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Saturation of intervalence-band transitions in p-type semiconductors
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We present a theory of the saturation of heavy-hole to light-hole band absorption in p -type
semiconductors with the diamond or zinc-blende crystal structure by high-intensity light with a wavelength
near 10 p,m. The absorption coefficient is found to decrease with intensity in a manner closely approximated
by an inhomogeneously broadened two-level model. For temperatures and hole concentrations where hole-

phonon scattering dominates hole-impurity and hole-hole scattering, the saturation intensity is independent
of the hole concentration. We calculate the saturation intensity as a function of excitation wavelength and

temperature for p-Ge and p-GaAs. We find that the saturation intensity increases with photon energy and
with temperature. The calculated results are compared with the available experimental data and good
agreement is found.

I. INTRODUCTION

In many P-type semiconductors, direct free-
hole transitions between the heavy- and light-hole
bands are primarily responsible for the absorp-
tion of light with wavelengths near 10 ]Lt m. At
high light intensities, absorption due to these
transitions has been found to saturate in P-Ge
(Refs. 1-4) and P-GaAs. This saturation prop-
erty allows a means of passively mode locking
a CO2 laser by inserting a slice of p-Ge or P-GaAs
into the optical path of the cavity. Experiments
have demonstrated that a CO2 laser with p-Ge
used as a saturable absorber can generate pas-
sively mode-locked pulses of subnanosecond dura-
tion. ' In this paper, we present a theory of the
saturation behavior of heavy-hole band to light-
hole band transitions in P-type semiconductors
at high light intensities. We present detailed
numerical results for p-Ge and p-GaAs (the
materials in which the effect has been experimen-
tally observed). In a recent letter, we made a
preliminary report of the results for P-Ge.

In previous work, saturable absorption in p-
type semiconductors has been described by model-
ing the valence bands as an ensemble of two-level
systems whose level populations approach one
another at high light intensities. ' This two-
level model predicts that the dependence of the
absorption coefficient as a function of intensity
is given by

np(~)
( y ) [I fif ( )]1/z

where &p((u) is the absorption coefficient at low
intensity, and f,(rd) is the saturation intensity.
The behavior described in Eq. (1) was found to be
reasonably well satisfied experimentally, and
values of f,(pp) were determined. However,
attempts to calculate f,(&u) as a function of photon

energy using the two-level model and a multistep
cascade relaxation gave results that disagree
with experiment. A theoretical discussion of
saturable absorption in P-type Ge based on a
spherical-parabolic-band model has also been
presented. ' However, the results of that discus-
sion a,re qualitatively different than that of Eq. (I)
and are in disagreement with experiment.

In this paper we present a theoretical analysis
of the saturable absorption by considering the
initial- and final-hole states in the optical transi-
tion to form a continuum with the valence-band
structure determined by degenerate k '

p perturba-
tion theory. Our calculated results are in close
agreement with Eq. (I), and the values of I,(&d)

deduced from the calculation are in good agree-
ment with experiment. We also determine the
dependence of l,(&u) on temperature. We present
detailed results for P-Ge and P-GaAs; however,
the theory should be applicable to other semicon-
ductors with the zinc-blende crystal structure as
well.

The paper is organized in the following way:
in Sec. II we present our theoretical approach,
in Sec. III we give the results for p-Ge, in Sec.
IV we give the results for P-GaAs, and in Sec. V
we summarize our conclusions. Calculational
details are included in the Appendices.

II. THEORETICAL APPROACH

In semiconductors with the diamond or zinc-
blende crystal structure, the valence-band maxi-
mum occurs at the zone center. There are six
bands (three sets of twofold degenerate bands)
near the valence maximum. Four of the bands are
degenerate at k=0 and the other two bands (degen-
erate) are split off to lower energy by the spin-
orbit interaction. Away from the zone center,
the bands degenerate at 4 = 0 split into 2 twofold
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H=H, +v+y(f),
where

H() —H, +H~

and

r(f)= A(f} P.

(2a)

(»)

(2c)

degenerate pairs, the heavy-hole and light-hole
bands. In P-type semiconductors free holes occur
primarily in the heavy-hole band.

Light with a wavelength near 10 p m can induce
transitions between the heavy-hole band and the
light-hole band in p-type semiconductors. In Ge
and GaAs (and several other materials), the spin-
orbit splitting is greater than the photon energy
for light with ~-10 pm; thus transitions between
the heavy-hole band and split-off band are not in-
duced by light with this wavelength in these ma-
terials. The heavy- to light-hole transitions are
the dominant absorption mechanism in P-Ge and
P-GaAs. For example, at ~=10.6 pm and
room temperature the intervalence-band absorp-
tion cross section in Ge is 6X10 cm . ' The
intervalence-band absorption cross section, esti-
mated from Drude-Zener theory is about 10
cm, and the absorption coefficient from multi-
phonon absorption is about 0.013 cm . Thus,
for hole concentrations in the 10 cm range
intervalence-band absorption is 1 to 2 orders of
magnitude greater than the other absorption pro-
cesses.

Both energy and wave vector are conserved in
the intervalence-band optical transitions. Thus,
only holes in a narrow region of the heavy-hole
band can directly participate in the absorption,
and the absorption coefficient is governed by the
population of these hole states. The optical tran-
sitions tend to deplete the population of the perti-
nent heavy-hole states. At low intensities, the
heavy-hole states involved in the optical transition
is maintained close to the equilibrium value by
various scattering processes. However, as the in-
tensity becomes large, scattering cannot maintain
the equilibrium population of the pertinent heavy-
hole states, and they become depleted. As a re-
sult the absorption saturates at high intensity. To
determine the saturation characteristics of the
intervalence-band transitions, it is necessary to
set up rate equations for the hole distribution
function in the heavy- and light-hole bands.

For the hole concentrations and temperatures
at which most saturable absorption measurements
have been performed (room temperature and N~

s 5x 10'5 cm '}, hole-phonon scattering is the
dominant relaxation mechanism. We consider
only this scattering mechanism. The system can
then be described by the Hamiltonian

where J is the current density induced by the
intervalenc e-band transitions

eJ =N~ —Tr(o P'} .'m (4)

Here &„ is the hole density, v is the one-hole
density matrix, and P' is the off-diagonal (inclu-
ding only intervalence-band matrix elements)
part of the hole momentum operator.

In Appendix A, we examine the time evolution of

the density matrix a. We find that o is diagonal
in wave vector and define

(bkl &Ib'k} = ohio (k) (5)

where k labels the wave vector, and b is the band

index. The band index diagonal matrix elements
of o are determined by

—„,~„(k, f)= -[r(k, f),-o(k, f)]„

4 .iei &as'(k~)
ck'

—R,k nko„(k', t)],

(5a)

and the off-diagonal elements are determined by

dt "—&„.(k, t) = —[H, (k) + r(k, f), o(k, f)]„

where

1
, .~„.(k, f),

T, (k) " (5b)

2
,(, —~ (Ref, -~f, + R,„-,P) . (6c)

Here A~ » is the rate at which a hole in band a
with wave vector k is scattered into a state in
band b with wave vector k', h (f) refers to the
heavy- (light-) hole band, and 'Y(k) and H, (k) are
defined analogous to Eq. (5).

Using the equations for the time evolution of 0;
the current density owing to intervalence-band
transitions is found (details are found in Appendix

B) to be determined by

Here H, describes the free holes, H& describes
the phonon system, V is the hole-phonon interac-
tion, and Y(t)'describes the interaction of the
holes with the electromagnetic field. The electro-
magnetic field is described by the vector potential
A; in the Coulomb gauge A satisfies the wave
equation

2~„B A 4n-
vA —~c 8t" c
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—
z J(k) + J(k) + n (k)J(k)dt T2 k) df

g2
=N„

(Q J(k) =J). Assuming both A and J(k) oscillate
in time with angular frequency v and that only
terms with n(k) -&u contribute, we have '

2

J=i}i„, A Q [f„(k)—f, (k)]
x Qf (k)[E,(k) —E~(k)][A' P~, (k)P„(k)

1P„,{k) I'

[n(k) —(o] —i/T, (k} ' (6)

+ P~A ' P,},(k)] .

Here E~(k) is the energy of a hole in band I} with
wave vector k, In(k) is E„(k)—E, (k), we rename
the diagonal elements of the hole density matrix
f},(k), and J(k) is the part of J which includes only
those terms in the trace with wave vector k

where the squared momentum matrix element
~ P„,(k) ~' is to be summed over the two degenerate
states in both the heavy- and light-hole bands.
For a plane wave-vector potential

(9)
the complex propagation constant is given by

(10)

a(1, }d)=21m(K)

4v' &„e'~ - - - -
2 I/&vT2(k)~ [f (k}-f (k)]l P. (k}l [„(-„) ] ,[,/, (k)]

~

+ }} g [f (k) f (k) ] ] P (k) )

2 [n(k) —(u] + i/T2 (k)~.~' sm'ri „-
" ' "' [n(k) —

& ]'+ [I/T, (k)]'
Assuming that the second term in the parentheses of Eq. (10}is small compared to unity, the absorption
coefficient is given by

Equation (11) is the usual expression for the ab-
sorption coefficient except that a normalized
Lorentzian replaces the usual energy conserving
& function. The intensity dependence of the ab-
sorption coefficient is contained in the distribution
functions f„(k) and f, (k).

In order to determine the absorption coefficient,
we must calculate the distribution functions for
free holes in the heavy- and light-hole bands as
a function of intensity. In the semiconductors of
interest, the scattering rate for free holes occurs
on a subpicosecond time scale. For a saturating
laser operating with nanosecond pulse widths (the
typical experimental situation), transient effects
are damped out. Thus, we are interested in the
steady- state values of the distribution functions.
Using Eqs. (6a)-(6c) the steady-state distribution
functions are found to solve (details are found in
Appendix C) the rate equations

P(k}[f}}(k)—f}(k)]=-Q [Rq„,}-, f„(k)
ck

8 }}'}}jf(k )] (12a)

I/vn T, (k)
[n(k) —~]'+ [I/T, (k)]' ' (12c)

These equations state that the rate of optical exci-
tation out of (into) a given state is equal to the
net rate of scattering into (out of) the state when
steady state is attained. The left-hand sides of
Eqs. (12a) and (12b) give the net rate of optical
excitation out of a state with wave vector k in the
heavy-hole band into a state with wave vector k in
the light-hole band. The right-hand side of Eq.
(12a) gives the net rate of scattering into the state
with wave vector k in the heavy-hole band, and the
right-hand side of Eq. (12b) gives the net rate of
scattering out of the state with wave vector k in
the light-hole band.

To calculate the absorption coefficient as a func-
tion of intensity, we first solve Eq. (12) for the
distribution functions and then integrate Eq. (11).
In solving Eq. (12), it is convenient to introduce
the auxiliary functions defined by

P(k)[f„(k)—f, (k)]=+ [ft,„-,„- f, (k)
clf.'

1

(
Q ck't

T„ k)
(ISa)

where

ff, „- „f,(k')], (12b) 1

(
l lt clf,Tl k) cl,

(ISb)
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and

F(k) =+ &cf -a-.[A(k') -fc'(k')]
~

ck'

G(k) =Z ft..- -;[f.(k'} -f:(k'}1,
cd.'

(13c)

(Isd)

where f;(k) is the equilibrium value for the dis-
tribution function. The function E(k) is the dif-

ference in the feeding rate of free holes from the
equilibrium feeding rate for the state with wave
vector k in the heavy-hole band. The function
G(k) is analogously defined for the light-hole band.
[Scattering into the light-hole band is small be-
cause of the small density of light-hole states.
Thus the function G(k) is less important than E(k).]
In terms of the auxiliary functions, the distribution
functions can be written as

and

P(k)T„(k}[fg(k)-ff(k)] F(k)Tq(k)+P(k)T„(k)T, (k)[E(k)+G(k)]
1 + P(k)[T~(k) + T, (k)] 1 + P(k)[Tq(k) + Tg(k)]

P(k)T((k)[fq(k) -f((k)] G(k)Ti(k)+P(k)T„(k)Tg(k)[F(k)+G(k)]
1 + P(R)[T„(k)+ T, (k)] 1 + P(R)[T„(k)+ T, (k)]

(14a)

(14b)

The difference in occupation probabilities which
appears in the expression for the absorption co-
efficient is given by

1+P(k)[T„(k)+T, (k)]

T„(k)F(k) —T, (k)G (k)
1 + P(%)[T„(k}+ T, (k)]

' (15)

The first term in Eq. (15) gives the population
difference that would occur for the states at k if
the populations of the states that feed those at k
were given by their equilibrium values. The
second term in Eq. (12) accounts for the change
in the population of the states that feed those at
k. For those values of k which are important in
the integral in Eq. (11), the first term in Eq. (15)
is found to be significantly greater than the sec-
ond.

Using Eq. (12) and the definition of the auxiliary
functions, one can write equations which deter-
mine E(k) and G(k). If there is no angular depen-
dence in the phonon scattering matrix elements
which go into the scattering rates, the functions
E(k) and G(k) depend on &„(k) and &, (k), respec-
tively. Thus, one-dimensional (rather than three-
dimensional) equations must be solved to deter-
mine these functions. Our treatment of these
functions is included in Appendix D.

ft -,„-.= —„[M'„['(E.(k) —E,(k') +g~o)

+ —"IM.„['6N.(k) —&,(k') —g~o)

~ —'[M )'5(Z.(k) -&,(k')), (16a)

where

cal-phonon scattering is the dominant energy re-
laxation mechanism. The optical-phonon spec-
trum is relatively flat for small k with an average
energy of 0.03'7 eV. For the small k region in
which we are interested, the acoustic phonon en-

ergy is quite small, and we neglect it. Although
acoustic phonon scattering does not contribute
significantly to energy relaxation, it can change
the wave vector of the hole. The valence bands
of Ge are rather anisotropic and an acoustic pho-
non scattering event can take a hole from a region
in which P(k) is small to one in which it is large.
Thus, although acoustic phonon scattering is less
important than optical phonon scattering in deter-
mining the distribution functions, it is not negli-
gible because of the anisotropy of the valence
bands. We take the scattering rates to be given
by"

III. CALCULATION AND RESULTS FOR p-Ge

In order to calculate the difference in occupation
probabilities for the heavy- and light-hole bands,
it is necessary to know the free-hole scattering
rates. We consider the region of temperature and

impurity densities for which hole-phonon scatter-
ing is the dominant scattering mechanism. Qpti-

and

S(d
iM'., i'= "+'(N, +1),

2V pu

Iso
2Vpur

E~k~T
IM~I = 2P z ~

pu

(16b)

(16c)

(16d}
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Here ~M
~

is the squared matrix element for
optical phonon emission, ~M»~ is the squared
matrix element for optical phonon absorption, and

is the squared acoustic phonon scattering
matrix element (summed over both absorption and

emission processes). In Eq. (16), &» (& ) is the
deformation potential for optical (acoustical) pho-
non scattering, h(d() is the zone-center optical
phonon energy, p is the density, u, is the longi-
tudinal sound velocity, +, is the optical phonon

Bose factor, and V is the sample volume. Follow-
ing Ref. 19, we have neglected angular dependence
in the phonon scattering matrix element and taken
the scattering rates to be the same for the heavy-
and light-hole bands. The numerical value for
the constants appearing in the squared matrix ele-
ments were taken from the mobility fits of Ref.
20; they are listed in Table I. The scattering
times T2(k), T„(k), and T, (k) are computed from
Eqs. (6c), (13a), and (13b) using these scatter-
ing rates. Optical phonon scattering (primarily
emission) dominates in the results for T2(k) and

T, (k) for the states of interest. For T„(k) in the
resonant region, optical phonon emission is typi-
cally not possible and acoustic phonon scattering
makes a significant contribution to T~(k).

The free-hole energies &„(k) and &, (k) and the
momentum matrix elements

~
P»(k)

~
are deter-

mined by degenerate k '
p perturbation theory.

The cyclotron resonance parameters of Hensel
and Suzuki are used.

A. First approximation for f~(k } fink }

As a first approximation for the population dif-
ference f„(k) —f, (k), we neglect the auxiliary func-
tions F(k) and G(k) and include only the first term
in Eq. (15). This approximation is equivalent to
assuming that the rate at which free holes are
scattered into the states involved in the optical
transition is given by the equilibrium value. For
optical phonon scattering, the energy of the initial-
hole state in the scattering event differs from
that of the final-hole state by the optical phonon

energy. As a result, hole states that can scatter

TABLE I. Valence-band deformation potentials used
in the calculation of phonon scattering rates.

E (eV} EfJp (eV}

Ge
GaAs

3 5
3.6b

6.8
6.5 b

~Reference 20.
b Reference 23.

into a resonant optical transition region by opti-
cal phonon scattering are, for the most part,
themselves out of the resonant region. Thus, the
population of these states is not directly depleted
by the optical transitions. The population of these
states is indirectly depleted by the optical transi-
tion because there is a decrease in the feeding
rate of these states owing to the decrease in popu-
lation of hole states in the resonant region. How-

ever, this decreased feeding from the resonant
region is partially compensated for by an in-
creased feeding from the rerouting of optically
excited holes.

For acoustic phonon scattering, the energy of
the initial-hole state in the scattering event is
essentially the same as that of the final-hole
state. As a result, hole states that can scatter
into a resonant optical transition region by acous-
tic phonon scattering are, for the most part, in
the resonant region themselves. Thus, the popu-
lation of these states is directly depleted by the
optical transitions. Including only the first term
in Eq. (15), therefore, overestimates the impor-
tance of acoustic phonon scattering. At this level
of approximation, it is better to ignore acoustic
phonon scattering. We will see that this first
approximation for f„(k) —f, (k) ignoring acoustic
phonon scattering produces results close to that
of our more complete calculation.

Using only the first term in Eq. (15) to deter-
mine the population difference, the absorption
coefficient becomes

where

4v N„e ~,-,- — - 2 1/[gvT2(k)]
v'~ m'(uc 3 - " ' "' [n(k) —(u)'+ [1/T, (k)]'[1+I/l(K)] ' (17a)

(17b)

(16)

35 cv'& m co

[T„(k)+T, (k)]T2(k)2we I P„&(k) I'

Transforming to an integration over surfaces of constant Q(k), and assuming that the power-broadened
Lorentzian is sharply peaked, Eq. (17a) can be written as

ds I P„,(k) I'[f'(k) —f;(k) ]
y'c„m ac 3h 2v „&q „(V„-Q(k) I [1+&/l(R)]' '
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Here the integral is over a surface of constant
Q(k). Integrating Eq. (18) numerically, we find
that the absorption coefficient satisfies Eq. (1)
to high accuracy. Indeed, if /(k) were indepen-
dent of k over the region of the surface integral,
Eq. (18) would reduce to Eq. (I) exactly.

For hole densities and temperatures such that
hole-phonon scattering dominates the hole-impuri-
ty and hole-hole scattering events, values of &,(&u)

deduced from Eq. (18) are independent of the hole
density. Experimentally l, (&u) has been found to
be independent of hole density for densities less
than 4& 10 cm at room temperature.

I.O

I I f I

HOLE DISTRIBUTION IN p
—Ge

FOR k IN [III] DIRECTION

Q. l

Z',

O.OI

B. Higher-order approximation for f& (k ) - f&(k )

The auxiliary functions E(k) and G(k) are com-
puted numerically as discussed in Appendix D.
The distribution function computed from these aux-
iliary functions for k in the [111]and [100] direc-
tions together with their equilibrium values are
shown in Fig. 1. The dominant dip in the heavy-
hole distribution function and corresponding peak
in the light-hole distribution function is due to di-

rect optical transitions. Additional dips in the
heavy-hole distribution function occur because of
the discrete energy of the optical phonons. The
increase in the heavy-hole distribution compared
to the equilibrium value at large values of k is
due to scattering of the photoexcited holes in the
light-hole band into the heavy-hole band.

The absorption coefficient is calculated numeri-
cally. The calculated result for ~=10.6 pm and
~ =295 'K is compared with the expression in Eq.
(1) in Fig. 2. The value of &, used in Eq. (1) was
determined by fitting the calculated result for
o.'(&, &u). The numerical results could be fit to an
accuracy of about 5% for intensities less than
25 times &,. (This is the range of intensities
which has been most frequently explored experi-
mentally. ) If only the first term in Eq. (15) is
retained, the calculated o.'(&, u&) has almost exactly
the form of Eq. (1). The second term in Eq. (15}
is smaller than the first and leads to the small
deviations seen in Fig. 2.

Measurements of the saturable absorption in
P-type Ge have been interpreted in terms of the
inhomogeneously broadened two-level model
which produces Eq. (1}, and the values of &,(&u)

have been reported. In Fig. 3, we compare mea-
sured values of I,(&u} at room temperature as a
function of photon energy with our theoretical
values. The theoretical values of &,(&u) are deter-
mined by fitting the expression in Eq. (1}to the
calculated results for u(I, &u) for intensities be-
tween zero and 100 MW jcm'. In the range of pho-
ton energies considered, I,(&u) was found to in-
crease monotonically with photon energy. There

1.00

O.OOI
0

I.Q

O. l

Z'.

2

O.OI

l2 I6
j'(IO A )

20 24

I

—Ge
T I ON

~ OBO
CJ

Z 0 0,70
LLI O
0
u 0 0.60

0 Q
U Q0 0.50z g0 K)

0,40
Q0

(A

0,30

Z

0,20
0

O.OOI '

0 8

I'(IO A )

10

FIG. 1. Calculated hole distribution functions inP-Ge
as a function of k for % in the [111] and [100] direc-
tions. The calculations were performed for X=10.6 pm,
7; =300 K, andI =30 MW/cm . The equilibrium distri-
bution functions are shown for comparison. N~ is the
effective density of states.

O. I 0—

000 I I I I I I I I I

0 20 40 60 BO IOO

INTENSITY (MW/Cm )

FIG. 2. Calculated absorption coefficient normalized
to its low intensity value as a function of intensity for
p -Ge. The calculations were performed for X=10.6 pm
and T = 295 'K. The inhomogeneously broadened two-
level model result with I~ =4.1 MW/cm is also shown.
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IO.O

SATURATION INTENSITY
VS PHOTON ENERGY

«p-Ge T=295 K

u 6.0

40

2.0;
IIO

L DATA POINTS
ND THOMAS' . CARLSON ET AL

~: KEILMANN
I i I

120 130
P HOTON ENERG Y (me V)

140

FIG. 3. Calculated saturation intensity as a function
of photon energy for p-Ge at 295 K. The experimental
results are from Refs. 2-4. Error bars are only given
in Ref. 2.

is good agreement between theory and experiment.
There are no adjustable parameters in the theory.

The calculated results shown in Fig. 3 were
attained using the higher-order approximation
for f„(k) f, (k). The —results for the first-order
approximation are qualitatively similar to those
of the more complete calculation; the numerical
values of the two calculations differ by an approxi-
mately constant factor. At &=10.6 pm and &
=295 'K, the more complete calculation gives a
value of I, of 4.1 MW/cm, the first-order cal-
culation including acoustic phonon scattering gives
a result of 5.8 MW/cm, and the first-order cal-
culation neglecting acoustic phonon scattering
gives a result of 3.5 MW/cm . Thus the first-
order calculation neglecting acoustic phonon scat-
tering is within about 15% of the more complete
calculation. This result is interesting because
the first-order calculation is much easier and less
expensive to perform than the more complete
calculation.

The increase in I,(&o) with increasing &u is due
both to the behavior of the scattering rates and the
optical matrix elements. The relative contribution
of the scattering rates and the optical matrix ele-
ments can be most easily seen in the first-order
calculation. At this level of approximation, I,(~)
is given by a weighted average of l(k) [see Eq.
(18)]. The values of l(k) are proportional to &u,

T2 (k), [T„(k)+T,(k)] ', and
I PM(k)I '. In Fig.

4, the variation of these factors is illustrated as
a function of photon energy for k in the [100]and

[111]directions.
Since the usefulness of P-Ge as a saturable ab-

sorber in C02 laser systems is determined by its
saturation characteristics, it is of interest to be
able to control the saturation behavior. Since
optical phonon scattering is the dominant relaxa-
tion mechanism, and the optical phonon occupation
is temperature dependent, it is clear that I,(v)
will depend on temperature. In Fig. 5, we pre-
sent the results of a calculation of the temperature

3.00 I
I

I I

[IOO] DIRECTION IN p
—Ge

Qf 2

T2(TtI+ Tg)) J(7)

E

W 00 I I200 2 963M
T2 =. 0.148&&

(

I-Ph~l = 0.

1.00-

I

I IO 120

[III] DIRECTION IN p
—Ge

CC FOR E = 117meV
2.00-

CL
4= 5.19M /
T2= 0.205
(T + T~) '=

CL 2
IPh gl—

I—
W 1.00

a
CC

CL

130 140

110 120 130

PHOTON ENERGY (meVj

140

FIG. 4. Variation of the factors which contribute to
the photon energy dependence of I~ (cu) in our first ap-
proximation for the absorption coefficient in p-Ge. The
values of the factors are normalized to their value at
S~ =117 meU (X=10.6 pm). The factors were computed
for T =295'K.

IV. CALCULATION AND RESULTS FOR p&aAs

The dependence of the absorption coefficient on
intensity in P-GaAs can be described by the same
theory as in P-Ge. We use the cyclotron reso-

7.0 I
I I

F 5.0

30

1,0—
I I I I I
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FIG. 5. Calculated saturation intensity as a function
of temperature for P -Ge and light with a wavelength of
10.6 pm.

dependence of I,(u) in P-Ge for light with a wave-
length of 10.6 pm. I,(&u) increases monotonically
with temperature. This increase is due to the
increased rate of phonon scattering at higher tem-
peratures. Because of the rather strong depen-
dence of I,(m) on temperature, it should be pos-
sible to tune the saturation behavior of P-Ge with

temperature.
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nance parameters of Lawaetz to determine the
GaAs valence-band structure. (We neglect the
small terms linear in k which appear in the k' p
perturbation theory for zinc-blende cyrstals. )
Hole-phonon scattering is described as in Ge; the
deformation potential parameters are taken from
Ref. 23 and are listed in Table I. We neglect the
small splitting between the zone-center LO and
TO phonons and take an average optical phonon
energy of 34.3 meV. The input parameters that
we use for GaAs are not as accurately known as
those for Ge.

Our calculations of the intensity dependence of
the absorption coefficient give a result that is
numerically close to the inhomogeneously broad-
ened two-level model result of Eq. (1)." ln Fig. 6,
we compare the calculated result for ~=10.6 pm
and 7 =295 'K with Eq. (1). As for Ge, the small
difference between the calculated result and in-
homogeneously broadened two- level model result
comes from the second term in Eq. (15).

In Fig. 7, we show the theoretical results for
I,(&u) as a function of photon energy at room tem-
perature. The theoretical results are determined
by fitting the expression in Eq. (1) to the calcula-
ted results for &(I, &o) for intensities between zero
and 100 MW/cm . The results for l,(&v) are qual-
itatively similar to those for Ge except that l,(&u)

is uniformly larger in GaAs than in Ge. The
values of I,(&u) are larger in GaAs than in Ge pri-
marily because the hole-phonon scattering times
are shorter in GaAs. The scattering times are
shorter in GaAs because the heavy-hole effective
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FIG. 7. Calculated saturation intensity as a function
of photon energy forP-GaAs at 295'K.

mass is larger in GaAs, and as a result the den-
sity of final scattering states is larger in GaAs.

Saturation of intervalence-band absorption in
P-GaAs has been observed in one experiment in P-
GaAs. A saturation intensity of I,=20+5 MW/
cm at &=10.6 pm and room temperature was re-
ported. However, these measurements were
performed over a relatively small range of inci-
dent intensities and were interpreted in terms of a
homogeneously (rather than an inhomogeneously)
broadened two-level model. If the results had
been interpreted in terms of the inhomogeously
broadened two-level model (which we believe
would have been more correct), a smaller value
of I, would most likely have been attained.

In Fig. 8, we present the results of a calcula-
tion of the temperature dependence of the satura-
tion intensity at &=10.6 pm in p-GaAs. As for
Ge, I, is an increasing function of temperature
owing to the increased phonon scattering rates at
higher temperature.
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V. SUMMARY AND CONCLUSIONS

We have presented a theory of saturation of
heavy- to light-hole band transitions in P-type
semiconductors with the diamond or zinc-blende
crystal structure. Detailed calculations have
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FIG. 6. Calculated absorption coefficient normalized
to its low-intensity value as a function of intensity for
p-GaAs. The calculations were performed for A, =10.6
pm and T =295 K. The inhomogeneously broadened
two-level model result with I~=22 M%'/cm is also
shown.
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FIG. 8. Calculated saturation intensity as a function

of temperature for p-GaAs and light with a wavelength

of 10.6 pm.
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been presented for P-type Ge and GaAs. We

found that the intensity dependence of the absorp-
tion coefficient is closely approximated by an in-

homogeneously broadened two- level model. For

the temperature and concentration range where

hole-phonon scattering dominates hole-impurity

and hole-hole scattering, I, is found to be inde-

pendent of the hole density. This behavior is con-

sistent with experimerital results. The dependence

of the saturation intensity on photon energy has

been computed and compared with available exper-
imental results. Good agreement between theory
and experiment was found. We have predicted the

dependence of the saturation intensity on tempera-
ture.
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APPENDIX A: FREE-HOLE DENSITY MATRIX

In this appendix we outline the derivation of

Eqs. (6a)-(6c) for the hole density matrix. We

consider the low-hole density limit and take the
Hamiltonian to be given by Eq. (2}. The density
matrix p(f) satisfies

dp -t
[H—, p].

dt
(A1)

We assume that p can be approximated by

P(f) o(f)PL (A2)

where o(t) is the free-hole density matrix, and

P& describes the lattice in thermal equilibrium.

Using standard approximations, "one finds

=
g [& (f), & (&)]

~K
df TrI [p (I) [I (I ) o (f)P ]]~

1

0

(AS}

Here the subscript I signifies that an operator is
in the interaction representation, and TrL, signi-

fies a trace over lattice modes.
From Eq. (AS), one can see that o(f) is diagonal

in wave vector. Prior to laser excitation, o(t)

has the equilibrium value which is diagonal in

wave vector. Taking matrix elements of Eq. (AS),

we see that the time derivative of any matrix
element of d&x, (t)/dt which is off-diagonal in k is
equal to a sum of terms, all of which are propor-
tional to a matrix element of o&(t), which is off-

diagonal in k. Thus when the equation is inte-

grated in time, all off-diagonal in k matrix ele-
ments of o, (f) vanish. This result is to be expec-

ted since the electromagnetic field leads to tran-
sitions between states with the same wave vector.
Taking matrix elements of Eq. (AS), dropping

nonresonant terms and returning to the Schro-
dinger representation gives Eq. (6).

APPENDIX 8: EQUATIONS OF MOTION FOR J (k )

(B1}

In this appendix we derive Eq. (7). Multiplying Eq. (6b) by P', taking the time derivative and tracing
over bands gives

d2
., T [r(kr)P']+ —Tr [ (k r)P']=- —T ' [P', )r f).

We have used the facts that v, P', 7, and &, are all diagonal in k and hence can be cyclically permuted

in the trace on bands and that [P', 1'] vanishes. Using Eq. (6b), we can write

—Tr~ ' P', H, =-~ Tr~ o k, t H, +p, H„P' — —Tr~ gk, t P'
T, k) df

Thus Eq. (Bl) becomes

d2 2 d 1
Tr[)[o(k, f)P']+ ~ —Tr~[o(k, t)P']+ ~ Tr[[a(k, t)P'] =-~+ Tr[)Lo(k, t)[(H, +y), [H„P']D .

2

(BS)
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Evaluating the trace on the right-hand side, multiplying by (t(t„e/m), and neglecting [I/T2(k)] compared
with [Q(k)] gives Eq. (7).

APPENDIX C: EQUATIONS OF MOTION FOR THE DISTRIBUTION FUNCTIONS

In this appendix we derive the equations for the distribution functions f„(k) and f, (k). Multiplying Eq.
(6b) by (&„eP'/m} and taking the trace over bands gives

i —J(k) + J%}= " n(k) Q [(x„(k,t)P ~ (k) —(x,.„(k, t)P„(k)].dt T2( m
Q' gal

(Cl)

Using Eq. (Cl) and neglecting [1/T, (k)] compared with ~, Eq. (6a) can be written as (with b in the heavy-
hole band)

.- —J(k) 'A -2 IRa. cefa-(k-t) Rc-e ae&c-(k'(t)] ~ (C2)

With b in the light-hole band, Eq. (6a) can be written as

( (
—J(k)'A)-I (R,„;f(k, t) —R,„-.;f. (k', ]].

Assuming J(k} and A have sinusoidal time dependence and averaging over many cycles, one gets the
steady-state rate equations of Eq. (12).

(Cs)

APPENDIX D: AUXILIARY FUNCTIONS F{k) AND G{k )

In this appendix we describe our treatment of the auxiliary functions E(k) and G(k). From the definition
of these functions, we see that when the phonon scattering matrix elements are approximated as indepen-
dent of the scattering angle, E(k) depends on &„(k), and G(k) depends on &,(k). Using the definitions of
E(k) and G(k) and Eqs. (12a)-(12c) for the distribution functions, F(E„(k))is seen to be determined by

E(E„(k))=Q [ —R„„-.„],T((k')+ R, ]-, (]T((k')H[f'„(k') —f;(k')]+E(E(((k'))T(((k')

t](k')+((" ~ tt(g )[T„(k ) / T, (g')] + I

(Dl)+Q R(, - „-&(E„(k'))T„(k')+Q R,„- „%(&,(k))T, (k'),
k' lr'

and G(E, (k)) is determined by a similar equation where (ttk} in the scattering rates is replaced by (I k).
The function G(k) describes the increased (from the equilibrium value) scattering into the light-hole band
states. Because of the small density of light-hole band states, the magnitude of this function is much
smaller than that of F(k). In addition T„(k) is much greater than T, (k). Thus in Eq. (Dl), we neglect
T, (k}G(k) compared with T„(k)E(k}. We have explicitly checked the self-consistency of this approximation
at the end of the calculation.

Equation (Dl) is an inhomogeneous, linear inte-
gral equation. Because of the energy conserving
& functions in the phonon scattering rates, it re-
duces to algebraic equations relating F(E„(k)) at
different values of &„(k). The term proportional
to R,p „~&(&„(k')), however, is responsible for
coupling the equation for &(&„(k)) to those for all
other values of &(,(k'}. [In other terms, the equa-
tion for F(&„(k))is only coupled to those for
E(&„(k)+ h&u, ) and F(&„(k)—hu, )]. To overcome
this difficulty, we approximate the first term on
the right-hand side of Eq. (Dl), which can be
written as

by

R„g „pe k' +R, tp „pe k'
gl

~P(k')[f „(k') —f, (k')],

+Z [ R(((('-((((T]((k') + R(]( ](((T((k')]-
k

&&P(k')[f„(k') —f, (k')]', (D2, )

where [f„(k')—f, (k')] is the first approximation to
f„(k') —j,(k'); that is, the first term in Eq. (16).
Here X is a function of 8+, &, and J, but is as-
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=X+P(k')[f„(k') —f, (k')]'. (D3)

Since scattering to the light-hole band is much
slower than scattering to the heavy-hole band
(owing to the small density of states in the light-
hole band);

g R„„' „„-T„(k')=g R„- „„-T,{k')=1.
lr.

(D4)

Thus Eq. (D3) assures that the integral of the
positive and negative parts of Eq. (D2) are sepa-
rately satisfied. We solve the equation

E(E„(k})=X/[ —R„„-.„„-T„(k')+R,„;.„„-T,(k')]
k

sumed independent of E„(k). We determine X by

requiring

g P(k')[f, (k') -f, (k')]

which is a series of inhomogeneous linear alge-
braic equations. We truncate the series for E„(k)

400 meV. [E(E„(k))is negligible for these high
energies. ] We first find the solution for X= 1.
Calling the result of this calculation +', E is
given by XE'. We determine X from Eq. (D3)
which reduces to

ds i P„,(k) i' T„(k)E (E„(k))
I V;Q(R) i[1+I/I(k)]' '

( )ds[ff(k) -f;(k)] i &„g(&)I'
I V„-n(k) I [1+I/l(k)]'"

In order to limit the numerical expense, we ap-
proximate the surface integrals in Eq. (D6) using
the four-point prescription suggested by Kane.

From Eqs. (11) and (D3), we see that the func-
tion & relates the absorption coefficient calculated
in the first approximation to the result of the
more complete calculation by

& i) (k')[f„(k') -f, (k')]'

+Z R.;..~(E.(k') )T.(k'), (D6)

u(I, (u) =Xu'(I, ~),
where u (I, &u) is given by Eq. (18).
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