
sumed to be identical to those of the unperturbed
bulk, even those corresponding to the backbonds.
The self-consistent results for the total change in
the charge density [ Fig. 4(c)] show that changes
are restricted within the vacancy cavity andprovide
an explanation and justification for the validity of
the tight-binding model.

The bound-state energy, however, obtained by
the tight-binding calculations28 is far too low (0.3
eV compared with the present 0.7 eV). We specu-
late that this unsatisfactory result is aconseguence
of the fact that the tight-binding conduction bands
are not very accurate. As discussed in Ref. 28,
the valence-band state-density changes are deter-
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mined primarily by the valence bands, whereas the
position of the level in the gap is determined by a
subtle balance between valence- and conduction-
band contributions. Note that this observation
[Eq. (43} of Ref. 38[ is not in contradiction with
the fact that the bound-state wave function is com-
posed mainly of valence-band Bloch functions
(Fig. 9). The tight-binding result comes about
because the bound-state wave function is expanded
in terms of s and p LCAO's which give rise to both
valence and conduction bands. Note that Eq. (43)
of Ref. 28 is only a condition that determines the
position of the bound-state energy level and con-
tains no information about the composition of the
bound-state wave function. On the other hand, this
relation suggests that the bound-state energy level
obtained by the tight-binding model is too low be-
cause the tight-binding conduction bands are too
narrow compared with the true sP conduction
bands, so that the integral on the right-hand side
of Eq. (43) of Ref. 38 is larger than it should be.

VII. SUMMARY AND CONCLUSIONS

In paper I, we have shown that the Koster-Slater
Green's-function technique becomes very eff icient
and accurate when the Wannier functions of the
original formulation are replaced by an LCAO
basis set. In that paper the method was applied to
tight-binding Hamiltonians and its advantages over
small- and large-cluster techniques were explicit-
ly illustrated.

In this paper we have demonstrated the feasibility
of the Green's-function method in conjunction with
first-principles potentials and band structures and
we have extended it to fully include self-consis-
tency effects. The principal advantages of this
method are the exploitation of (1}the short-range
nature of the defect potential, (3) the translational
symmetry of the host crystal, and (3} the analytic
separation between the bulk and defect properties.
Our first application of the method has been to the
vacancy in Si. We have found one bound threefold
degenerate state of T2 symmetry at 0.7 eV, which
is occupied by only two electrons. There are also
several resonances and antiresonances within the
valence bands which are associated with the
vacancy. The wave functions associated with the
bound state, the resonances, and the antireso-
nances are individually quite extended, while the
vacancy potential is short ranged and extends only
up to the nearest neighbors of the vacancy. The
localization of the potential is caused by a detailed
cancellation of the bound-state charge density by a
corresponding charge redistribution within the
valence bands.

APPENDIX A: SYMMETRIZATION AND
ORTHOGONALIZATION PROCEDURE

The symmetrized combinations of LCAO's on
each shell surrounding the vacancy can be gen-
erated by letting the projection operator

P(l) M P(/)(ff)+ Pgg 8 (A1)

for each representation j act on each of the basis
functions on that shell. [R is a rotation belonging
to the point group, P~ is the corresponding rotation
operator, l& is the dimension of the irreducible
representation, and r "'{R) is the matrix of the
representation for that rotation. ]

The above procedure has been automated and
both the symmetrized shell orbitals and the QSQ's
have been generated on a computer. The result
of applying P„'~,'. on an LCAQ function is

(A3)

where z denotes the transformation property of
an LCAO (s, x, etc. ), r is its position; P=p„'o,
and v'' = P„~denote the transformation property
and the position of the rotated orbital, respective-
ly. After discarding the linearly dependent func-
tions, the partners to the symmetrized shell
orbitals are formed with the help of the transfer
operator P„'~'. Finally, the resulting basis func-
tions are orthonormalized by the Schmidt process.
The orthonormalized shell orbitals (080) can then
be compactly expressed in terms of the LCAQ's
on the shell in question and the OSQ's on the pre-
vious shells.

APPENDIX 9
In this appendix we will solve the poisson equa-

tion

V'2P = —8',
subject to the boundary condition zero applied on
the surface of a cube. Let us denote the cube side
by a. Since V vanishes on the surface of the cube,
V can be expanded in a three-dimensional sine
series. If the charge density p is given on a cubic
mesh of N points in each direction, the expansions
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APPENDIX C

In this appendix we discuss the similarities and

differences between our implementation of the
Green's-function formalism and that developed
independently by Baraff and Schluter (BS).3' The
two formulations have thus far produced virtually
identical results for the unrelaxed vacancy in Si.

Our approach is based directly on operator equa-
tions which are general results of scattering
theory. The basic operators are G'(E) and U. All

quantities of physical interest are given as traces
or determinants of operators that involve only
G3(E) and U. (The trace and the determinant of an
operator are invariant in the sense that they can be
calculated by using any orthonormal complete set of
functions to represent the operator inmatrixform. )
In our work, we chose a basis set which is physi-
cally transparent and, at the same time, practical
for accurate self-consistent calculations.

BS's formulation, on the other hand, is based on

expansions of wave functions and the Green's func-
tion in two different basis sets. Expressions for
the quantities of interest are derived in terms of
the expansion coefficients. The same expressions
can, however, be obtained directly from the stan-
dard scattering-theoretic operator equations by
representing the operators in the two basis sets.
Differences arise in the final expressions of the
two approaches largely because of the two different
basis sets as opposed to our single set. In what
follows we compare our choiceswith those of BS
and identify advantages and disadvantages.

The central operator of our formulation is

ik33 (E) = I —G3 (E)U. (C1)

are related by

8N2a2
d( 1 k2kk k3) k2 k2 k2i ( Ik 2k 3) '

v ki+k2+k3i

The Fourier analysis to determine c(k&, k2, k3) and

the Fourier synthesis to obtain V(x&, x2, x3) are
carried out iteratively using the one-dimensional
s ine- transf orm algorithm.

For example, bound-state energies are given by
the zeros of the determinant of tk32(E). In contrast,
the corresponding BS result is equivalent to using
the operator

ik3 (E) =—U UG (E)U

We observe immediately that

(C3)

Q2(E) = U~k32(E), (C3)

so that, as long as detllUllc0, either Q, or Q2 will
in principle give identical results. In practice,
however, differences can in fact arise.

One of the appealing properties of 3k32(E) is that
it satisfies a variational principle, in the sense
that it yields energies that are accurate to second
order in the wave function. This property sug-
gests that a desired degree of accuracy can be
achieved with fewer basis orbitals. However, it
is straightforward to see that, as long as one uses
the same number of orbitals to represent U and
G in matrix form, the factorization (C3) follows.
As a consequence, Q, and Q, will have precisely
the same zeros even though one is variational and
one is not. In order to take advantage of the
variational nature of Q2 one must use twodifferent-
size basis sets for U and G . The factorization
(C3) is then not possible and ski, and fk32 would yield
different results. In particular, BS used a set of
J CAO's at each atomic site, including the vacant
site, for G'(the "inner" set), and asmallersetthat
did not include orbitals at the vacant site for U (the
"outer" set). The variational principle was then
in effect. In contrast, we included orbitals at the
vacant site for both C' and U, so that the use of

Qi and Q2 would yield identical results. We believe
that including orbitals at the vacant site for both
U and G is mandated by physical considerations,
even though the size of the U matrix is increased.
As we saw in Sec. IV, the role of the basis set is
to represent U and the change in the charge den-
sity Ap, both of which are highly localized in the
vacant atomic volume (Figs. 3 and 4). In fact, one
can argue~3 that orbitals at the vacant site alone
ought to be sufficient to expand ~p. %'e further
believe that the omission of orbitals at the vacant
site by BS has affected their results, albeit in a
minor way. The effect is noticeable for states of
A, symmetry which have nonzero amplitude at the
origin. In particular, we find an Ai resonance at
E„—0.7 ep, whereas BS find it at E„—1.1 ep. %e
believe that the most likely source of this discrep-
ancy is BS's omission of orbitals at the vacant site
in their outer set, i.e. , the set that is used to ex-
pand the wave functions and hence Ap and U.

The use of Q2 with two different-size basis sets
has an additional disadvantage" that must be dealt
with carefully: Note that detllQ, ll is in principle
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proportional to detljUII. Note also that the strength
of the method lies in the fact that the matrix of U

is nonzero in a small subset [cf. Eg. (26)]. Nor-

mally, one would like to increase this subset and

check the convergence of the results. As con-
vergence is reached, detlIUtl tends to zero and

hence detllg2 II tends to zero as well. Since Q2 is
inverted in the calculation of the change in the

charge density, one must exercise caution in

carrying out convergence tests (in the limit of full

convergence, when detail Ul] = 0, special procedures
must be used to ensure the inversion of Q2 is ef-
fected in the subspace in which detllUIi is nonzero).
None of these complications arise when one works
wit

Finally, one last technical difference between
our approach and that of BS is the following: As

stated earlier, we work with operator equations
and represent each operator in matrix form so
that the operator equations become matrix equa-
tions." Thus, we in fact calculate the Green's-
function matrix in the chosen basis set. BS, on

the other hand, as they point out, do not calculate
matrix elements of the Green's function in any

particular set of states. Instead, they expand the
Green's function in a set of states as follows:

G (E,r, r') =g 4*(r)G ~ (E)4 .(r'). (C4)

G~~. (E)= Q S~I G„.(E)S,.„.,
fl

(C6)

where the Go, , (E) are true Green's-function matrix
elements and can be evaluated in a straightforward
way as described in Sec. V.

Ar

The G „.(E) are expansion coefficients which are
evaluated by expanding the Bloch functions in terms
of the orbitals 4 (r). [Note that the Bloch func-

tions are calculated in a plane-wave basis and

then fitted to an expansion in terms of the 4 (r).]
In fact, one can show that the G~„.(E) would be
Green's-function matrix elements if the 4 were
orthogonal. If not, and 8, is the overlap matrix
of the 4„, we have
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