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The low-temperature static dielectric constant for n-type semiconductors shows a significant upward
deviation from Clausius-Mossotti behavior as the donor concentration N approaches the critical value N, for
the onset of metallic behavior. After reviewing the possible reasons for this upward deviation and the
various types of screening applied to the insulator-metal problem, a new continuum-model calculation of the
donor-polarizability enhancement ao(N)/aa(0) is presented which is based on an electrostatic donor-donor
interaction potential and the Clausius-Mossotti relationship for the long-wavelength static dielectric constant
a(N). The Hasse variational approach is employed to calculate ao(N). The calculated enhancement
contains two contributions: (1) a size effect associated with an enlargement of the donor wave function with

N, and (2) an increase in the average effective dielectric constant (c(r,N)) with N seen by the localized
donor wave function. The results show a~(N, )/a~(0) ranging from about 2 for Si:Sb to about 3 for Si:As.
Comparison with the experimental data for Si:As shows the calculated upward deviation from Clausius-
Mossotti behavior remains smaller than the data. The values of N„„,[based on a polarization catastrophe, a
new self-consistent Clausius-Mossotti relationship, and a self-consistent Herzfeld criterion for N, from
e(N ~N, )~ of) ] are between 60% and 100% larger than the experimental values for the silicon shallow
donors. Possible corrections to this calculation resulting from the donor randomness, charge transfer, and
corrections to the Lorentz-Lorenz local field are also discussed.

I. INTRODUCTION

The metal-nonmetal (MNM} transition in mono-
valent impurity atom-insulator host systems such
as n-type semiconductors, alkali or noble-metal
atoms in the solid rare gases, the tungsten bronzes,
metal ammonia solutions, and others have been
the subject of intensive experimental and theoreti-
cal investigation. ' The principal experimental ap-
proaches employed have involved transport-prop-
erties studies, magnetic-properties studies, and
more recently optical investigations. 4 The di-
electric properties, as X-N, from the insulating
side of the transition, have received less atten-
tion, ' but nonetheless might be expected to play
an important, role in advancing our understanding
of the nature of the MNM transition. For the case
of an isolated shallow-donor impurity atom having
a binding energy, neglecting central-cell correc-
tions, of magnitude m*e /2h e„(m*is an isotropic
effective mass and q„the static dielectric constant
of the host semiconductor) the host-dielectric con-
stant e& plays the familiar role of screening the
attractive Coulomb potential and thereby substan-
tially reduces the binding energy when&„»1. Less
well established is the question of how this screen-
ing changes with doping as N -X,. Recent experi-
mental evidence has suggested that the low-temp-
erature, low-frequency dielectric constant e(N, T
-0) rises more rapidly as N-N, than predicted
by the Clausius-Mossotti relationship and has led
to the idea of a polarizability enhancement as a

possible explanation for the "upward" deviation
from Clausius-Mossotti behavior. The present
work is concerned therefore primarily with how
the screening changes with concentration on the
insulator side of the MNM transition as N -N, .
This work also suggests that screening plays the
dominant role in reducing the activation energies
for transport and might properly be viewed as the
driving force for the insulator-metal transition.

Since screening (Thomas-Fermi) was the mech-
anism originally employed by Mott' to obtain his
remarkably accurate estimate N,' a =-,', where a
is the Bohr radius of the isolated impurity-elec-
tron wave function, many authors have employed
various types of screening to calculate N,' 'a and
other quantities relating to the MNM transition
(Edwards and Sienko" have recently shown for the
monovalent MNM systems studied experimentally
that N$3a =0.26+0.05). The three basic types of
screening applied to the MNM transition case have
been the following: (l) metallic screening such as
Thomas-Fermi, Lindhard, Hubbard-Sham, and
related cases resulting from strongly degenerate
free carriers, ""~'(2}classical semiconductor
screening of the Debye-Huckel type resulting from
thermally activated free carriers in a semicon-
ductor, ' ' and (3) classical insulator screening
based on the venerable Clausius-Mossotti expres-
sion incorporating the Lorentz-Lorenz local-field
correction for localized electrons. ' Recently
Takeshima has attempted to apply a combination
of metallic screening (l) (resulting from a small
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number of free carriers) and insulator screening
(3} to calculate the dielectric response on the in-
sulating (N & N, ) side of the transition. While it
will not be possible to fully discuss the broad
range of ideas embodied in the various approaches
mentioned above, an attempt will be made to com-
pare the present approach with these earlier ap-
proaches and with the experimental data.

The physical situation to be explored herein is
the case of a random (probably not fully random}
distribution of monovalent impurities in an insul-
ating host which itself can be considered as a con-
tinuum dielectric. By considering only a single
type of impurity we specifically exclude compen-
sation effects such as random internal electric
fields. Within the framework of the Anderson mo-
del for electron localization the randomness im-
plies predominantly lateral or off-diagonal dis-
order. The temperature range will be restricted
to the ultralow temperature limit (T-0 K), or
effectively to temperatures such that kT «~2 or
any hopping activation energy. This situation is
that originally envisaged by Mott in which the ave-
rage atomic spacing is reduced at T=O K until N
exceeds the critical value N, for metallic behavior.
An expression for the classical screening length
developed by Stern ~ diverges as T -0 K as the
compensation becomes negligible. Thus in the
present case the Debye-Huckel screening makes
no contribution and our attention will be restricted
to the third type of screening and to the dielectric
behavior of insulators.

The modern approach to the self-consistent di-
electric response of solids has been formulated
by Ehrenreich and Cohen and extended by others.
This approach amounts to a perturbation theory
involving a summation over matrix elements be-
tween occupied states and low-lying empty states.
This approach has been employed by Wiser to
demonstrate that the Lorentz-Lorenz local-field
correction 4'/3e„ is valid for localized electrons
(in a cubic lattice), but that no local-field correc-
tion is required for itinerant electrons. However,
rather than use this modern perturbation-theory
approach, we will utilize the Clausius-Mossotti
expression and extend it to include the donor-po-
larizability enhancement. It is to be emphasized
that, although the Clausius-Mossotti expression
is frequently viewed as a classical result which
relates the macroscopic dielectric constant to the
microscopic polarizability, the polarizability must
be calculated with quantum mechanics and must
include a self-consistent potential which incorpor-
ates interactions between the impurities. The
donor polarizability na(N) is calculated using the
variational method of Hasse. The results yield
a self-consistent Clausius-Mossotti equation which

qualitatively explains the upward deviations from
standard Clausius-Mossotti behavior observed in
the data on n-type Si. The effects of the random-
ness on the polarization and N, will also be briefly
considered.

For the case of induced dipoles the Clausius-
Mossotti relationship predicts a divergence of the
static dielectric constant e(N) as 4wNa/3e„l-with
a resulting polarization catastrophe (PC). This
feature has resulted in substantial criticism of the
Clausius-Mossotti expression and it is frequently
asserted ' ' that this divergence cannot occur
for induced dipoles. It is perhaps surprising that
the early application of the Clausius-Mossotti ex-
pression, using measured gaseous molar polar-
izabilities and known solid densities, provided
Herzfeld ' with a reasonably accurate prediction
of which elements were metallic and which were
insulating in the solid state. The present work ex-
tends Herzfeld's application of the Clausius-Mos-
sotti result to the MNM transition by making it
self-consistent and also examines some crucial
questions concerning the applicability of the Claus-
ius-Mossotti relationship as N -N, .

II. BACKGROUND

N
1

(no(N}) 1 =— a,(r„N), .

1
(Rg„(N}}=— E, „,(r, , N)

i=i

=E, + 4n'P(N)/3e„,

(2a)

(2b)

where (oa(N)) is a density-dependent average sca-
lar polarizability and the density-dependent aver-
age local field is the normal Lorentz local field
expected for a cubic array of donors in a continu-
ous-host medium of the static dielectric constant

Even though P& and E, „,are not parallel to
the external field E„bothP and (E„,(N)) will be
parallel to E,. By considering the fluctuations of
the local polarizability n, (r, ,N) and E, »,(r, ,N)
from the average values (oa(N)) and (E„,(N}), P(N)

For uncompensated n-type semiconductors con-
taining Na (we shall henceforth drop the D sub-
script) neutral donors per unit volume at zero
temperature (T =0 K} the polarization per unit vol-
ume P will be given by

hl

P(N) = Q ag(r(, N) ~ E ( „,(r(,N), (l)
&=i

where ~(r, ) is the polarizability tensor of the ith
donor at position r, and E, „,(r,}isthe localfield at
the ith donor. By averaging over a large number
of neutral donors in a unit volume the average
values for a, (r„N)and E, »,(r„N)are given by
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from Eq. (1) can be written as

P(N) =N(n11(N}&(E„,(N)&
N

+Z o1(r1») -(o~(N)&~] &E1-(N)&

+(o.'11(N)&1 Q 6E; „,(r1,N)
(3)

+ +[a.,(r 1N) —(nD(N))1] ~ 6E;,«(rf rN),
i=i

where 6E1-»,(r&,N) =E, ,«(r;, N) -(E,«(N)). Be-
cause of Eqs. (2a) and (2b) the second and third
terms vanish. The last term represents the cor-
relation between polarizability and local-field
fluctuations. P(N) can be written as

&(N) =N]&&D(N)&&El«(N )&

+([o(r,N) -(o (N})1] ~ 6E„,(r, N)&,), (4)

where ([a(r,N) —n11(N)1] ~ 6E„,(r, N)&, is the aver-
age correlation per donor of the two fluctuating
quantities. The determination of the magnitude of
the second term in Eq. (4} is a difficult problem
and will not be considered in this work. This term
incorporates the effects of the spatial randomness
on the dielectric properties of doped semiconduc-
tors on the insulating side of the transition (N & N, )
The relative magnitude of this term compared to
the first term N(aD(N)&(E„,(N)& [which we designate
the regular array polarization P,(N}] has not been
established and will depend on the nature of the
randomness. For a totally random (Poisson) dis-
tribution the second term will be far more impor-
tant than for a more restricted type of random-
ness. Although P„(N)= P(N) for a cubic array of
donors we expect P(N) to be larger than P„(N)for
a random array. While not calculating P(N) —P,(N)
here, it is worth making some qualitative com-
ments about the fluctuation correlation term in Eq.
(4)

The largest contribution to ([a.(r, , N) -(n11(N}&1]
~ 6E, (r, )), will come from the immediate neigh-
bors of a particular ith donor. For a particular
coordination number z, for example, 6, one could
consider an XF octahedral complex and expand
the random positions of seven donors making up
the XY complex in terms of the various normal
modes of this complex as developed by Van Vleck."
The Q1 breathing mode (donor density fluctuation)
will contribute to (n(r„N)—@11(N)1& by changing
the donor-donor interactions and the magnitude of
the screening [V„,(r,N) in Eq. (10)], but will not
contribute to 6E„,(r„N)because there is no change
from cubic symmetry. One ean also demonstrate
that rotations and translations of F relative to X
make only zero or small contributions to 6E„,(r„,N)
and a (r„,N) —(a D(N)&1. However, tetragonal

g(N) -e„4vNu11
e(N} +2e„3e„ (5)

distortions (modes Q, and Q~ in Ref. 33) will make
first-order contributions to both 6E„,(r„N)and
a(r„N)-(o1 (N))1 and hence to ([n(r, N) —o D(N)1]
~ 6E„,(r, N)). Although this &Y complex approach
might allow one to estimate the effects of random-
ness, it is not going to lead to simple analytical
formulas which transparently demonstrate the con-
sequence of randomness. One can more easily cal-
culate ([6E„,(r1,N)] &

for positional deviations
from a cubic array. Employing a Poisson distri-
bution one finds (([6E(r, , N}] &J' =0.454vP(N)/3e„.
This result shows that local-field fluctuations can
be comparable to the average Lorentz local field
4wP(N}/3e„with the rms local-field fluctuation
nearly one-half of 4vP(N)/3e„The. difficult prob-
lem is to determine how n(r;, N) —o11(N)l is cor-
related with 6E„,(r, , N) Fro. m the above discus-
sion this correl. ation is clearly less than unity and
this might suggest that the fluctuation-correlation
term in Eq. (4) is less important than the first
term P„(N). The viewpoint may appear opposed to
the generally accepted idea that spatial fluctuations
represent an important or even dominant feature
of the MNM transition for systems with random
distributions of impurities. However, it is worth
emphasizing that the static long-wavelength dielec-
tric constant is a physical quantity that is aver-
aged over distances much larger than the average
distance between donors. As N -N, the Lorentz
contribution to E„,(r;,N} becomes increasingly
important and is dominated by the long-range
4 P1(1N}/3e„, where P(N) is the total average polar-
ization. Other physical properties, which are
also averaged over the random donor distribution,
may feature predominantly short-range inter-
actions and therefore may be much more affected
by randomness than the long-wavelength dielectric
constant. The magnetic susceptibility should have
important corrections from the randomness be-
cause of the short-range nature of the exchange
interaction. The randomness plays a key role for
the ESR spectra of pairs and larger clusters.
One might argue that if randomness does not great-
ly affect the long-wavelength dielectric constant,
which helps determine the average binding-energy
E1, „(N)of the shallow donors, then randomness
might not have a large effect on the MNM transi-
tion criterion N, a - —,'. This viewpoint is sup-
ported by calculations, such as the Hubbard mo-
del, "which apparently yield results for N', a
close to the experimental values.

The experimental results for Si:As demon-
strated an upward deviation from Clausius-Mossot-
ti behavior given by
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S=n (b,N + b2N + ~ ~ ~ )+O(n ), (6)

as given by de Boer, van der Maesen, and Ten
Seldam. The coefficients b&, b2, etc. , can be
calculated for a particular intermolecular inter-
action and the above authors gave results for Len-
nard-Jones and square-well potentials. Kirkwood '
evaluated these coefficients for a hard-sphere
intermolecular interaction and obtained b& ——8v/3cr
and b2 = —5w /3 where o is the hard-sphere diam-
eter. The correction to the Clausius-Mossotti
equation from Bottcher's continuum approach and
from Kirkwood's coefficients leads to an expres-
sion correct to order o. in S given by

where z =4vNo/3 This eq. uation with the left-hand
side replaced by (z -z„)/(z+2z„)and with z =4vNo/
3&„wasadapted by Van Metter to attempt to fit
the corrections to Clausius-Mossotti behavior for
the Si:As data. ' A reasonable fit was obtained for
o = 15 A. However, the same 0 did not appear to
give a good fit for the more restricted Si:P and
Si:Sb data. Regardless of this reasonable fit for
the Si:As data there remains the serious question
of whether a modified equation (7) is correct for a
random distribution of fixed impurities in a solid
at OK.

Employing ESR, the Zeeman spectra of donor
pairs, triplets, and perhaps larger clusters have
been observed and identified. However, as a

where o.D is a constant-donor polarizability. Three
possible reasons for this upward deviation were
offered, namely: (i) an increase in nD(N) resulting
from a weakening attractive potential and binding
energy as N N-„(ii)fluctuations in E...(r, ) re-
sulting from the random distribution of donors,
and (iii) cluster effects as observed by ESR. Let
us review the various possibilities for deviations
from Clausius-Mossotti behavior before proceeding
with the calculation of (nD(N)).

Corrections to Eq. (5) have been treated by many
authors and have been discussed by Bottcher. '
Here we consider only nonpolar impurities and
thereby neglect the correction to Eq. (5) from the
Onsager reaction field for permanent dipoles. Even
for the nonpolar case several types of corrections
have been considered (see Ref. 32) and these will
not be detailed here. Perhaps the most relevant
correction to consider is that correction resulting
from "translational fluctuations" as applied to
gases and liquids. This correction was derived
by Bottcher, 3 employing a continuum model, and
also from a virial expansion (z —I)/(z+ 2)
=(4vNu/3)(1+8), where

precautionary warning, these discrete clusters
have only been observed for N «N, (N & 6X10'~ for
Si:P) and as N-N, a single exchange-narrowed
line is observed and the experimental information
on separate clusters of a given size is lost. If one
attempted to write P(N) in terms of a cluster ex-
pansion, one would have

g(N)= Q N ('ct )(Ego,),
m=$

where N=Z &N, (o. ) is the average polariza-
bility of a cluster of I donors, N is the number
of such m-donor clusters per unit volume, and
(EP,) is the mean local field for the m-donor clus-
ter. Even if one could argue that (EP,) was inde-
pendent of the cluster size one would still face a
formidable problem in determining the (n ), even
though the N are readily calculated for a Poisson
distribution. There is no convincing way of ex-
tracting the (a ) from the data of z(N) vs N In.
fact, if the first reason for the deviation from
Clausius-Mossotti behavior is important, then the
(n ) themselves would be functions of N and Eq.
(8) would represent a very complex virial expan-
sion. Any attempt to fit the data with Eq. (8) would
appear to be speculative at best. Moreover, since
the largest contribution to the local field E„,(r;,N)
(besides E,) comes from the long-range 4vP(N)/3~„
term rather than from the much shorter-range
5Z„,(r, ,N} from spatial fluctuations, one might
well question whether the concept of independently
behaving clusters (albeit large clusters) is sound
as N -N, . Despite this shortcoming several corn-
ments should be made concerning ('n ) and (n).
The polarizability of a hydrogenic donor molecule
a'(R} has been considered by Takeshima" as a
function of the internuclear distance R (a (R)

[Q~ (R) + 2n, (R)]). Employing a Poission distri-
bution one finds (n (R))v„»„alwaysless than
2(n ) and thereby concludes that pairs cannot ac-
count for an upward deviation from Clausius-Mos-
sotti behavior. [In the limit as R -0, u (R) - n. .„,
«2o ..„...] A triad of donors in its ground state will
involve higher orbitals than just the 1s-A& orbitals
for small R and this orbital promotion may produce
the desired result (n (R&2, R23, R3&)) & 3(a'). (Note
that in the limit R&2, R23, and R3& all go to zero
a a ~i- & 3+a-, since a„=0.666A'and a«=22 A'. )
Presumably larger clusters, because of the polari-
zation admixture of higher orbitals, may also have
(o. ))m(o. ') and would thereby contribute to upward
deviations from Clausius-Mossotti behavior.
Takeshima has expressed the view that inter-
actions between donors will reduce the polariza-
bility per donor to a smaller value than that for
isolated (noninteracting) donors. The above dis-
cussion suggests this is probably only correct for
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donor pairs but not for triads and larger clusters
in general. Moreover, since the consequence of
donor-donor interactions is to decrease donor
binding energies (and increase effective Bohr
radii) as N-N„ it is difficult to see how the po-
larizability per donor can decrease with increasing
N. This would imply downward deviations from
Clausius-Mossotti behavior contrary to the experi-
mental results.

Whatever the merits of the "translational" cor-
rections to E„,embodied in Eq. (7) or of the clus-
ter approach represented by Eq. (8), there is the
correction [reason (i)] which is present even for a
regular lattic of donors. As the lattice parameter
decreases (N increases}, the donor-donor inter-
actions begin to screen the large-r part of the
attractive Coulombic potentials and thereby weaken
the binding energy per donor electron. This in
turn enhances the effective Bohr radius, and the
donor polarizability n~(N} increases with N. It is
therefore of in)crest and importance to reliably
determine the donor-polarizability enhancement
n~(N)/n~(0} as N N, -Only .after this contribution
to the upward deviation from Clausius-Mossotti
behavior has been reliably ascertained will it be
possible to assess the relative importance of the
randomness to the dielectric anomaly as N-N, .
In the next section a continuum-model approach
for calculating oc(N) will be formulated.

III. THE HAMILTONIAN AND EFFECTIVE
ONE- ELECTRON POTENTIAL

of the average donor density and also a function of
the self-consistent Bohr radius a(N) of the central
and neighboring donors. The physical situation is
pictured in Fig. 1. The attractive Coulomb inter-
action of an electron occupying a state with wave
function g»(r, a(N) }centered on a particular donor
is screened by the host dielectric constant &„for
r& r„where 4vr+/3=1. For r»r, the attrac-
tive Coulomb potential is screened not only by the
host atoms but also by the intervening donor atoms,
V(r}= e/e-(N}r and the dielectric constant to be
used is given by the Clausius-Mossotti expression
[Eq. (5}], but with the additional caveat that the
donor polarizability is a function of concentration.
Since the host is being treated as a dielectric con-
tinuum and the interaction with other neutral don-
ors is essentially averaged over the discrete don-
or positions to yield a spherical one-electron ef-
fective potential V,«(r, N, n~(N)), the spatially de-
pendent dielectric function q(r, N) varies from q„
for r & r, to e(N) [Eq. (5)] for r»r, If o.ne con-
siders a two-dielectric medium with q =q„for
r & r, and e(N) for r & r„elementary electrostatics
suggests a V„,(r, N, n~(N)) of the form (e /r)[l/q„

Ie/( N]}. On general physical grounds one expects
a smoothly varying e(r, N} and a simple, convenient
form, for the radial dependence involves an ex-
ponential e " "& which results in simple integrals
in the matrix elements required for the calculation
of n~(N) With .this type of r dependence V„,(r,N,
ao(N)) takes the form

Because of difficulties ' associated with using
the formal perturbation expression for the wave-
number-dependent polarizability o. (g, N}, as em-
ployed by Leroux Hugon and Ghazali ' in their cal-
culation of the dielectric enhancement e(N}/e„, we

employ a variational approach originally used by
Hasse. This approach is known to give an exact
result for an isolated hydrogenic atom. It avoids
the problem of how the various excited states shift
with donor density, but does yield the density de-
pendence of the ground-state energy and an iso-
tropic Bohr radius a(N). The present work also
utilizes a different interaction potential between
neutral donors than that employed by Leroux Hugon

and Ghazali.
The many-body problem of X interacting neutral

donors per unit volume is replaced by a single-
donor problem with an averaged effective-inter-
action term incorporating the interactions with all
the donors. The single-donor effective Hamiltonian
will be of the form H& H«+ V„,(r,N, ——a(N)), where
H« is the isolated donor Hamiltonian and V f t(r, X,
a(N}) is an averaged spherically symmetric self-
consistent interaction potential that is a function

FlG. 1. Random group of neutral donors. The attrac-
tive Coulomb interaction of the central-donor electron
is screened by the host-dielectric constant e& for
r &r~t'r~= (3/4&N)' 3) and by the long-wavelength dielec-
tric constant e(N) for r &&r~, e(N) includes the screen-
ing resulting from the highly polarizable intervening neu-
tral donors.
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where Xn =(Zn —Z„—I/q„}and ZD is the atomic
number of the donor and Z„that of the host. The
first term in the large parentheses represents a
central-cell correction with AL) a donor-dependent
screening parameter (note tha. t k~ »& I/r, ). The
term V [V = —(e /c„a)(2vNa )j represents a con-
stant potential as r - representing the lowering
of the total potential resulting from the continuum-
donor background. Ignoring the V term, one ob-
serves, as r-0, V,«(r) ——(e'/r)(ZD -Z„)(a cen-
tral-cell pseudopotential), for I/kn «r & r, V„,(r)--e /q„r, while for ~»r, V,«- e/e-(N)r It.
should be noted that as N -N, and e(N) becomes
very large the long-range Coulomb interaction
(LRCI} is cut off for r»r, . It is this weakening
of the attractive LRCI that is responsible for the
donor-polarizability enhancement.

When V,«(r, N, nD(N)) is written in terms of an
isolated-donor potential plus a donor-donor inter-
action term, V„,(r, N, a~(N)) takes the form

e~ 1 1V„,(r,N, n~(N))= ———
r e„eN
x(1-e ' "'}+V„. (10}

This interaction form (excluding V„}is that em-
ployed by Haken in treating the interaction of
excitons with optical phonons and is also similar
to the interaction term employed for the polaron
problem in ionic crystals because of the I/e„
—I/e(N) factor. This factor is proportional to

Neo(N) for N «N, thereby showing that the donor-
donor interactions are proportional to the polariza-
tion per unit volume. Whereas in ionic crystals
the polarization effects from the optical phonon
modes result from the factor I/e„—I/qo, here the
I/e„—I/e(N) factor accounts for the polarization
contribution of the donor electrons to the Cou-
lombic interactions between neutral donors. Or-
dinarily when considering a many-body problem
the Hamiltonian will include separate interaction
terms of an electron with the other electrons and

with the other ion cores. The present formulation
combines these two types of terms and considers
the interaction as that between neutral polarizable
donor atoms, which might be viewed as the natural
approach on the insulating side of the MNM tran-
sition.

An alternative approach for calculating V&„,(~,
N, a(N)) has been employed by Leroux Hugon and

Ghazali. ' They use the Coulomb interaction for a
donor molecule (D2}, for which the molecular wave
function is of the Heitler-London form valid for
large internuclear separations. They then inte-
grate this D2 Coulomb interaction over a continu-
um-donor distribution beyond a concentration-
dependent cutoff radius. Their approach is briefly

I.O—

O. l

V)ni (~):
(e&2s,a, )—

Q.QI—
~MODEL

(yO )

Q.QQI
Q.l I.Q

FIG. 2. Comparison of the model interaction potential
gq. (10)j based on electrostatics with the Heitler-Lon-
don-type Coulomb interaction utilized by Leroux Hugon
and Ghazali (Hef. 25). p=r/a and curves are shown for
various values of the quantity z = f4&a&(0)/36g'j &. Note
that at large p the model potential falls off as 1/p,
while the Heitler-London V~~&(p) falls off as e 2~ .

outlined in Appendix A. Several curves of their
V$ f V„for different concentrations are shown in
Fig. 2 along with the corresponding V„&—V„from
Eq. (10}as a function of the dimensionless radius
p=r/a A. lthough these two types of interactions
are qualitatively similar, two distinct differences
between them should be emphasized. At large
values of r (p» 1}the electrostatic model Vf g V
falls off as I/r while their V„,—V„fails off ex-
ponentially as e '" '. It is our viewpoint that for
an insulator (T =0 K) a screened point charge
should produce a potential falling off as I/e(N)r
at large r, where e(N) is the total static dielectric
constant of the solid, including the impurity con-
tribution. The V&,&

—V„term of Leroux Hugon and
Ghazali includes the contribution of the sum over
all pairs of donors, but neglects all higher-order
(third-order, etc.} contributions to the one-elec-
tron V„,(r). The electrostatics model V„,—V

implicitly includes these higher-order contribu-
tions. The second difference worth noting is the
concentration dependence at small r (p «1). The
electrostatics model potential [V„,(p «1) —V j
~ N ' for N «N, while Leroux Hugon and Ghazali
find [V„,(p«1) —V jccN This .different N de-
pendence at small p is also thought to arise from
the effect of higher-order contributions to the one-
electron V„,(r}. Their treatment, based on pairs,
leads to a linear dependence on N while the elec-
trostatics model V&,&

—V„leads to a nonlinear N
dependence. Figure 2 shows that the model po-
tential is smaller at z =0.1, but is already sub-
stantially larger at z =0.5. The curves based on
the D2 molecular treatment also show the surpris-
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ing feature of crossing in the range p-2.3 to 4.2
leading to the result that at large p [V„2(p»1)
—V„]actually decreases with increasing concen-
tration. The model V„E(r,N, o(o(N)) does not show
this crossing feature and would appear to be more
physically reasonable. On the other hand, the
large p region, where the p dependence of the two
different V„,—V„forms are markedly different,
may not give large differences in ao(N} because
the wave function (I)(r,N} will be small in this re-
gion.

Although the indirect-gap semiconductors have
multiple conduction-band valleys, each charac-
terized by a mass tensor with components m, and
m„we shall employ a single isotropic mass m*
chosen to produce the correct effective mass ap-
proximation (EMA) binding energy for a single
valley, namely, m*/m = IE» «)5 lo')2/Ry (m'/m
=0.299 for Si and 0.17 for Ge}. Dexter' has cal-
culated by a variational technique the EMA polar-
izability values [azw(5 =—', (o u +2a,}]for isolated
donors. His results show a«„——4.328&10 cm
for Si and 0.«„=9.329~10 cm for Ge. Dexter's
results are, respectively, 2.5+ and 247o larger

9 3than the isotropic n~„„values~nag+ f =
2 GgQ„

where a, =aao„(m/m~)j. The small difference, at
least for Si, suggests it is a good approximation
to neglect the mass anisotropy. This use of an
isotropic mass m* in the kinetic energy term of
Hp allows the use of a spherical. ground-state wave
function go(r, a(N) ) for each conduction-band val-
ley —an important simplification in the calculation
of no(N)/o(o(0) to follow.

IV. VARIATIONAL CALCULATION OF THE
DONOR- POLARIZABILITY ENHANCEMENT

In the presence of an electric field each donor
will become polarized and will have an induced

dipole moment p(r, ) = o)2(r, ,N) ~ E»,(r, ,N} Con-
sidering a regular donor array there will be no
contribution from the fluctuation-correlation term
in Eq. (4). For this regular array the correct
orthogonalized localized wave functions are, of
course, Wannier functions. Since the polarization
operator is the sum of one-electron operators,
the polarization P(N) will be given byNa (N)f, (N)
(dropping the & ) symbols), where oo(N) is the
polarizability of a donor electron occupying a Wan-
nier function localized about a specific donor site.
The Wannier functions will have the symmetry of
the lattice, will of necessity have nodes, and will
be very difficult to determine accurately, partic-
ularly as N-N, and the overlap of atomic wave
functions becomes large. As an approximation we
will employ spherically symmetric valley-enve-
lope functions of the form

g~o (r, a(N) )=[ma(N}o] "~ '
e " ""', where a(N) is a concentration-dependent
Bohr radius. The use of a nonorthogonal (t»(r,
a(N})will cause a monotonically increasing error
as N -N„but it should not be assumed that the
results will be very different than those for a cal-
culation of ao(N) employing a reliable Wannier
function. This question will receive additional
consideration in the Discussion.

The Hamiltonian for the donor electron in a uni-
form electric field along the z axis will be H =Hp
-eEz, where E is the magnitude of the electric
field and H, is the total donor Hamiltonian includ-
ing V„2(r,N, o(o(N) }in the absence of the applied
electric field. The Hasse trial variational wave
function is

$, =go(r, a(N))(1+ bz + crz) .
Minimization of the energy E =&gE IH lr/E&/&(i)E l)1)E&

with respect to the variational parameters 5 and

c yields after some manipulation

2(B —5+ )+2 ,(A —2,E ) 21 (C —
12-E )„)

(44 —X,E o)(B —yoE o} —(C —XoE o)'
(12)

where Eo(N& =&o'o
I o l~o& ~t =&z0'o lzto&2 xo ——&rzgo Irz(I)o&) xo =&'rzgo Izto& A =&ztlro

I o Iz)1)o&

B= r&z@ olHorlz)fo&, and C =&rz(})oIHo lzgo&. Clearly the coefficient of F' is just (zo(N)/2. Although Eq.
(12) is rigorous for the trial wave function )I), in Eq. (11), this expression only gives an exact result for

an isolated hydrogenic atom. Since the correct donor (Oo(r) is well approximated by a hydrogenic wave

function, the above g, should be expected to yield reliable results for shallow donors. For the particular

hydrogenic rj)o(r, a(N}) given above, o(o(N} is given by

15
25 4(A aE„)+4(B-2 -E,) —(Ba(C —5a'5 ))

4(A aEo)(B —-11a Eo) -(C -5a E())
2

while the single-valley energy E,(N) is given by

Eo(N) a, , a,
( )

2
(N) (N) ( y), 2„(N) (14)
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where a, is the EMA isotropic Bohr radius, y(N)
=1/[1+a(N)/2r, ], and x(N) =Xpeg[1+kpa(N)/2]'.
The ED(N} given in Eq. (14) has been obtained by
minimizing ED(N) with respect to a(N), which
yields a concentration-dependent Bohr radius a(N)
given by

a(N) =a,//1 +x(N}P(N)

-[1—e) /~(N)](1 -y)'(1+ 2y)}, (15)

where P(N) = 3 - 2/[1 + kpa(N)/2] In t.he dilute
limit e(N)-e„,y(N) -1 and the Bohr radius is given
by a(0) =a,/[1+x(0)P(0)]. As the central-cell cor-
rection increases, x(0) increases and the Bohr
radius a(0) decreases [P(N) is slightly less than
three and does not vary much with N and varies
only slightly with the donor]. In minimizing ED(N)
with respect to a(N} in obtaining Eq. (15) the spa- where

n (&() (a(&)))&(l(&()j (16a)

tially constant V was excluded even though V„is
a function of a(N). The reason is that a constant
potential (spatially constant) can make no contri-
bution to the extent [of order a(N)] of a localized
wave function even though it does contribute to the
energy. [If one includes V„in the minimization of
Ep(N), one obtains unphysical behavior for a(N).]
The matrix elements A, B, and C as a function of
x, y, 1 -e„/e(N), P, and a(N) are given in Appen-
dix B.

Substituting A, B, and C from Appendix 8 and
Eo(N) into c(p(N) in Eq. (13), one obtains after con-
siderable algebraic manipulation the donor-polar-
izability enhancement W(N) =op(N)/ap(0) given by

9+(10+4P)x —f(N, c(p, y)(9+ 18y + 5y + 20y )
2+ 7x+(5+26-p')x -f(N&c(p&y)g(y, x, p) +f (N&ap, y)(1+y} (2+y )

(16b)

with

g(y, x, 6) = 4 + 8y + 5y + 2y + 5y

+ 4xPy (I +y ) + x(7 + 14y + 5y + 10y ),
(16c)

and f(N, c(p,y} =[1 -(.„/e(N)](1-y) . The polariza-
bility in the dilute limit is given by np(0)
=e„a(0)I(0}. With no central-cell correction
(Xp =0), ap(0) =p(«„„,——

2 e))a, . With the central-
cell correction np(0) is given by

9+ [10+4P(0)]x(0)
& +»(()) + I& + &()(()) —()(())')&(())')

(17)

For a given donor X~ is determined, and the only
remaining undetermined parameter in the Hamil-
tonian is the central-cell correction screening pa-
rameter kp. Once kp is determined x(0}, P(0),
a(0), and thus ap(0} are all determined. Our pro-
cedure has been to determine kL} and these other
quantities by force-fitting ap(0) to the experimen-
tall. y determined values42; however, there are
certain problems associated with the accurate ex-
perimental determination of op(0} as will be dis-
cussed later.

The polarizability enhancement W(N) given in
Eq. (16) is a single-valley result. It is possible
to obtain an approximate many-valley result em-
ploying the wave function

8), ~, =(1/N. ) g "e"4 (r0, )N,
1=1

I

where N„is the number of valleys and k& is the
k vector to the ith-valley minimum. Because of
the extra r, r3, and ~' dependences of the matrix
elements X&, ~2, ~3, A, I3, and C one can demon-
strate that, although the central-cell potential
makes an important correction through the valley-
valley coupling terms to the ground-state energy
E„&,(N}, the valley-valley corrections to Z„z2,
X3, A, 3, and C are negligible. The largest cor-
rection to c(p(N) then comes from replacing ED(N)
in Eq. (13) by E„~(N), which is given approxi-
mately by

E„„,(N) =ED(N) + rlE, [a(0)/a(N)], (18)

where rlE, (E,=e /2e„a,) is the valley-valley cou-
pling contribution to the ground-state energy in
the dilute limit. The correction to W(N) comes
through the I(N) term, which is modified by adding
the following: (1) the quantity 5p to the numerator,
(2) the quantity (P/2)(7 + 10x + 2xP) + 5P /4 to the
denominator, and (3) replacing the last x in

g(y, x, P) in the denominator by x+P/2. The quan-
tity +7i,a(N}] =t)[a(N)/a, ][a(0)/a(N)]3. One should
emphasize, however, that a(N) in Eq. (15) has not
been determined by a full many-valley treatment.

The W(N) given in Eq. (16a) with the quantity
I(N)/I(0) can readily be solved iteratively to high
accuracy arbitrarily close to the divergence of
e(N) as N -N, . The procedure we employed was to
obtain a polynomial in W(N) by eliminating
[a(N)/a(0)] from Eq. (16a) using Eq. (15); how-
ever, the complex form of I(N}/I(0) precludes
eliminating it from Eq. (16a) in any simple man-
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ner. The polynomial in W(N) is

3(1-y)'(1+2y) W'"
2[1 +x(N)p(N)] [I(N)/I(0)]

W 1 +x(0)p(0)
[I(N)/I(0)] 1 +x(N) p(N)

where z =4vNn&(0)/3e„. This equation can be
solved to the desired accuracy by iteration for the
quantities W(N), I(N)/I(0), 1 s„/-e(N), y(N), x(N),
and P(N) for each value of N The. numerical cal-
culations were conveniently handled by a TI59 cal-
culator, utilizing one of the module programs for
finding the zeros of a polynomial as a subroutine.
The iteration was continued until successive val-
ues of W(N} differed by less than one part in 10'
typically and in special situations to much smaller
differences. The convergence of the iterations be-
comes much slower as N -N„presumably because
of the highly nonlinear behavior of W(N) as N N, -
For the worst case [as with the largest W(N, ) val-
ue] the iteration could take more than an hour for
N close to N, . The computational accuracy of the
numerical results for the various quantities is
thought to be much better than 1/0.

Before proceeding to discuss the results, two
final points should be emphasized. The main idea
of the present calculation is to ascertain how the
static screening [e(N)] changes with concentration
as N -N„approaching from the insulating side.
Although various approximations have been made,
namely, (1) a spherical $,(r, a(N)) of hydrogenic
form, (2) the neglect of the orthogonality require-
ment for discrete neighbors through the use of a
continuum model, and (3} the neglect of random-
ness, spin, and exchange —for the particular
&~,t(&,N, p(N)) employed, no screening terms have
been neglected. The quantity y(N) given by
1/[1+ (Na)/2r, ] is the screening parameter (in
fact 1-y is directly proportional to the screening)
and varies from 1 to 0.76 as N increases from
zero to N, . No terms in y have been neglected and
it is noted that 1(N) contains various polynomials
in y, including y" terms up to n =10. The point to
be stressed is, that for the given model
V„,(r, N, a~(N)), the screening has been treated
with no approximations. The second point to be
noted is that the calculation is fully self-consistent
(SC), by which we mean that all quantities that
should vary with N, even if only by small amounts
[for example x(N) and p(N)], have been allowed to
change with ¹ One could more easily do a sim-
pler screening calculation with fixed values of x
and p [x(0) and p(0)] and obtain somewhat different
numerical results, but this calculation would not
be fully SC.

V. RESULTS AND DISCUSSION
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FIG. 3. Polarizability enhancement 8'(N) = nz(N)/
nD(0) and the quantity l(N)/I(0) vs ND for SiAs, Si:P,
Si:Sb, and the EMA case for Si. The dots terminating
the curves are the values of the quantitites at N~
where E (N~) = 5ased on the nz(0) values from Ref.
42).

The donor-polarizability enhancements [%(N)
=a~(N)/n~(0)] and the factors I(N)/I(0) are shown
in Fig. 3 for Si:As, Si:P, Si:Sb, and the Si EMA
case. The results show that W(N} starts increas-
ing, at first slowly, above N-10'8/cm3 with the
increase becoming monotonically steeper as N -N, .
For the more tightly bound donors W(N) increases
more slowly for a given N, but ultimately becomes
larger as N-N, . The values of W(N, ) and the re-
spective N, values are given in Table I along with
some of the parameters employed in the calcula-
tion such as a(0), k~a(0), x(0), and P(0). Based on
the values of o~(0) from Ref. 42, W(N, ) increases
from the EMA value of 1.883 to 2.84 for Si:As.
New smaller values of n~(0) have recently been
obtained 3 for Si:P and Si:Sb. These smaller val-
ues of o~(0) lead to somewhat larger enhance-
ments at N, and to larger values of N,„„.These
new values are also shown in Table I (in paren-
theses). The comparison of the calculated and ex-
perimental N, values will be discussed below.

Figure 3 also shows the quantity I(N)/I(0) rising
proportionately to W(N) and growing at approxi-
mately —,

' the rate of W(N). Recalling Eq. (16a),
the total polarizability enhancement nD(N)/et~(0}
can be broken into two contributions, namely, (1)
the wave-function volume effect proportional to
[a(N)/a(0)]~ and (2) the I(N)/I(0) factor. The phys-
ical origin of this second contribution arises be-
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TABLE I. Polarizability-enhancement parameters for silicon shallow donors.

EMA Sb As

u D(N~ )/QD(0)

I (N,)/I {0)

a(N )/a(0)

&g {N )&g {0)

10 N~ (cm )

10 Ncwxpt (cm )

uD(0) (A')

a(0) (A.)

)&g) a (0)

+{0)

p(o)

1.883

1.274

1.139

0.30

3.34

4.328 x 10

20.18

2.06
(2.26)

1.31
(1.34)

1.163
(1.190)

0.33
(0.32)

4.25
(6.02)

3.0 + 0.2
3.1x 105

(2.0 x 105)

19.90
(17.25)

298.888
(84.898)

0.0047
(0.0570)

2.993
(2.977)

420.8

0.2856

2.17
(2.34)

1.33
(1.36)

1.175
{1.199)

0.31
(0.31)

5.23
(7.27)

3.5+ 0-4'

2.4x 10&'

(1.6x 10 )

18.49
(16.23)

17.189
(9.977)

0.0314
(0.0863)

2.890
(2.818)

10.4

0.3239

2.84
(3.13)

1.43
(1.46)

1.258
1.291

0.31
(0.30)

9.57
(10.90)

6.4 + 0.5

1.0 + 10
(0.78 + 105)

14.57
(13.51)

39.694
(34.858)

0.1302
(0.1676)

2.951
(2.944)

215.6

0.5740

After Bethin et al. , Ref. 42.
See Ref. 43 for Si:Sb and Si:P and Ref. 9 for Si:As.
The lower values based on the smaller values of O.'D&&„te

- ez(0) are thought to be the
more reliable values.

After Castner et al. , Ref. 9.

cause the outer portion of the donor electron's
wave function is screened not only by the host but
also by the intervening neutral donors. Employing
the radial dependence of e(r, N) implied by E(l. (9)
numerical a,nalysis shows that I(N)/I(0) is well
approximated (except very close to N, ) by the re-
lation

=—f ()))(2 (r, N)( 22. (2, 0)

As N increases, the donors interact more strong-
ly and the average dielectric constant (e(r,N)} seen
by the donor electron increases. As S-N, the
long-wavelength dielectric constant e(N) diverges,
but (q(r, ,N)}remains finite because of the strong
spatial dispersion of e(r, N, ) and the limited extent
of $22(r, N, ).

An alternative method of plotting n22(N)/n22(0) is
given in Fig. 4 showing 1n[nn(N}/nD(0)] vs N. The
figure shows that ln[nn(N}/n22(0)] varies as N n,
except very close to N, (the EMA case appears to

show no deviation close to N, } The pola. rizability
enhancement is well fit by the empirical relation-
ship nD(N)/n22(0}=exp(pDN D) The dev.iation from
this behavior is largest for As, smallest for Sb,
and apparently zero for the EMA case, thereby
suggesting the deviation is directly related to the
magnitude of the central-cell correction to the en-
ergy E„„ofthe donors. In Table II are given the
values of PD and mD for the three donors Sb, P,
As, and for the EMA case for Si. The results
show mD -1.5 and values of P~ which rapidly de-
crease with the donor binding energy. This ex-
ponential functional dependence could not have been
obtained from a virial expansion containing only a
few terms with increasing powers of the density
N, as has typically been employed to discuss de-
viations for Clausius-Mossotti behavior for highly
dense gases or liquids. The most widely discussed
mechanism for the deviation from Clausius-Mos-
sotti behavior for the dense gases is the transla-
tional fluctuation mechanism. The mechanism
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and the Si EMA case. nz(N&)/&z(0) is well fitted, ex-
cept close toN~ by n~(N~)/u~(0) =exp(p~z )where ~z

1.5. The upward correction from this result near N~

is negligible for the EMA case and increases with the

magnitude of the central-cell correction to the donor

binding energy E&8 & (N). These curves are based on

the &AD(0) values from Ref. 42.

employed here is the nonlinear screening result-
ing from donor-donor interactions represented by
V~ qn(r, N, an(N})

In Fig. 5 the energies for the donor ground state
E„~,(N) and the 2p excited state [calculated with
the same variational approach and the same
Vf (r,tN, (Nn))]areshownversusdonorconcen-
tration (E&, „,(N} =ED(N)+qE, [a(0)/a(N)]~, where
E,(N) [see Eq. (14}]is the single-valley energy
and qE, [a(0)/a(N)] is the valley-valley coupling
contribution which has been approximated by find-
ing the change in ~g(O, N) ~', since the valley-valley
coupling terms are dominated by the central-cell
small-r part of the wave function). The single-
valley energy Eo(N) changes more rapidly with N

than the valley-valley contributions, which only
change significantly for N & 0 4N, The.E„.„&(N)
curves drop by approximately a factor of 3 as
N N, (the va-lues atN, are given in Table I). The
2P levels (no central-cell correction required)
drop smoothly to zero, reaching zero for values

I'" o(u&', N)d&u'
e((u =O,N) —e„=g

dp (d
(21)

where (&u'o, N) is the frequency-dependent con-
ductivity resulting from the neutral donors
(4va(&u) =~1m[@(~)]'. Because of the strong weight
ing of low frequencies in Eq. (21), extra absorp-
tion from the lower-energy charge-transfer ex-
citations significantly enhance the (((d =O, N) val-

of N slightly less than N, . This behavior appears
reasonable since the more extended 2P levels are
screened more effectively by V„,(r, N, an(N)) than
the more localized ground state which is "held in"
partially by the stronger central-cell potential.
This behavior of the 2P level with N is different
from that reported by I eroux Hugon and Ghazali, "
who found virtually no change of F» with N as
Ã-N, . As a result they found a larger reduction
in ~E„E»-~ than found here for the EMA case.
The solid line in Fig. 5 shows E»-E&, „,for the
three donors and the EMA case. For the EMA
case Fig. 5 shows (E» E„)/-E,reduced from 0.75
at N=0 to about 0.3 at N, (N, = 3.34&& 10' /cm' for
the EMA case), however, at N =1.25' 10' /cm
the reduction in F.»-E'&, is only about 10/o. At
this same concentration (which is the N, in Ref.
25) Leroux Hugon and Ghazali found E» -E„re-
duced by a factor of 3, which in turn leads to their
overestimate of the polarizability enhancement at
this concentration. Figure 3 shows o«„(N)/
n«„(0)=1.2 at this concentration. The infrared
absorption data of Townsend on Si:P also suggest
no significant change with N of the @'f8 pf @2pp
transition until N & 0.3N, . Figure 5 shows only a
small reduction in M =F»-F„~at N-0.3N, .2p fs 1

On the other hand, the interesting new results of
Capizzi et al. demonstrate the formation of
donor exciton bands at lower energies than the iso-
lated donor transitions. This suggests additional
oscillator strength below the transition energies
shown in Fig. 5 resulting from charge-transfer
excitonlike absorption below the upper Hubbard
band. The present calculation does not include
any charge-transfer excitations; however, the
effect of this extra low-energy absorption cor-
responds to an extra enhancement of the static
dielectric constant when viewed within the frame-
work of the Kramers-Kronig relationship

TABLE II. Parametersfortheempirical expression+a(N)0'-&(0) =expgzpTDD) for the polar-
izability enhancement.

EMA As

Dl g)

PD (cm ~)
1.476
2.86x 10-28

1.506
6.11x 10-29

1 ~ 518
2.75x 10 29

1.557
2.17x 10-+

These values are based on the n&(0) values from Ref. 42.
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FIG. 5. The magnitudes of the energies (relative to
ES=e /2&I, a8)Ef 8 g (Ng)) is denoted by the long-short
dash curve; E2& (Nz), by the dashed curve, and the en-
ergy difference b, E(N&)=E2&(ND) —E&8 &&(ND) by the
solid line curve vs ND for Si:As, Sj:P, Si:Sb, and the
Si EMA case. These curves are based on parameters
obtained by using the nz ~«e value from Ref. 42 to
fit to the theoretical expression for &z(0) [Eq. (17)].

ues over those based on single-site excitations
alone. An additional source of low-energy ab-
sorption shown in the data of Townsend is the
growth of the forbidden transition 1s-A& -1s-T2
of "isolated" donors with increasing concentration.
The clustering of the donors and the growth of
random internal electric fields makes this low-
energy absorption band (100 cm ' in Si:P) increas-
ingly allowed as N -N, . This transition is also
not accounted for in the continuum-model calcula-
tion of nn(N)/oIn(0) given above.

Figure 6 shows the calculated Clausius-Mossotti
factor [e(N} e„]/[q(N}-+2e„]for the Si EMA ease,
Si:Sb, Si:P, and Si:As. Also shown in Fig. 6
are the Si:As data from Ref. 9. The calculated
curves are based on the dilute polarizabilities
given in Ref. 42. [Recent, more accurate mea-
surements and the recognition of the polariza-
bility enhancement in the 0.5 to 2 &10' cm range
have led to smaller values of nD 4ff t Q (0n}.] The
values of N, ~„aregiven in Table I, including new
values based on the smaller values of nn(0). For
the smaller, more reliable values of on(0) the
values of N, ~, range from 60/0 to 100/o larger
than the values of N, ,~, for the three donors. In
Fig. 6 the Si:As data clearly rise more rapidly
than the calculated curve above 3 x 10' /cms, dem-
onstrating that the a,«(N) from the data rises more
rapidly than the eIrI(N) calculated with the above
continuum model. The polarizability enhancement

FIG. 6. The calculated Clausius-Mossotti factor CM
= [E'(N) — & & ]/[e(N)+2e& ] vs ND (N~ -Nz for the ex-
perimental data) for Si:As, Si:P, Si:Sb, and the Si EMA
case. Also shown is the Si:As data from Ref. 9. The
calculated curves are based on parameters obtained by
using t&e eD ~~«e values from Ref. 42 fit to the theor-
etical expression foe a&(0) [Eq. (17)]. Smaller experi-
mental values of e~ ~~„te will lower these curves
somewhat and result in slightly higher values of
N, ,z, . The dashed curved is for (y~=0.78X10 g .

as calculated is insufficient to explain the experi-
mental results; however, it does lead to a sub-
stantial improvement over the N, ~„values calcul-
ated using the uncorrected Herzfeld criterion for
N, [ N,~„=3e„/4 vu n(0)] based on the dilute values
of a~. The calculation demonstrates that the po-
larizability enhancement is a substantial effect
ranging from about two for Si:Sb to about three
for Si:As. Although one might, because of some
of the approximations made, expect some differ-
ence in az&(N)/aD(0) for a regular array of donors
characterized by Wannier functions associated
with the lower Hubbard band, it is not at all clear
the results would be changed significantly. Wan-
nier functions will have nodes (before reaching the
nearest neighbors), but will also extend further
than the hydrogenic wave function I}ID(r,a(N)) and,
in addition, reflect the symmetry of the regular
array of donors. Recalling that the matrix ele-
ments ~&, ~2, g3, A, 8, and C which enter the cal-
culation of on(N) through Eqs. (12) and (13) em-
phasize the more distant portions of the wave func-
tion because of the ~, ~', and x4 factors in these
matrix elements, it is plausible that the polariza-
bility enhancement for an accurate Wannier func-
tion might be larger than calculated with the con-
tinuum model and $0(r, a(N)). However, obtaining
a reliable trial wave function g, in an applied elec-
tric field E, for a reliable Wannier function may
be difficult. Moreover, because of the inadequacy
of the dipole-dipole approximation leading to
Eq„——E„,+ 4vP/R„(as N -N, and the donor wave
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functions overlap more and more) the calculation
should take account of the spatial dependence of
the local field E„,(r). The wave-number-depen-
dent local field E„,(q) has been calculated by Nagel
and Witten ' for simple cubic (sc}, fcc, and bcc
lattices for the [100], [110], and [111]crystal
axes. A suitable average of the three directions
for the latter two cases might yield an estimate of
(E„,(r)) for a random distribution of donors. Their
results suggest the coefficient of P (4&/3e„ for the
point-dipole case) may increase somewhat as over-
lap increases as N -N, . No detailed analysis of
this correction can be given at this time, but their
results suggest the Lorentz-Lorenz correction,
although modified, will remain important as N-N,
and may even be enhanced. This is a crucial
point, since it is the Lorentz-Lorenz local-field
correction that produces the polarizability catas-
trophe. Thus additional corrections beyond the
polarizability enhancement uz(N)/n&(0) calculated
herein resulting from donor randomness, the r
dependence of E&„(r),and charge transfer contri-
butions to u, «(N} may actually further improve
the agreement between the Clausius-Mossotti ap-
proach and the experimental data. None of these
corrections seem to alter the basic prediction of
a smooth second-order polarization catastrophe
as N-N, . Note that if one accepts the quantitative
validity of the continuum-model n~(N)/o~(0) cal-
culation, Eq. (4) suggests the fluctuation contribu-
tion to the total polarization P(N) is comparable in
magnitude to the N(n~(N))(E&„(N)) term.

On the other hand, the Kramers-Kronig relation
[Eq. (21)] predicts a specific result depending on
the frequency dependence of the conductivity. The
heavy weighting of the low-frequency (~-0) por-
tion of the spectrum implies that, if o(&u) ~ &u' as
&o-0, one obtains a divergence of e(&u =O, N -N, )
if s & 1 and no divergence if s & 1. For the case of
localized states at the Fermi level, no compensa-
tion (no empty impurity sites), and T =0 K, Mott~'

has shown, employing the Kubo-Greenwood ap-
ptoach, that the low-frequency conductivity o(ur}

has a frequency dependence ~'[In(1/~)]'. This re-
sult does not yield a divergence of e(a =0,N-N, }
and therefore supports the idea of a discontinuity
in e(N) at N, characteristic of a first-order abrupt
transition. However, the role of electron-electron
interactions and self-consistent screening have
apparently not yet been incorporated into Mott's
calculation. From the experimental viewpoint the
question of a smooth PC as N-N, at T =0 K is an
extremely difficult one to resolve, even with dilu-
tion refrigerator experiments. Even the smallest
amount of compensation for N & N, can lead to a
characteristic hopping conductivity o(co) ~ ur' with
s & 1, thus leading to a divergence of e(O, N -N, ).
Although this hopping contribution is supposed to
vanish as T -0, this depends critically on the dis-
tribution P(~) of hopping energies AE. If P(4E}
remains finite as M -0, one has the possibility
of o(~, T -0) remaining finite. This point requires
further experimental and theoretical investigation
close to N, . At present the question of a smooth
[or a very large rise, e.g. , e(N N, ) &-100'„]or
abrupt polarization catastrophe as N -N, has not
been resolved.

The Mott criterion N,' 3a = 4 has led to many cal-
culations using a variety of types of screening.
Table III shows the calculated and experimental
values of N, a(0} obtained in this work. The val-i/3

ues of a(0) were obtained by force-fitting the theo-
retical expression for n~(0) to the dilute experi-
mental values n~~„«,-n~(0). The valises of
N, „&,correspond to the concentration for which
e(N-N, ) -~ (the values in parentheses based on
the smaller values of u~~&, «, are considered the
more reliable values}. These calculated values
average about 24k larger than the experimental
values. The experimental values are in excellent
agreement with the Edwards and Sienko tabulation
yielding N, a =0.26+0.05. Although the compari-
son between theory and experiment is not as good
as for the Hubbard model [Nt~3a =0.25 for six con-
duction-band valleys, Ref. 11], the additional con-
tributions from donor randomness and charge

TABLE III. Mott criterionÃ, '~ a values for silicon.

EMA sb As

a {0)

~c~vc a (0)&/3

+cwxpt a (0)i/'3

20.18

0.3016

19.90
(17.25) b

0.322
(0.314)

0.287
(0.249)

18.49
(16.23)b

0.321
(0.314)

0.281
(0.246)

14.57
(13.51)

0.309
(0.299)

0.270
(0.250)

The values are based on the ez(0) values from Ref. 42.
These values are based on new smaller values of O.'D(0); see Ref. 43 and Ref. 9 for Si:As.
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transfer might bring down the N, „a(0)values
another 20/p and make the agreement with experi-
ment look much better. It should be noted that the
Hubbard model is oversimplified and its applica-
tion by Berggren and Edwards and Sienko" to n-
type semiconductors neglects the donor random-
ness and self-consistency (the Bohr radius is not
varied with N}. The good agreement of the Hubbard
model with experiment might well be viewed as
fortuitous, considering the many approximations
employed in the Hubbard model.

VI. CONCLUSIONS

The donor-polarizability enhancement resulting
from screening based on a continuum-model cal-
culation is shown to be a large effect, ranging
from 1.88 for the EMA case to about 3 for Si:As.
The calculation shows the enhancement results
from (1) an increase in the Bohr radius a(N) with

N, and (2) an increase in the effective dielectric
constant (e(r,N}) seen by the localized donor elec-
tron. Although the polarizability enhancement
gives a significant upward deviation from Clausius-
Mossotti behavior, the calculated result is still
too small to explain the upward deviation for the
Si:As data. The corrected self-consistent Herz-
feld criterion still yields N, values, a factor of
1.6 to 2, too large for the Si shallow donors. The
addition of donor randomness and charge transfer
is expected to improve the agreement between the-
ory and experiment; however, the question of a
smooth polarization catastrophe [e(N -N, ) -~, no

discontinuity] is not yet resolved.
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APPENDIX A

The Coulomb interaction energy between a pair
of neutral hydrogenic atoms, one with an electron
in a state g,(F,} centered on atom a and a second
with an electron in state g, (r2) centered on atom
b, is given by

Ec =—, JtJtIt)'a(rt)I I&a(rz) I
dr|dr2

1 1 1 1
X ————+—

7
r)2 riq r 2, R (A 1)

where
I
R

I
is the distance between the two atoms

at a and 5, ri2= Ir& 2 I
&&= Ir& RI, and

r2, = Iri —RI. The effective Coulomb interaction
potential seen by electron 1 at r& due to the second
hydrogenic atom is obtained by integrating over
the coordinates of electron 2, namely,

2

«t(r|) = It)'s(r2) I
dr2

&a

(A2)

where only the first and third terms in the square
brackets are functions of r2. Using g,(r2)
=(va )

i e "2 ' the integration yields
2-

V (r)=—e- ' —+-8 -2R e
R a

4 Ir&-R ] /a 1 li+-
11'i —51 a j

(A3}

f+ OO

Vg jgg(rf id) =
Jl V', f t(rf, R)NdR (A4)

where d is determined by 4md N/3 =1. Performing
the integration for the two cases Ir, I

(d and Ir,
I) d one finds

The latter two terms containing the r, dependence
were employed by Leroux Hugon and Ghazali ' in
their calculation. The first two terms represent
a constant interaction term. Note also that V, (r, )
-0 as r& -0. To find the total pairwise interaction
of the electron on atom a at r& for a continuum dis-
tribution of neutral donors V, „,(ri, R} is integrated
over this continuum distribution beyond a concen-
tration-dependent cutoff radius d, thus obtaining

V, „,(r, , d)=(e /e„)2vNa e *[2(1+x) -(5+10x+4x )(e2'-e ' )/16p+ —,'(2 x1+)( e+t2e~)]

for r, (d and

V, «,(r„d)=(e'/e„)2vNa'[2e '"(1+x)' —1 —(e
-' /4p)(e'*-e')(x'+ —,

' p+ —,
'

)

+ (e "/4p)(e'*+ e ")(-,' x + px}]

(A5a}

(A5b)
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for r& & d, where p =r&/a and x =d/s. For N & N,
one has x& 2.5. As p, -~, V, fgt(r, } approaches
the value

V, „,(r, -~) =(e'/z„)2wNa'(2e *(1+x) —1]

= —(e'/p„)2wNaP, (A6)

which is just the negative constant background po-
tential [V„in Eq. (10)] from the continuum of don-
ors. For r, »d, [Vg jgg(r&) —V, «, (w& -~)]o-e ' so
that this interaction potential minus V„falls off
exponentially with r, . As r, -0,

V, „,(w, -0) =(e'/z„)(2wNu')e *(1+x)',
which is slightly positive.

APPENDIX B

2 2 2

' m* 2e„g(N) p(N)

(Blc)
where y =1/[1+a(N)/2p;] and z = 1/[1+ kwa(N}/2]
The X~z" (pp=4, 5, and 6) contributions represent
the central-cell corrections to A, B, and C which
turn out to be totally negligible since z «1. In fact
x(N) =XDz(N} is a small quantity [see Table 1 for
values of x(0)] and x(N) z(N) will be less than 10
for all donors. The central-cell correction is
important for the single-valley energy E,(N) [see
Eq. (14)] but not for the matrix elements A, 8,
and C which enter ow(N}. Neglecting the central-
cell terms and using k /m~ =e a,/z„, the matrix
elements A, B, and C reduce to the expressions

For the hydrogenic trial wave function gp(r)
= [wa(N}p] ~ e " ' ' the matrix elements 1&

=(zgp Izpp) xp =(z'Ypp Izfl/Jp), and xp=(zrgp Izl/'p) are
given, respectively, by X, =a(N)', Xp= '&'a(N)', and

Xp= —,
' a(N) . The matrix elements A =(zgp IH, Izgp),

B=(zrgpIH, Izrg&&), and C= (zrgp IH, Izgp) are given,
respectively, by

2 2

2m* 2p„p(N
3

? 8 2 p 2Q zp h 6 6B=- a —~e — + 1- y +qpDz
4 m* z„z(N) p(N)

(Blb}
and

and

e a, &aA= a~ —' —1+ 1
a z(N)

(B2a)

eB= a~ ——-5+5 1 — " 1-ye

(B2b)

2

C=2 a~ —', —'-2+2 1 — " (1-y )
p(N)

(B2c)
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