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Green s-function theory of impurity vibrations due to defect complexes in elemental and
compound semiconductors
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Green's-function theory has been reported for studying the vibrations of impurity complexes with a
maximum of three defect centers in zinc-blende-type crystals. By incorporating appropriate perturbation
models and lattice phonons from an eleven-parameter rigid-ion model we have made numerical calculations
for the localized vibrational modes of almost all the existing cases of pair defects with C, and C3„point-
group symmetries. The results of force perturbation for isolated charged defects have assisted us to
reasonably fit the various optical experiments and tentatively assign the movements of "donor-acceptor, "
"acceptor-donor, " "donor-host-acceptor, " and "donor-host-vacancy" complexes. The force perturbation
correlation with bond ionicity noticed for isolated donor or acceptor impurities has also proved to be an

important factor for studying the pair vibrations in elemental and compound semiconductors.

I. INTRODUCTION

Localized vibrational modes (LVM's} due to
light isoelectronic substitutional impurities in
diamond or zinc-blende-type crystals have been
studied in recent years both by experimental'
(mainly by ir absorption and also through the
Raman-scattering technique} and theoretical
methods. ' ' For nonisoelectronic substituents,
however, the resulting free-carrier concentra-
tion poses serious problems for measuring the
vibrational spectrum. In the infrared experi-
ments"' for example, the free-carrier absorp-
tion coefficient (o.Fc) in P-type silicon (with the
hole concentration = 10" cm '} lies in the range
500 cm ' - 0.Fc & 1000 cm ' for the spectral region
500 cm ' ~+ &700 cm '. The absorption coeffi-
cient u for the local mode of boron acceptors
(=10" cm ') in an Si lattice is =1 cm '. As
the local mode frequencies of the boron iso-
topes [Si:"B(644 cm '), Si:"B(620 cm ')] lie
within the oF~ spectral region, it is therefore
essential to reduce the concentration of the free
carriers without reducing the impurity concen-
tration. The reduction of free-carrier concen-
tration is generally accomplished' 4 by (a) double
doping during crystal growth, (b} using electron
or proton irradiation, (c) introducing intrinsic
defects (e.g. , vacancies at Cd sites in CdTe:
Al-doped samples), and/or (d) by diffusion under
conditions where the solubility of the diffusant is
controlled by the impurity to be compensated. In
all the above methods of compensation there re-
sults the possibility of ion pairing, and such
pair centers are expected to give rise to impurity
vibrations which are detectable by optical experi-

ments.
In addition to the extensive data of pair defects

in diamond-type crystal, "" there have also been
many results accumulated for LVM's due to im-
purity complexes in zinc-blende-type crystals. "~
For comprehensive reviews of experimental re-
sults on impurity modes due to several defect
centers (isolated and pair impurities) in ionic,
partially ionic, and homopolar crystals, we
refer to the articles by Spitzer, ' Mitsuishi and
Manabe, ' Newman, ' and more recently by Barker
and Sievers. 4 Again, the success for observing
LVM's has initiated experimentalists to detect
resonance modes; consequently, some experi-
mental speculations are known for the occurrence
of resonance modes due to copper and zinc corn-
plexes in GaAs crystals. ""

Despite the detailed experimental information
concerning the vibrations of impurity complexes
of known symmetry, reasonable defect model
calculations are rather sparse. Most of the
existing theoretical results based on the Green's-
function technique are related to the vibrations
of isolated point defects. ' " The use of the
Green's-function theory for studying the effect
of impurities on the properties of crystals is
contained in several review articles by Mara-
dudin, ""who confines his attention to the pho-
non aspects of the problem. A unified view of
electronic, magnetic, and vibrational impurity
states on the basis of the Green's-function ap-
proach can be found in the articles by Izyumov"
and more recently by Elliott et a/. ' Also note-
worthy are the monographs by Klein4' and by
Barker and Sievers4 on local and resonant modes
in ionic and partially ionic crystals.
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Elliott and Pfeuty' (EP) were the first to initiate
theoretical calculations of impurity modes due to
various pair defects of different configurations
in an Si lattice. To treat the actual numerical
calculations with only six Green's-function ma-
trix elements, EP were bound to undertake
several approximations in defining the perturba-
tion matrices. In the case of two adjacent
impurities, for example, EP assumed change of
coupling only between the impurities, neglecting
all other impurity-host lattice interactions which
were certainly nonzero. Grimm, Maradudin,
Ipatova, and Subashiev' (GMIS) have recently
extended the EP theory for application to the low-
lying resonance lines due to copper complexes in
GaAs crystals. Again, to cope with the compli-
cated mathematics in defining the perturbation
for impurity complex of C, point-group symmetry,
GMIS have also neglected the interaction of im-
purity at site 6 with the host lattice atoms at 9,
10, and 11 [cf. Fig. 1(c) of the present article].
Furthermore, GMIS have used the simplest pos-
sible two-parameter force model for generating
the lattice phonons and thereby evaluating the
involved lattice Green's-function matrix elements.
Since a two-parameter force model fails to ex-
plain the neutron experiment of phonon disper-
sions along high-symmetry directions for zinc-
blende-type crystals, the calculated values of
lattice Green's functions and consequently their
defect properties may not be very reliable.

Recently, in the framework of the Green's-
function technique and using a more elaborate
rigid-ion model for the lattice dynamics, we have
studied the vibrations of several isolated substi-
tutional impurities in I-VII,4' II-VI, and III-V
compounds of zinc-blende-type crystals. '" We
found that the calculated values of force variation
between the impurity and its nearest neighbors
are nonzero even for the isoelectronic case.'"
Again, the force variation is clearly correlated
both with the nature of the impurity (donor or
acceptor) and with the substituted site.

In the present paper, we have developed a com-
plete Green's-function theory by introducing more
precise perturbation models for studying the vi-
brations of impurity complexes (with a maximum
of three defect centers) in diamond or zinc-blende
type crystals. This study is also intended to
find whether or not the simple empirical law of
force variation related with bond ionicity for
isolated charged impurities can be generalized
for pair-defect vibrations in elemental and com-
pound semiconductors. Starting from the sim-
plest structure of a single point defect [cf. Fig.
1(a)] we present in Figs. 1(b) and 1(c) the model-
ing for two and three point defects occupying

1z

{b)

{c)

FIG. 1. Impurity models for the vibrations of one-,
two-, and three-defect centers in zinc-blende-type
crystals. The number of atoms 1,2, 3, . . .11 and their
respective coordinates have been considered arith the
following notations: 1 cation yg p (0, 0, 0), 2 anion 2 a p

(1,1,1), 3 anion z a p P,T, 1), 4 anion z a p (1,T,T), 5
anion2ap P, l, T), 6 cation~ap (2, 2, 0), 7 cationzap (0&

2, 2), 8 cation~ap, (2, 0, 2), 9 anion~ap (3,1,T), 10
anion2ap(1, 3,T), and 11 anion2ap(3, 3, 1). Dotted cir-
cles represent the impurity centers occupying 1, 2, or
6 sites in (a), (b), and (c), respectively.

nearest-neighbor lattice sites. We assume that
the force variations about the defects (at sites 1,
2, and 6}are significant only up to the first near-
est neighbors. Additional interactions in between
the impurity atoms (viz. , 1-2 and 2-6) have also
been considered whenever necessary in terms of
two (I'» and I'„)perturbation parameters. The
Green's-function matrix elements creating a
defect space of eleven involved atoms (see Fig. 1)
are thirty-three, which have been evaluated
numerically by incorporating the phonons gener-
ated by a rigid-ion model of eleven disposable
parameters4~ (RIM-11}.

The paper is organized into six sections: A
brief theoretical background of the Green's-
function method for studying vibrational proper-
ties of the imperfect solids is contained in Sec. II.
The use of group theory to simplify the numerical
calculations is outlined in Sec. III. Numerical
computations for the vibrations of pair defects
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with C,„and C, point-group symmetries in dia-
mond and zinc-blende-type crystals are made,
and the results are reported in Sec. IV for expli-
cit impurity complexes. The results are dis-
cussed in Sec. V, with concluding remarks pre-
sented in Sec. VI. The relevant mathematical
results of Sec. III are found in Appendices A and
B.

II. BASIC THEORY

The Green's-function method as discussed in
several review articles and monographs is fol-
lowed here for studying the vibrations of various

Re Det(I —gal) =0 (2.1}

[valid for frequencies where the density of states
is low (or zero) and slowly varying]. Here g and
5l are the Green's-function matrix of the perfect
lattice and the perturbation matrix in the impur-
ity space (i.e., the space directly affected by the
introduction of the defect), respectively.

The matrix elements of the complex Green's
function have the usual forms

defect configurations in zinc-blende-type crystals.
In the Green's-function theory, the frequencies
of the perturbed modes due to the defects can be
determined by the condition"

Qyf

in terms of the normal-mode frequency &o(q, j)
and eigenvector e (K

~
q, j}(with wave vector q

and branch index j) of the perfect crystal; ME
denotes the mass of the Kth type of atom in a
unit cell, X represents the number of unit cells
in the crystal, x(IK) shows the equilibrium posi-
tion of the Kth atom in the lth unit cell, and g is
to be understood as a positive infinitesimal.

If the solutions of Eq. (2.1) occur in a frequency
region not covered by the host lattice, they are
called "localized" or "gap" modes. Their dis-
placement field is large at the impurity and de-
cays rapidly with distance from the defect site.
Such modes appear as the delta function peaks in
the optical spectra. However, if they lie in a
band of frequencies covered by the host, the vi-
brations are not confined in space around the
defect. Such modes are called "quasilocal" or
resonant modes and have nonzero width. These
modes are considered to be localized modes
which acquire width because of the finite density
of states around the resonant frequency.

A. Lattice dynamics

In order to treat the vibrational properties of
imperfect solids by the Green's-function tech-
nique, the knowledge of perfect-lattice phonons
is needed from a reliable lattice-dynamical
model. In ionic crystals (with rocksalt and

cesium-halide structure) several Green's-func-
tion calculations4 of point defects exist in the
literature using the rigid-ion model (RIM), shell
model, and breathing shell model. However, in
zinc-blende-type crystals almost all the avail-
able calculations"" of defect properties use the
RIM, although shell-model" and valence-shell-
model" fitted lattice phonons in several perfect

(2.2)

I

systems are known. We understand this reason-
ing primarily because of the relative simplicity
of the RIM, that with fewer parameters it pro-
vides practically identical phonon dispersions
when compared with those obtained from more
complicated models. Again in the shell model"
there is, in general, a possibility to select more
that one set of model parameters that furnish an
equally good fit to the neutron data. The RIM on
the other hand, always provides a "homogeneous"
set of model parameters, by a least-squares-
fitted method. " (What we actually mean by a
"homogeneous" set of model parameters is
described in Ref. 42.)

In an earlier study, we have estimated the force
variations due to several point defects in various
I-VII, II-VI, and III-V compounds using the
Green's-function technique in the framework of an
eleven-parameter rigid-ion model (RIM-11)." In
order to find some coherence in the force varia-
tion, it is worthwhile to treat the vibrations of
impurity complexes using the same lattice-
dynamical model. The RIM-11 fitted neutron
results can be found in the work of Kunc4' for
ZnS, ZnSe, GaP, GaAs, and InSb. For the lat-
tice dynamics of ZnTe, CdTe," InP, ' and GaSb, "
reference is made to the articles by Vandevyver
and Plumelle.

B. Green's functions

The size of the Green's-function matrix g and
the perturbation matrix 5l depend on the space
affected by the impurity molecule embedded in a
lattice of known crystal structure. "" In zinc-
blende-type crystals, ' " if some impurity (I)
substitutes for either the Zn (number 1) or 8
(number 2) atom of Zn8 lattice [see Fig. 1(a)],
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the crystal field in the neighborhood of the im-
purity exhibits T» symmetry. If, on the other
hand, the impurity forms a complex either with
a new impurity atom or with native defects of the
host lattice, the T» symmetry at the defect sites
(Iz, or Iz) will be disturbed. Among the other
possibilities of substitution, the most probable
situations may occur (i) when the new impurity
atom in the neighborhood of fz, (say) occupies
the nearest S site and/or (ii) if the impurity
occupies the nearest Zn (number 6) site to Iz, .
In the former case (i) the symmetry at fz, be-
comes C,„whereas in the latter case (ii) it re-
duces to C, . If force-constant changes are in-
cluded in the nearest-neighbor approximation,
the size of the Green's-function and perturbation
matrices becomes 15X15 for the vibrations of a
single substitutional impurity with T» symmetry.
However, for the vibrations of impurity com-
plexes with C,„and C, symmetries, the sizes of
the matrices increase to 24X24 and 33~33, re-
spectively.

In the case of the most extended impurity com-
plex creating a defect space of eleven involved
atoms, we require thirty-three independent ele-
ments of the Green's-function matrix. The de-
termination of these elements is usually accom-
plished using group-theoretic arguments, and the
transformation properties under operations of
the crystal space group. "" In Table I we have
given all the thirty-three elements of the Green's-
function required for the full-size 33 & 33 matrix. ~
In the actual numerical calculations of the rele-
vant Green's functions, we have incorporated the
eigenvectors and eigenvalues generated by the
RIM-11, and the Brillouin-zone summations ex-
tended over 16 369 points uniformly distributed
in the reciprocal space is used. For numerical
details we refer to an earlier paper. '

No. of G.F. matrix elements

g'f =Exx

A =gxx

g'4 =g~

g's =ggg
g'7 =gxp
g'8 =gxg

g9 =gxx
gjp=ggg
As=&~
gag =Egg

g'g = ggg

As= g~
g'g = gxg

gg7= ggx

ggs= g~
As= g~
Ao =gxg

Ag =gag

g23= gxx

A4.= gran

As =Sxy
AS= g2

AZ=g2g
A8= gxx

A9= ggg

Ao= City

Ag= gxg
8'32= gxx

A3= g~

(111;
(000;
(111;

(000;
(000;
(000;
(000;
(111:
(111;

(111;

(111;
(111;
(111;
(111;
(111'
(111;
(111;
(111;
(111;
(111;
(111;
(iT1;
(111:
(111;
(111;
(1K1;
(lil;
(111;
(11i;
(111;

111: cu2 —g')
000: ~2 —if)
000: u2 —if)
000 ~2 —zk')

220: (u2 —if)
220: ~2-i&)
220 ~' —zk')

220: co2-i&)
111: (z) —C)
111: co -if)
111~ co -ig)
111 (d2 —g')
220 ~' —C')

220: ~'-C)
220: ~'-C)
220: u2 - ig)
220: ~'-C')
220: ~'-it; )
220: ~'-C)
220: ~'-C)
220: ~ -C')
220. ~'-C)
31K'; (o -if)
311: A@2 it; )
311: ~2-ig)
31K: ~2-ig)
31K co2 —zf)
331: ~ -if)
331~ +2-zf)
331: ~2 —if)
331 ~2 -if)
131~ (d2 -if)
131: ~2-ig)

A B B

TABLE I. The Green's-function matrix elements
g~(lK; l'K'; ~2-ig) for the most extended case of Cg
point-group symmetry in zinc-blende-type crystals.

C. Perturbation matrix

@(Zn;S)= B A B

B 8 A

(2.2)

The case of a single substitutional impurity
vibration in zinc-blende-type crystals has been
discussed in length elsewhere. '" Contrary to
the findings of Gaur et al. ,' our results, based
on more refined models for the lattice dynamics
of perfect crystals and for the defects, have
shown that even for isoelectronic substituents
the calculated local force variations are quite
appreciable and cannot be neglected. In defining
the perturbation model for point defects, the
first-neighbor short-range tensor force param-
eters

of the perfect lattice are considered to be modi-
fied such that

Al Bl Bl

C (impurity; S) = B' A' B'
B' B' A'

(2.4)

t = (A -A')/A = (B B')/B = (1——a) . (2.6)

In order to describe the impurity to be at site 1
(say) by a single dimensionless parameter t, we
suppose that A' and B' are proportional to A and
B, respectively. Therefore
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and

E, =- (1 —ab + I', ) = (u + t —ut + 1"„), (2.6)

E26=—(1 —bc+ I'~8) =(u+ v —uv+ I'28). (2.9)

The term E» (or E„)& 0 (or & 0) corresponds to
stiffening (or softening) of the bonds 1-2 (or 2-6),
respectively. The complete perturbation matrix
5l (33 x 33}has been formed4' for a special case of
an impurity complex comprised of three impurity
centers at 1, 2, and 6 sites, respectively.

III. GROUP-THEORETIC ANALYSIS

In order to find the zeros of the determinantal
equation (2.1), group theory is used to simplify
the calculations. The introduction of the sym-
metry coordinates for the impurity molecule
that transform according to the irreducible rep-
resentation s of the site symmetry at the impur-
ity allows the block diagonalization of g and 5I.
The vector spaces formed by the displacements
of the impurity molecule and its neighbors u (say)
transform according to the following irreducible
representations:

~T, =A, +E+E,+ 3E„
"C,„=6A, +2A, +8E,

and

Cs —19A, + 14A2 ~

(3.1)

(3 2)

(3.3)

The symmetry coordinates X as given by the
reduction of their vector spaces can be written
for T„, C,„, and C, point groups in the form

(3.4)X=$u.
We have constructed~ the complete 33& 33 eigen-
vector matrix S for C, symmetry, whereas the
form of S is known for T~ and C,„symmetry cases
from the articles of Ludwig" and of GMIS.8

Similarly we assume parameters u and v that
define variations of nearest-neighbor coupling
constants due to substitutional impurities at sites
2 and 6, respectively:

u-=(A -A")/A =(B-B )/B=(l-b), (2.6)

v —= (A -A' )/A = (B —B")/B= (1 —c) . (2.7)

If the three units with isolated impurities at 1,
2, and 6 sites are linked together as shown in
Fig. 1(c}, it results in the most general defect
model of eleven involved atoms in the nearest-
neighbor approximation. To make the perturba-
tion model more appropriate, we have also con-
sidered the direct interaction in between the
impurities by two additional parameters I'» and

r28. The force variation is thus given by

Using S one can block-diagonalize g and 6l
matrices with each block along the diagonal be-
longing to a particular irreducible representation
s. For C,„and C, point-group symmetries the
block-diagonal g and 5l matrices in different
irreducible representations have the forms given
in Appendices A and B respectively.

IV. NUMERICAL COMPUTATION AND RESULTS

The Green's-function theory developed in pre-
vious sections may be applied to various possible
configurations of impurity vibrations in zinc-
blende-type crystals and is equally suitable for
diamond-type crystals. By setting M,'=M„M',

M y and u = v = I'» —I'„=0, one can get results
of vibrations for the simplest case of point defect
at site 1. If the impurity atom is light as com-
pared to the host-lattice atoms, the vibrational
mode of interest will be the triply degenerate
localized mode and hence will appear as a single
band in optical experiments. The localized pat-
tern will be similar for some light impurity atom
substituted for site 2. In earlier studies" "we
have estimated the force variations needed to
explain the existing experimental data for vari-
ous substitutional point defects on either of the
1 or 2 lattice sites. This will help us in analyz-
ing the experimental results of pair modes in
diamond or zinc -blende-type crystals. We discuss
the following cases:

(a} C, case. The ion pair with C, point-group
symmetry can give rise to A, and A, types of
vibrational modes, all optically allowed. Since
the degeneracies are lifted, six impurity bands
are expected for this type of impurity center of
very light defect atoms. The effect of a vacancy
at site 6 (say} in the pair of C, symmetry (e.g. ,
I,-V,) is to lift the degeneracy of the impurity
oscillator at site 1; hence one obtains three non-
degenerate modes. We have analyzed the exist-
ing experimental data on the basis of our theo-
retical model, and the perturbation-model param-
eters needed to explain the vibrations of impurity
centers in II-VI and IG-V compounds are listed
in Table II.

(b) C~„case. In C~„symmetry the impurity
center does not move in the A, irreducible rep-
resentation; only A, and E types of modes wil. l be
observed by optical experiments (ir absorption
and Raman scattering). If the impurity atoms
are lighter than the substituted ones, four local-
ized modes of vibrations should arise [two be-
cause of their movement along their line of join-
ing (1 or A;, ——;4 or A, ; —-) and two as a
result of movement perpendicular (2 or B, t &:
3 or E, t, } to it], generally with &o, & ur, & &o, & ur, .
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TABLE II. Localized vibrational modes due to pair defects of Cs point-group symmetry in zinc-blende-type crysta], s
The underlined atom is the one substituted by those following the colon at sites 1 and 6, respectively.

System

Localized mode frequency (cm )
Experimental Calculated Mode

t~+gP~+26~&
(Defect

parameters)
t or e (Ref. 10)
isolated case Ref.

III-V compounds

GaAs: Li, Si

GaAs:7Li, Si

GaAs: Si, Cu

GaAs: Si, Zn

GaP:Si, Cu

GaP:Si, Zn

II-VI compounds

ZnSe Li, Al

487
480
470
405
379
374

455
448
438
405
379
374

399
376
374

395
382
378

484.2
453.8
453.8

478.7
461.2
458

393
383
356 V

373
359
350

484
480
475
406
380
374

453
450
442
405
380
372

399
376
376

395
382
381

484
453
453

478.7
462
462

395
389
383
373
359
349

A,
Ai
A~

Ai
A2

Ai

Ai
Ai
A2

A(
A2

A(

A,

A2

A,
A~

A2

A(
Ai
A2

Ai
Ai
A2

Ai
Ai
A2

Ai
A2

A)

0.91
0.847

-0.513
0.11

0.91
0.847

-0.513
0.11

0.12
-0.364

0.225
0.5

0.055
-0.257

0.601
0.7

0.14
-0.075

0.625
0.7

0.092
-0.035

0.772
0.8

0.985
0.98

-0.606
-0.295

0.90

-0.03

0.90

-0.03

-0.03

-0.03

0.08

0.08

0.97

-0.30

25

31

ZnSe:~Li, Al

ZnSe: Al, V

ZnSe: Al, Cu

424 ?
412
390
373
359
350

388
346
339(342)

377
351.5
348.0

416
414
411
377
359
353

388
346
344

377
351
351

A)
Ai
A2

Ai
A2

A(

Ai
Ai
A~

A,
Ai
A2

0.985
0.98

-0.606
-0.295

-0.17
-0.704

1.0
1.0

-0.215
-0.543

0.365
0.5

0.97

-0.30

-0.30

1.0
-0.30

31

28(2)

28
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TABLE II. (Continued. )

system Experimental Calculated

tyFf2s F26 s V

(Defect
par ameters)

I; or v (Ref. 10)
isolated case Ref.

ZnSe: Al, Au

ZnTe:Al, V

ZnS: A1, V

ZnS: Al, Cu

381
348
345

338(335)
299
297

477
423
415

462
438
423

381
348
348

338
299
297.7

477
423.9
418.9

462
438.7
438

A)
A(
A2

A(
A(
A2

A)
A,
A2

A(
A(
A2

-0.187
-0.602

0.325
0.5

-0.456
-0.63

1.0
1.0

-0.39
-0.911

1.0
1.0

-0.76
—1.04

0.42
0.50

-0.30

-0.51

1.0
-0.76

1.0
-0.76

32

32

ZnS: Al, Au

CdTe: Al, V

CdTe: Al, Cu

465
427
423

326
287
282

310
294
291

465
426
425

326
288
288

310
294
294

A(
A(
A2

A,
A)
A2

A)
A)
A,

-0.65
-1.096

0.366
0.50

-0.12
-0.68

1.0
1.0

-0.183
-0.42

0.76
0.80

-0.76

-0.23

1.0

-0.23

32

27

27

CdTe: Al, Au
326
288
288

326
288
288

A(
A)
A2

-0.12
-0.68

0.40
0.60

-0.23
27

However, if one of the pair atoms is relatively
heavier than the replaced host atom, only two vi-
brational modes are to be observed experimental-
ly. The results of our calculations in the mass-
defect approximation (MDA) for B (Si or Al)
paired with other impurities in elemental (III-V
or II-VI) semiconductors are shown in Figs.
2-12. Setting the case of InP and ZnS aside, our
results of MDA also suggest the possibility of
four LVM's provided that the masses of the pair
atoms are very much smaller than those of the
host lattice atoms. On the other hand, two modes
(3 and 4) fall into the band continum and only two
vibrational modes (1 and 2) are to be seen for 1
& e, & 0 and e, & 0 (e, = (M,. —M I)/M, , z = 1, 2). At
q=O, ~, =~, which eventually gives the MDA
value of the LVM frequency for the single impur-
ity vibration at site 1. The absence of modes 3

G~: ~ eoo-
61 ~ 0.662

e00-

600-

'Cl
O
E

Soo-

Coo-

-0.6 -OA -02 0 0.2 (L4 0-6 0.8 1

FIG. 2. Localized vibrational modes due to B paired
with other impurities in Ge lattice in the MDA. The
numbers 1, 2, 3, and 4 refer to the different vibrations
of the pair defects as described in the text.
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1100-

900-

800 .

600.

520-

t
GaAs: Si
E1 ~ 0.599

a 480.
I

5
440-

360-

320-
I 4

-0.6 ~ W2 0 G2 W (L6 0.8

FIG. 3. Same key as Fig. 2 but for an Si lattice.

and 4 and a very small splitting in 1 and 2 vibra-
tions in InP and ZnS crystals are probably evi-
dence for the absence of a large change in force
constants about the impurity centers.

The effect of force-constant changes in between
the impurity pair is displayed in Fig. 4: It mainly
affects, as expected, the modes of impurity vi-
brations related to the movement of atoms along
their line of joining (l and 4}, while the modes
related to the movement of atoms perpendicular
to it (e.g. , 2 and 2) remain almost unchanged. On
the other hand, all the vibrational modes are
affected with the change of impurity-host inter-
actions (cf. Figs. 7 and 9}. A representative list

750-

GaP: Si
700-

0.599

I

-QS 04 Q2 0 Q2 Q4 GS 08 1

FIG. 5. Localized vibrational modes in the MDA due
to Si occupying a Ga site and paired with other impur-
ities replacing an As site in a GaAs lattice.

of almost all the existing experimental results on
LVM's due to nearest-neighbor pair defects in
elemental and compound semiconductors is given
in Table III. The calculated results along with
the changes in force constants required to corre-
spond with the experimental data have also been
included in column three of Table III.

V. DISCUSSION

Before critically analyzing the trends of force
variations and consequently the proposed assign-
ment for the vibrational modes of pair defects
especially with C,„symmetry, it will be better to
point out in brief the behavior of force variations
observed earlier for isolated charged impurities
in compound semiconductors. '" For closest mass
acceptor (donor) and isoelectronic impurities
occupying II or III lattice sites in II-VI or III-V

650-

600-

rl+a a

I

E

il

4I a 550-

4I

F 500-

GaSb: Si

&1 ~ 0.599

360

O
450-

4

47
C
~I
O a
II
L

-G4 -0.2 02 0.4 0909 260-

E2

FIG. 4. Localized vibrational modes due to Si
occupying a Ga site and paired with other impurities
replacing P site in GaP lattice. The calculations are
represented by—for MDA, —--with E'&2=0.4, and

—~ — with E&&=—0.4, respectively.

O
V
O 240-

I I

0.6 -OA -02 0 0.2 0.4 0504

FIG. 6. Same key as Fig. 5 but for GaSb.
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p . 2~S( 640-

E1 u 0.756
600-

ZI15:Al

E1 ~ 0.588

650 ~

550

I

I )

I

1 j 1 2
/ /.

/
I

/
/

ca
~I

CI'
~I
I

~I
I

Da

450

a
a

4

a
e 350 2

-Mi -04 -02 0 0.2 EC 0 6 0.8 1

E2

FIG. 7. Localized vibrational modes due to Si
occupying an In site and paired with other i~purities
replacing a P site in an InP lattice. The calculations
are represented by —for MDA, ———for t (=Ef2)
=-0.59, g = I'f2 0 —~ —for t= —0.59, g =0.4, Ef2
=0.046; and — —"- for t=-0.59, g= —0.4, Ff2
=-1.226, respectively.

compounds, we find the following trend of force
variations":

t(acceptor) —t(isoelectronic) & 0,
gt II or III (5.1}

t(donor) —t(isoelectronic} & 0

for softening and stiffening, respectively. How-
ever, for acceptors occupying VI or V lattice
sites the trend of force variation is just the oppo-
iste if viewed again in relation to an isoelectronic
case: i.e. (with the present notation}, for stiffen-
lllg,

auv' "v=u(acceptor) —u(isoelectronic) &0 (5.2a)

Similarly we suspect a negative trend for donors;

-0.6 -OA -0.2 0 0.2 OA 0.6 0 8 1

E2

FIG. g. Localized vibrational modes due to Al oc-
cupying a Zn site and paired with other impurities re-
placing an S site in a ZnS lattice: The calculations
are represented by —for NDA: ———for t (= Ef2)=
—0.76, g = I'f2 0; and —.—.—.for t = —0.76, g = 0.4,
Ef2 = —0.056.

The absolute value of the relative variation for
III-V and II-VI compounds lies well within 15-
35$(- and is not related to physical properties
such as electronic affinity or the size of the im-
purity host atoms. However, from Eqs. (5.1),
(5.2a), and (5.2b) it can be noted that there is a
net correlation between the force perturbation
and modification of the bond ionicity (or coval-
ency). ' It is found that the increase or decrease
of force variation due to charged impurities var-
ies in the same sense as does the increase or
decrease of the covalency of the bond. " The em-
pirical rule formulated in this way for II-VI or
GI-V compounds seems to hold reasonably well
for charged defects in elemental semiconductors
also." %e discuss the following cases:

so that for softening,

auv' '" v=u(donor) —u(isoelectronic) &0. (5.2b)

InSb: Si
380.

E1 ~ 0.756
I

E
340-

440.
ZnSO: Al

I

E1 u 0,588 gg

360-
0Da

aaa

260-

220.
0
V3

320 i

280-
I

-Oz -0~ -02 0 02 0~ 04 08
E2

FIG. 8. Localized vibrational modes in the MDA due
to Si occupying an In site and paired with other im-
purities replacing an Sb site in an InSb lattice.

I I I

-0.6 -OA, -L2 0 ll2 OA GS 0.8 1

E2~
FIG. 10. Same key as Fig. 9 but for ZnSe and only in

the MDA.
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FIG. 11. Same key as Fig. 9 but for ZnTe and only in
the MDA.

300-

CdTe: Al

6) s 0.76

250-

0 200-

~ ~ ~ I !I
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FIG. 12. Same key as Fig. 9 but for CdTe and only in
the MDA.

(a) C, case. Let us first consider the calcu-
lated results of force variations for C, pair de-
fects based on the above criterion. We have
given priority to these pair defects simply be-
cause there exists one and only one set of per-
turbation parameters corresponding to each
impurity center that reasonably fits the existing
experimental LVM's. Again we have neglected
additional force constants (I'» and I;,) between
1-2 and 2-6 bonds and have considered only three
(t, u, and v) out of five perturbation parameters
in these calculations. Since a vacancy at site 6
is visualized as M,' =0 with v (=F„)= 1, we find
that 'defect-host-vacancy" pair vibrations can be
easily fitted by only two adjustable parameters t
and u (or F»), which serves as a very good exam-
ple to find and compare the trends of force varia-
tions with isolated charged impurities. More-
over, from each example of an acceptor (donor)
at site 1 and a donor (acceptor or vacancy) at

site 6, we have noticed the same trend of soften-
ing (stiffening) (for F») and stiffening (softening)
(for F„)related to the decrease or increase of
covalency. The values of t and v for the isolated
(T,) case have also been given whenever known

(cf., Table II}for better contrast. One may note
that isolated force variation values of donor or
acceptor impurities have been changed slightly
but they are found to be in the same order of
magnitude.

Except for the ZnSe:Li, Al system our calcu-
lated results have provided very good agreement
with the impurity modes observed in different
experimental work. Since Dutt et al.27~' (and
more recently Kr61 et al '~) have realized that the
earlier experimental measurements of Mitsuishi
et al." have not been satisfactorily analyzed, we

too, on the basis of our calculations, feel that the
impurity modes in the ZnSe: Li, Al system are to
be reinvestigated. In concurrence with our
earlier observation of the same force-constant
change for different isotopes of an isolated impur-
ity, " we find that the same trend still holds true
even if the different isotopes are paired with a
given impurity atom. This result is supported
by the analysis of Talwar and Agrawal' but is in
contradiction with the finding of Jain and Prab-
hakaran. ~

(h) C,„case. There are two kinds of experi-
mental data known for nearest-neighbor pair
defects in elemental and compound semiconduc-
tors. In the first category [type (i}]more than
two impurity modes have been observed for the
pair of very light impurity atoms, whereas in
the second kind [type (ii)] only two vibrational
modes have been reproted for the pair of one light
and one heavy impurity atoms. In the Si lattice,
especially when B (acceptor) is paired with
heavier P, As, and Sb (donors), we find that
there exist some controversial and extraneous
experimental observations that hinder one from
making a definitive assignment to the frequencies
of the two types of vibrational modes. '4 The
calculated splitting of the two lines A, and E in
the MDA is very much smaller than the experi-
mental values for each impurity center studied
in both elemental and compound semiconductors
(cf. Figs. 2—12}. Contrary to the C, case, where
only one set of parameters exists, we are able to
fit exactly the existing data of LVM's for C„
[type (ii}]case by two equally possible sets of
force-constant change parameters (cf. Table III}:
The first set (a) gives frequency to the mode A,
smaller than E, whereas in (b) the reverse is
assumed; i.e., (d„&~~. It is really difficult to

j.
determine which set of parameters is more
physically plausible in a situation when no con-
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TABLE III. Local mode frequency due to pair defects of Cs„point-group symmetry in diamond and zinc-blende-type
crystals, where the underlined atoms are substituted by those following the colon, respectively.

System

Local mode frequency
(cm-')

Zxpt. eale. Mode

t, Ei&, u
Defect

parameters
(parameter set)

t or u (Refs. 10 and 51)
Isolated case Opinion Ref.

Type (i)
III-V
compounds

Gas: ~8Si, ~8Si 393

367.2

464

367.2

464.6

424.5

367.8

337.8

464

393

336

A+i

E

Ai

A+i

Ai

-0.03

-0.59 (a)

-0.54

0.10

-1.015 (b)

-0.47

-0.03

-0.54

-0.03

-0.54

Good

GaAs "Si i'p,

685

596

384

685

384

349

653

632

388

685

596

384

365

A'i

E

A i
A+i
E+

A i

-0.03

-0.63 (a)

-0.58

-0.003

-1.118 (b)

-0.295

-0.03

-0.58

-0.03

-0.58

Good

Better

GaA.s "Si,"B

661

571

384

349

661

571

384

349

628

605

388

661

572

383

E

Ai

A+i

Ai

-0.03

-0.63 (a)

-0.58

-0.003

-1.118 (b)

-0.295

-0.03

-0.58

-0.03

-0.58

Good 26

GaP. 28Si, ioQ
621

464

715

621

464

427

675

464

417

715

621

464

416

A'

E

Ai

A+i

0.08

-0.25 (a)

-0.36

0.078

-0.462 (b)

-0.244

0.08

-0.36

0.08

-0.36

Good

Better

26
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TABLE IO. (Continued. )

System

Local mode frequency
{cm-')

Expt. C alc. Mode

t, E)~, u

Defect
parameters

(parameter set)
t or u (Refs. 10 and 51)

Isolated case Opinion Ref.

GaP- Si B
464

427

595

464

653

625

692

464

A+
1

Ag

Ai

0.08

-0 25 (a)

-0.36

0.078

-0.462 (b)

-0.244

0.08

-0.36

0.08

-0.36

Good

Better

26

Gap. 28Sj 12C

691

451{486) 464

A+
1 0.08

-0.26 (a)

-0.37

0.08

-0.37

Good

23

437 ~

691

413

691

A(

0.152 0.08

561 561

451(486) 451

406 A

-0.569 (b)

-0.184 -0.37

Better

GaP. 28Sj 28Si

495

413 (430) 413

495

456

413(430) 405

A'

E

A(

A+
1

A(

0.375

-0.113 (a)

-0.475

-0.10

-0.622 (b)

-0.475

0'.08

0.08

Good

Better

23 {24)

Type {ii)
Diamond

SiSi ~~B, P

601

628

601

628

601

628

601

628

0.19

0.306 (a)

0.13

0.289

0.135 (b)

0.135

0.23

0.23

Positive

Negative



System

SiSi ~ B,P

Sist ~B,As

SiSi: B,As

SiSi: B,Sb

SiSi: B,Sb

Geoe: As, iiB

GREEN'S-FUNCTION THEORY OF IMPURITY VIBRATIONS. . .

TABLE IQ. (Continued. )

f, F&2, u
Defect

parameters
(parameter set)

Local mode frequency
(cm ~)

Kxpt. Cale.
t or u (Refs. 10 and 51)

Isolated caseNode Opinion

0.198

0.306 (a)

0.135

0.289

0.135 (b)

0.135

0.23
624622 Positive

0.23622

Negative653653

0 ' 23Ai 0.17604604

Positive0.22 (a)637

0.05

0.230.285604604

Negative-0.018 (b)637

0.056

0.174

0.22 (a)

Ai628625

Positive
662

0.056

0.23625 628 0.285

-0.018 ., (b) Negative662

0.056

0.230.155

0.166 (a)

612612

Positive
643

0.013

0.263612 0.23

643 -0.087 (b) Negative

0.013

635 0.155

0.166 (a)

0.23

Positive
668

0.013

0.263635 638 0.23

Ai668 -0.087 (b)

0.013

0.189

0.323 (a)

0.165

0.189

0.114 (b)

0.273

Negative

530530

Pos stave
557557

0.21

530 530

Negative557557 A)

0.21
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TABLE III. (Continued. )

System

Local mode frequency
(cm-')

Expt. Cale. Mode

t, F&&, e
Defect

parameters
(parameter set)

t or u (Refs. 10 and 51)
Isolated case Opinion

GeGe As ~ B

554

582

do A(

0.189

0.323 (a)

0.165

0.189

0.114 (b)

0.273

0.21

0.21

Positive

Negative

350

343

350

A( 0.08

0.263 (a)

0.19

Positive

GeGe:Ga, P 343

350 350 A(

0.084

0.184 (b)

0.24 0.235

Negative

GeGe: P, In

338

355

338

355

355

A,

A(

0.172

0.242 (a)

0.084

0.275

0.018 (b)

0.084

0.235

0.235

Positive

Negative

III-V
compounds

GaAs:+Mg, Te

337

350

337

350

350

337

350

0.345

0.611 (a)

-0.54

0.5
0.33 (b)

-0.34

0.5

0.5

Positive

Negative

GaAs: +Mg, Se 335

344

335

344

0.395

0.574 (a)

-0.34

0.5
0.33 (b)

-0.34

0.5

0.5

Positive

Negative
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TABLK III. {Continued. )

System

Local mode frequency
{cm-~)

Expt. Cale. Mode

t, E(2, u

Defect
parameters

(parameter set)
t or u (Refs. 10 and 51)

Isolated case Opinion Ref.

GaAs:6Li, Te

419

510

419
510

510

419
510

A(

A(

0.723

1.39? (a)

-0.13

No physical

solution

possible

0.9

0.9

Negative

Negative

19

GaAs Li, Te

475

391
475

392

391
475

A(

Ai

0.723

1.397 (a)

-0.13

No physical

solution

possible

0.9

0.9

Negative

Negative

19

II-VI
compounds

CdTe:Ga, P

352.5

302

352.5

302

352.5

302

352.5

302 A(

-0.28

-1.445 (a)

-0.91

-0.28

-0.514 (b)

-1.55

-1.15

-1.15

Positive

Negative

29

CdTe: In, P

331.5

305

331.5

305

331.5

305

331.5

305

A(

A,

-0.23

-1.3S6 (a)

-0.94

-0.23

-0.832 (b)

-1.27

-1.15

—1.15

Positive

Negative

29

CdTe: Al, Sb

334

279

334

279

334

279

334

279

A( -0.03

-0.824 (a)

0.516

-0.637

0.208 (b)

0.516

-0.23

-0.23

Positive

Negative

27
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TABLE III. (Continued. )

System

Local mode frequency
(cm-')

Expt. Cale. Mode

t, F&2, a
Defect

parameters
(parameter set)

t or u (Refs. 10 and 51)
Isolated case Qpinion Ref.

CdTe: Zn, P

343

308

343

308

308

343

308

A) -0.135

-1.24 (a)

-0.975

-0.135

-0.627 (b)

-1.42

-1.15

-1.15

Positive

Negative

29

CdTe: Al, Ag

314

293

314

293

314

293

314

293 A)

-0.175

-0.485 (a)

0.23

-0.405

-0.082 (b)

0.23

-0.23

-0.23

Negative

Negative

27

CdTe: Al, Au

313

292

313

292

292

313

292

A(

A(

-0.165

-0.51 (a)

0.21

-0.395

-0.102 (b)

0.21

-0.23

-0.30

Negative

Negative

27

ZnSe: Al, Ag

381

350

381

350

381

350

381

350

A)

A(

-0.204

-0.656 (a)

0.256

-0.502

-0.117 (b)

0.256

-0.30

-0.30

Negative

Negative

elusive explanations have been furnished experi-
mentally in assigning the frequencies of the two
types of modes.

Vfe first start with the known values of force
variations for isolated donor or acceptor (Table
III) and analyze the vibrations of "donor-acceptor"
light pair defects in III-V compounds. It will
provide us with an additional check on the concept
of the force variation relation with the bond ion-
icity (or covalency). Setting the case of GaP:"Si,
"Si aside, we have considered in (a) the same
values of t and u known for appropriate isolated
donor and acceptor impurities (column six,
Table III). In defining the force-constant-change

parameter between the donor-acceptor bond

[E» (-=t+ u —ut+ I'»)], we have assumed I'» ——0.
It is interesting to note that in most of the cases
the values of the vibrational modes so obtained
are not very far from the experimental results.
To obtain the best possible fit for the LVM's,
we have varied the three perturbation parameters,
and the results are included in (b), Table III.
Slight variations in t and u from their correspond-
ing values in the isolated case are seen to be
similar as compared to the vibrations of pair
defect with C, point-group symmetry. Since the
mass of Si is close to that of P the LVM for Gap:
Si has not been experimentally detected, although
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the LVM for an isolated Si donor in GaP is known

from the ir measurements of Morrison et al."
and Kachare et al.24 (e.g. Gap:288i at 465 cm ').
However, some additional lines at 495.4, 455.7,
430.4, and 412.8 cm ' have been observed: The
first two were attributed to GaP: 2 Si, Si pairs
and the second two were tentatively ascribed to
the same defect center. As the expected stiffen-
ing around the Si acceptor in Gap is not known,

we have therefore tentatively assigned the exist-
ing experimental LVM's by two sets of param-
eters (a} and (b}. If the empirical law of force
variation noted for isolated and pair defects is
also valid for heavier acceptor impurities in
III-V compounds, it is believed that the values of
set (b) will be better than (a).

Using the same correlation of force variation
with bond ionicity (covalency), we have now

tentatively assigned the two types of impurity
vibrations observed for the second category of
C3„defects in elemental and compound semicon-
ductors. The results covering all the specific
examples of nearest-neighbor pair defects have
been included in Table III [type (ii)j. If the vi-
brations of the B-P pair defect in an Si lattice
are considered on the basis of force variation
and bond ionicity, one may find that the "B-P"
bond will be much less covalent as compared to
the Si-B or P-Si bonds. This corresponds with

relatively more softening in between the B-P
force constant than the Si-B and P-Si ones, and

consequently ~„&co~. If the factors related to
the change of bond ionicity (covalency) are sup-
posed to be similar and if the donor atom is
changed, we find an increase of force variations,
especially with the B-As and B-Sb pairs in the
Si lattice (maybe due to the increase of the donor
size). Strictly speaking, this is equally valid
for both sets of parameters; however, we feel
positive about the values of set (a). The Li-Te
pair defect in GaAs is an exception for which we

could fit the existing vibrational-mode frequencies
by only one set of parameters with u„&v~.
Again the value of force variation between the
Li-Te bond is quite unphysical; therefore we
believe that the Li atom does not possess the
substitutional site and probably occupies an in-
terstitial position or a more complex defect
center. In contrast to the softening of bond

strength between "acceptor-donor" pairs in

IV-IV and III-V compounds, one may find stiffen-
ing between the experimentally known "donor-
acceptor" pairs in II-VI compounds, and conse-
quently we feel positive about the set of param-
eter values given in (a) with &o„&&os. For
Al-Ag and Al-Au centers in II-VI compounds,
it is noted that both of the calculated sets of

parameters violate our tentative criteria for
determining the type of vibrational modes. Since
Dutt et al. '~ an& Krhl et al.s have speculated
that Au and Ag impurities may also have the in-
terstitial positions, it will be better to assign
the observed vibrational modes arising because
of Al-Ag, and Al-Au, pairs rather than nearest-
neighbor substitutional defects in II-VI compounds.

VI. CONCLUDING REMARKS

%e have presented the first complete Green's-
function theory for studying the vibrations of
impurity complexes (involving up to three defect
centers) in zinc-blende-type crystals. Explicit
numerical calculations have been made for almost
all the existing cases of pair defects with C, and

C,„point-group symmetries in elemental and com-
pound semiconductors using appropriate pertur-
bation models and lattice phonons from RIM-11.
In order to gain a physical concept of force varia-
tions, attention has been given to fit the experi-
mental data for donor-acceptor, acceptor-donor,
or donor-host-acceptor (or vacancy) pair vibra-
tions with a minimum possible set of perturba-
tion parameters: For isolated donor and acceptor
impurities in compound semiconductors, we
found that an increase or decrease of the nearest-
neighbor coupling constant varies in the same
sense as does the increase or decrease of cova-
lency of the bond. " This empirical law partially
holds well for charged impurities in elemental
semiconductor and is equally valid for pair vibra-
tions, especially when applied in those cases,
for which only one solution is theoretically possi-
ble. However, if there exist two equally prob-
able sets of perturbation parameters [e.g. , C,„
pair defects of type (ii)], we prefer the one that
proves to be more plausible on the above-based
physical criteria. Anyway, this can be checked
only through future experimental studies capable
of distinguishing the two types of impurity vibra-
tions. It has been revealed from two independent
studies'" of isolated impurity vibrations in zinc-
blende-type crystals by the Green's-function
technique using different perturbation and lattice-
dynamical models that, although the absolute
values are different, the basic trend of force
variations (for different impurities in similar
systems) is found to be quite analogous. We feel
that the same trend of force variations, as found
in the present work, will be reflected if the entire
calculation of pair-defect vibrations is repeated
on similar grounds with a different choice of
lattice-dynamical models (e.g. , shell model or
valence shell model, etc.).
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APPENDIX A

The Green's-function and perturbation matrices
in different irreducible representations (A, and B}
for C,„point-group symmetry have the following
forms:

(i) For the A, irreducible representation,

&A, ~g~A, ) =g(, j),

and

5l(1, 1)= (Mi -Mi)012 + (3A 2B)t

+ (A+ 2B)F,

5l(1, 2) = —(A + 2B)F

5l(2, 2) = (M2 —M')102 + (3A —2B)u

+ (A + 2B)F12

5l(l, 3)=—vYAt,

5l(1, 4) = (2B A)t-,

5l(1, 5) = 5l(1, 6) =5l(2, 3) = 5l(2, 4) =0,
5l(2, 5) = —v2 Au,

5l(2, 6}=(2B -A)u,

5L(3, 3) = (A +B)t,
5 l(3, 4) = —iL2 Bt,

and

&A, ~5l~A, ) =5l(i, j) with i,j =1,6.
Here g(i, j) and 5l(i, j) are the symmetric (6&&6)

matrices. The explicit values for each element
have the form

g(1, 1)=g2. 5

g(1, 2) =(g, +2g, ),
g(1, 3) = ~2g„
g(1, 4) =(g. —2g.),
g(1, 5) =~2(g, +g, -g.),
g(1, 6) =(g, +2g.)

g(2, 2) =g„
g(2, 3)=~~(g.+g, i gi.},-
g(2, 4) =(gi. +2g12),

g(2, 5}=&2g„

g(2, 6) = (g. —2g.),
g(3. 3) =(g, +g,.-g„+2g,.),
g(3, 4) = ~2 (g. -g,.),

(g13 g15 g19 g20 g21 g22 }i

g(3i 6) =~2(gip+gi5+g21) i

g(4, 4) =(g, —2g„),
g(4, 5) =&2(g17+g„+gip},
g'(4, 6)=(g,.+2g..),
g(5, 5) = (g'. +g.-g, +2g.),
g(5, 6) =~&(g, -g.),
g(6, 6) =(g. —2g, ),

5l(3, 5) =0,
5l(3, 6}=0,
5l(4, 4) =At,

5l(4, 5) =0,
5L(4, 6) =0,
5L(5, 5) = (A +B)Q,

5l(5, 6) = —&2BQ,

5l(6, 6) =Au.

(ii) For the doubly degenerate B representa-
tion, the block form of g and 5l matrices will be

&B~5L~B& =5L(t, j) with 1,j=1,6.

The explicit matrix elements are

g(1, 1)=g. ,

g(1, 2) =g. -g„
g(1, 3)=W2 (g, —3g,),
g(1, 4) = (g. +g,),
g(1, 5) = —v6 (g, +g,),
g(1, 6) = W2 (g, —2g, —g, ),
g(1, 'L) =(g, -g„),
g(1, 6)= ~~(g. +g.),
g(2, 2) =g„
g(2 i 3)=~& (gp —2gii -g12) i

g(2, 4) = (g,p
—g„),
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g(2, 5)= —v6 (g, +g„),
g(2, 6) =W2(g, —3g,},
g(2, 7) = (g. +g,),
g(2, 8) = —v6 (g, +g,),
g(3, 3) =o 8(2g, -g,.—2g„-2g,.),
g(3, 4) = v 2 (g, + 2g»),

g(3, 5) =-2v3 g„,
g(3 6}=o 6(2gi3- g„g»-

g20 g21 g22} &

g(3~ 7) = ~2(g|8+g|8 —2g2|) i

g(3i 8}=2~3(g|5+g|9 gu g22) ~

g(4, 4) =g, +g„,
g(4, 5) = —W6g, ,

g(4i 6) = ~2 (g|7+g» 2g|9) i

g(4, 7)=(g„-g..),
g(4, 8) =W6(g»-gia),

g (6 g 6) = 0.5(2g| +g|0 + 2gii —2g|2) ~

g(6 6}=2~3(gas g»+g2x g22)

g(5, 7}=v6 (g„-g„),
g(5, 8) = 0.5(2g13+ g15 g19

2g20 g21 g22} I

g(6, 6) =o ~(2g. —ge —2g. —2g.)

g(6, 7) =v2 (g, +2g, ),
g(6, 8) = -2 v 3 g6,

g(7, 7) =(g, +g,),
g(7, 8) =-v6 g, ,

g(8, 8}=0.6(2g, +g, + 2g, —2g, ),
and

5l(1, 1)=(Ml -M2)(o + (A -B)F»+ (3A+B)t,
5l(1, 2) = -(A —B)F„,
5 l(1, 3) =v 2 (3B —A.}t,
5l(1, 4) = -(A +B)t,
5l(1, 5)=@6 (A+B)t,
5 l(1, 6}= 5l (1, 7}=5l(1, 8) = 5l(2, 3)

=5l (2, 4) =5 l (2, 5) =0,
5l(2, 2}=(M2 —M2)(o2+ (A —B)F»+ (3A+B)u,

5t(2, 6) =vY(3B -A)u,

5l(2, 7) =-(A+B)u,

5l(2, 8) =W6(A+B)u,

5l(3, 3}= (A —0.5B)t,

5l(3, 4) = —v 2 Bt,
5l(3, 5) = 2u 3 Bt,
5 l(3, 6) = 5l (3, 7) = 5 l(3, 8) =0,
5l(4, 4) =At,

5l(4, 6) = v6 -Bt,

5 l(4, 6) =5l(4, 7) = 5l(4, 8) =0,
5l(5, 5) = (A + 0.5B)t,

51(5, 6) = 51(5, 7) = 51(5, 8) =0,
5l (6, 6) = (A —0.5B)u,

5 l (6, 7) = —&2 Bu,

5l(6, 8) = 2W3Bu,

5l(7, 7) =Au,

5l(V, 8) =-v'6 Bu,

5l(8, 8) =(A+0.5B)u.

As the impurity molecule does not move in the A,
irreducible representation, we have not listed
the 2 x 2 g and 5l matrix elements.

APPENDIX B

The Green's-function and perturbation ma-
trices in different irreducible representations
(A, and A, ) for C, point-group symmetry have
the following forms:

(i) For A, irreducible representation,

&A. lglA & =«t»)

(A, I5lIA, ) =5l(t, j) with t, j=1, 19.
The explicit elements of the symmetric Lg(19&&19)
and 5l(19&& 19)] matrices have the form

g(1, 1)=g„
g(1, 2) =o,
g(1, 3) = (g. +g,),
g(1, 4) =V2 g4,

g(1, 5) = (g. +g,),
g(1, 6) = -v 2 g, ,

g(1, 7)=(g, -g.),
g(1, 8) = (g. —g.),
g(1, 9)=0,
g(1, 1o)= (g, +g,),
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g(1, 11)= &2g, ,

g(1, 12)=(a,+g,),
a(1, »)=(a, -g.),
g(1, 14)=(g, -g.),
g(1, 15)= (a., +g..),
a(1, 16}=(a,.+g„),
a(1, ») = -(g„+g..),
g(1, 18)= (g„+g„),
g(1, 19}=-v2g»,

g(2, 2) =g„
g(2, 3)= v2 g4,

g(2, 4) =a;,
g(2, 5}=-v2g„
g(2, 6) =a„
g(2, 7}= -&2g~,

g(2, 8}=v2 g4,

g(2, 9}=v2 g„
g(2, 10)=-v 2 g, ,

g(2, ») =g. ,

g(2, 12) =P2 g, ,

g(2, 13)=v2 g„
g(2, 14)=v 2 g, ,

g(2, 15)= -W2g»,

g(2, 16}= -W2g20,

g(2, 17)=92 g„,
g(2, 18)= -v2 g,~,

a(2, ») =g„,
g(» 3}=gi ~

g(3, 4}=0,
g(3, 5) =(a. +g»},

g(3, 6) =~2g»,

g(3, 7) =(a,.+g»),

g(3, 8) = (a. -g»),
a(3, 9)=(a„-g»),

g(3, 1o)=(a, +g.),
g(3, 11)=—v2 g4,

g(3, ») =(a, -g.),
g(3, ») =(a.-g.),

g(3, 14)=0,
g(3, ») =(g, —g,.),
g(3, 16)=(ai. +gi.),
g(3, »)=( g-i, +g,.),
g(3, 18)=(g. +g„),
g(3, 19)=-v2 g„,

a(4, 4) =g„
a(4, 5)= ~~g»,

g(4 6):gio

g(4, 7) =kg»,
a(4, 8) =~2gxi

g(4, 9}=&2g9,

g(4, 10)= -f2 g„
g(4, 11)=g„
g(4, 12)=-v2 g4,

g(4, 13}= v 2 g„
g(4, 14) =v2 gi,

g(4, 15)= -v 2 gii,

g(4, 16)= -&2g»,

g(4, 17)=v2 g9,

g(4, 18)=&2gii,

a'(4, 19)=gio

g(5, 5) =g„
g(5, 6}=0,
g(5, 7) =(g. -a,.),
g(5, 8) = (g,o + g„),
g(5& 9) ( ali a12}&

g(5, 10}= (g„+a„},
g(5, 11)= v 2 gie,

g(»12) =(a,.+g„),
g(5, 13)= (g, +g, ),
g(5, 14)=(g +g ),
g(5, 15)=(a., +g„),
g(5, 16)=(g..+g„),
g(5, 17)= (-g +g ),
g(5, 18)= (g„+g„),
g(5, 19}=v2g„,
g(6, 6) =g, ,
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g(6, 7) =-v2 g„,
g(6, 8}= -&2g»,

g(6, 9)=kg, ,

g(6, 10)=v 2 g„,
g'(6, 11)=g„,
g(6, 12)= kg„,
g(6, 13)= v 2 g„,
g(6, 14)= v 2 gia,

g(6, 15)= -&2g„,
g(6, 16)=v 2 g»,
g(6, 17)=a 2 g„,
g(6, 18)= -&2g„,
g(6, 19)=g„,
g(7, 7) = (g, -g„),
g(7, 8) =g. ,

g(7, 9)=-g„,
g(7, ») =(g,.+g,.),
g(7, 11)=&2 g~,
g(7, 12)= (g„+g»),
g(7, 13)= (g„+g„),
g(7, 14)= (g„+g,.),
g(7, 15)=g9,

g(7, 16)= (g„+g„),
g(7, 17)= —g„,
g(7, 18)= (g,~+g„),
g(7, 19)=-&2g„,
g(8, 8)=(g, -g„),
g(8, 9)=g„,

g(8, 10) =(g~, +g„),
g(8, 11)=&2g„,

g(8, ») = (g .+ g .),
g(8, 13}=(g„+g„),
g(8 14}=(g15+g»}

g(8 15)=(gli+gas}

g(8, 16)=g.
g(8, 17)=-g»,
g(8, ») = (g., +ga.),
g(8, 19)=kg„,

g(9, 9)=(g, +g,.),
g(9, 10)= (g» +g„),
g(9, 11)=kg, ,

g(9, ») =(g,.+g„),
g(9, 13)= (g„+g„),
g(9, 14)=(g»+g»},
g(9, 15)=g»,
g(9, 16)=g»,
g(9, 17)= (g„+g„},
g(9, 18)=(g„-g„},
g(9, 19)=vYg„,

g(10, 10)=g~,

g(10, 11)=0,
g(10, 12)= (g, —g,},
g(10, 13)= (ge+ g,),
g(10, 14)= (-g, +g,),
g(1o, 15)= (g. -g,),
g(10, 16)= (g. -g.),
g(10, 17)=0,
g(10, 18)= (g, +g ),
g(10, 19)=v 2 g„
g(11, 11)=g, ,

g(11, 12)= -&2g, ,

g(11, 13)= -W2g„

g(11, 14}=&2g, ,

g(11, 15)=—it2 g, ,

g(11, 16)=v2 g~,

g(11, 17)= v 2 gi,
g(11, 18)=v 2 g~,

g(11, 19)=g, ,

g(12, 12)= (g. -g,),
g(12, 13)=g, ,

g(12, 14) =-g, ,

g(12, 15)=(g„+g„),
g(12, 16)= (g»+ g„),
g(12, 17)= -(g„+g„),
g(12, 18}=(g,9+g„),

g(12, 19)= -W2g»,
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g(13, 13)= (g. -g,),
g(13, 14)=g, ,

g(13, 15)= (gi. + gi.),
g(13, 16)= (g„+g„),
g(13, 1V) = -(g„+g„),
g(13, 18)= (g„+g„),
g(13, 19)= -&2g»,

g(14, 14)=(g. +g.),
g(14, 15}= -(g» +g»),
g(14, 16)= -(g„+g»),
g(14, 17)= (g„+g„),
g(14, 18}=-(g„+g„),
g(14, 19)=&2g,8,

g(15, 15)=(g, -g„),
g(15, 16)=g, ,

g(15, 17)= -g»,
g(15, 18}= (g„+g„),
g(15, 19}=&2g»,

g(16, 16)=(g, -g|,),
g(16, 17)=g»,
g(16, 18)= (g, —g»),
g(16, 19)= W2gi, ,

g(1V, 17)= (g, +g„),
g(1 7, 18)= (g„—g»),
g(17, 19)=W2g9,

g(18, 18)=g, ,

g(18, 19)=0,
g(19, 19)=gi,

5l(1, 9) =5l(1, 10)=5l(1, 11)=5l(1, 12)

=5l(1, 13}=5l(1, 14}=5l(1, 15)

=5l(1, 16)=5l(1, 1V) =5l(1, 18)

=5l(1, 19)=0,
5l(2, 2) = (Mi -Mi}(o~+ 3At+AE»,

5l(2, 3) = W2-BF»,

5l(2, 4) = AE-

5l(2, 5) =&2Bt,

5l(2, 6) = At, -
5l(2, 7) =v 2 Bt,

5l(2, 8) = v2 Bt-,

5l(2, 9) = &2At-,

5l(2, 10) =5l(2, 11)=5l(2, 12)=5l(2, 13)

=5l(2, 14) =5l(2, 15)=5l(2, 16)

=5l(2, 1V) =5l(2, 18)=5l(2, 19)=0,
5l(3, 3)= (M~ —M~)(g~+ 2Au —2Bu

+ (A +B)(F„+F„),
5l(3, 4) =&2B(F» —F»),
5 l(3, 5) =5l(3, 6) =5l(3, '1) =5l(3, 8)

=5l(3, 9)=0,
5 l(3, 10)= -(A +B)F»,
5l(3, 11)=&2BF»,

5l(3, 12)= —(A —B)u,

5l(3, 13)=- (A. -B)u,
5l(3, 14)=5l(3, 15)=5l(3, 16) =5l(3, 1V)

=5l(3, 18)=5l(3, 19)=0,

5l(4, 4) =(M~ -M~)sr + 2Au+A(E»+F»),

5l(4, 5) =5l(4, 6)= 5l(4, 7) =5l(4, 8) =5l(4, 9) =0,

and

5l(1, 1)=(M -M')~ +3At Bt+(A+B)E-
5l(1, 2) = —8 B(t —F»),
5l(1, 3)= —(A +B)F»,
5 l(1, 4) = -W2BF»,

5l(l, 5) =-(A +B)t,
1(15, 6) =@2 Bt,

5l(1, 7) = —(A —B)t,

5l(1, 8) =—(A —B)t,

5l(4, 10)=~2BF»,
5l(4, 11)=-AE„,

5l(4, 12)=v 2 Bu,

5l(4, 13)=-v 2 Bu,

5l(4, 14)=-v 2 Au,

5l(4, 15)= 5l(4, 16)= 5l(4, 17)=5l(4, 18)

=5l(4, 19)=0,
5l(5, 5) = (A +B)t,
5l(5, 6) = v2 Bt, -
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5L(5, 7) =5L(6, 8}=5l(5, 9) =5l(5, 10}

=5L(5, 11)=5l(5, 12}=5L(5, 13}

=5L(5, 14)=5l(5, 15)=5L(5, 16}

= 5L(5, 17)=5l(5, 18)= 5l(5, 19)=0,
5l(6, 6) =At,

5 l(6, 7) =5l(6, 8) = 5 L(6, 9) =5l(6, 10)

= 5l(6, 11)=5l(6, 12)= 5l(6, 13)

=5l(6, 14)=5l(6, 15)=5l(6, 16)

=5l(6, 1V) =5l(6, 18)=5l(6, 19)=0,
5l(7, 7) =At,

5l(7, 8) = Bt, -
5l(7, 9) = Bt, -

5l(7, 10)= 5l('I, 11)=5l(V, 12) =5l(V, 13)

=5l(V, 14) =5l(V, 15)= 5l(V, 16)

=5l(V, 1V) =5l(7, 18}=5l(V, 19}=0,
5l(8, 8) =At,

5l(8, 9}=Bt,
5l(8, 10)=5l(8, 11)=5l(8, 12)=5l(8, 13)

=5L(8, 14) =5L(8, 15)=5L(8, 16)

=5l(8, 1V) =5l(8, 18)=5l(8, 19)=0,
5l(9, 9}=At,

5l(9, 10)=5l(9, 11)=5l(9, 12)= 5l(9, 13)

=5l(9, 14)=5 l(9, 15)=5l(9, 16)

=5l(9, 17)=5L(9, 18)=5l(9, 19)=0,

5 l(10, 10)= (M, -M6)up'+ 3A v Bv + (A +B—)E26,

5l(10, 11}=~2B (v —E,6),

5l(10, 12)=5l(10, 13)=5l(10, 14)=0,
5l(10, 15)= —(A -B}v,
5l(10, 16)=—(A —B)v,

5l(10, 1V)=0,
5l(10, 18)=—(A +B)v,

5l(10, 19)= —v 2 Bv,

5l(11~ 11):(M~ MB)(o + 3Av+AE38

5 l(11, 12)=5l(11, 13)=5l(11, 14}=0,
5l(11, 15) = v 2 Bv,

5l(11, 16}= -W2Bv,

5l(11, 1V) =-v2 Av,

5l(11, 18}= v2 Bv, -

5l(11, 19)=-Av,

5l(12, 12}=Au,

5l(12, 13)=-Bu,
5l(12, 14)= —Bu,

5l(12, 15)=5l(12, 16}=5l(12, 17)

=5l(12, 18)=5l(12, 19)=0,
5l(13, 13)=Au,

5l(13, 14)=Bu,

5l(13, 15)=5l(13, 16)= 5l(13, 17)

=5l(13, 18)=5l(13, 19)=0,
5L(14, 14)=Au,

5l(14, 15)=5l(14, 16)=5l(14, 17)

=5l(14, 18)= 5l(14, 19)=0,
5L(15, 15)=Av,

5L(15, 16)=-Bv,
5L(15, 17)=-Bv,
5l(15, 18) =5L(15, 19)=0,
5l(16, 16) =Av,

5l(16, 17)=Bv,

5l(16, 18)=5l(16, 19)=0,
5l(1V, 17)=Av,

5l(17, 18)=5l(17, 19)=0,
5l(18, 18)= (A + B)v,

5l(18, 19)=02 Bv,

5l(19, 19)=A v .
(ii} For the A, irreducible representation we

have

(A, ~g~Ag =g(t, j),
(A, ~5l~A2) =5L(i, j), where i,j =1, 14

with the following matrix elements:
g(1, 1)=g. ,

g(1, 2) = (g. -g.),
g(1, 3) =(g. -g,),
g(1, 4) = (g. +g.),
g(1, 6) =- (g. +g.),
g(1, 6) =-2g,
g'(1, 7) =(g. -g,),
g'(1, 8) = (g. —g.),
g(1, 9) = -(g, +g, ),
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g(1, »)=-(g, +g.),
g(1, ») =-(g., -g.,),
g(1, ») =-(g,.-g,.),
g(1, ») =-(g,.-g,.),
g(1, 14)= (g,.-g,.),

g(2, 2) =g„
g(2, 3) =(g. —g„),
g(2. 4) =(g,.-g,.),
g(2, 5)=-(g. +g,.),
g(2, 6)=-(g„+g,.),
g(2, 7) = (g, -g.),
g(2, 8) = (g. +g.),
g(2, 8) =-(g. +g.),

g(2, 1o)=-2g. ,

g(2, 11)= (g, +g„),
g(2, 12)=-(g,.-g,.),
g(2, »)=-(g„+g,.),
g(2, 14)=(g, -g„),
g(3, 3)=g„
g(3, 4)=(g, +g,.),
g(3, 5) =-(g,.-g„),
g(3, 6) =—(g»+g»),

g(3, 7) =(g'„-g„),
g (3, 8) = (g„-g„),
g(3, ~) = (g„—g..),

g(3, 1o)= (g„-g.,),
g(3, »)=(g,.-g..),
g'(3, 12)=-(g..-g„),
g(3, 13)= -(g„+g„),
g(» 14)= (g„-g..),

g(4, 4) = (g, +g„),
g(4, 5) =-g, ,

g(4, 6) =g»,

g(4, 7) =(g,.-g„),
g(4, 8) = (g„-g„),
g(4, 8)= (g„-g„),

g(4, 10)=(g~7-g ),
g(4, 11)=g, ,

g(4, 12)=(g„-g„),
g(4, ») =-g»,
g(4, 14)= (g.,-g.,),
g(5, 5) =(g, +g„),
g(5, 6) = -g,~,

g(5, 7) =(g., -g..),
g(5~ 8) = (g&6 —gag) i

g'(5, 8) = (g,.-g..),
g(5, 10)=(g,.-g,.),
g(5, 11)=—(g„+g„),
g(5, 12)=g„
g(5, ») =-g...
g(5, 14)=-(g'., -g„),
g(6, 6) = (g, -g,o),

g'(, )=-(g,g
—g..),

g(6, 8) = (a,.-g.,),
g(6, 9) = (g„-g„),

g(6, 1o)=(a;.-g..),
g(6, 11)=g»,
g(6, 12) =g~~,

g(6, ») =(a,.-g.,),
g(6, 14)=-(g..+g.,),

g'(7, 7) =g. ,

g(7, 8)=(g, +g,),
g(7, 8)=-(g.-g.),

g(7, »)=-(g, +g.),
g(7, ») =(g. +g.),
g(7, ») =-(g. +g.),
g(7, 13)= -2g4,

g(7, 14)=(a.-g,),
g(8, 8) = (g. +g,),
g(8, 8) = g„-

g(8, 10)=g, ,

g(8, ») =(g„-g..),
g(8, ») =(g„-g,.),
g(8, »)=-(g„-g.,),
g(8, 14)=-(g,.-g..),
g(8, 8) =(g, +g,),
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g(9, 1o)=-g. ,

g(9, ») =(gi. -g,.)
g(9, ») =(gi. -g..),
g(9 13}=-(gis—g2i}

g(9i 14}= (gia g2i) i

g(10, 10)= (g, —g,),
g(», ») = (g-ig gi-S),

g(1o, 12)= -(g„-gig),
g'(10 13)= (gls —gM}

g(10, 14) = (g20- g21)

g(11, 11)= (gi+gii}

g(11, 12)= -g~,

g(11, 13}=gi~,

g(1» 14)= (gio —gis)

g(1» 12}= (g'i+gii}

g(12, 13)= -gi~,

g(12, 14)= -(g~ +gii),

g(13, 13)= (g, —g„),
g(», 14)= -(gii+gla»

g(14, 14)=gi,

5l(1, 1)= (M, —M', )(ui+ 3At+Bt+ (A —B)E, ,

5l(1, 2) =-(A —B)Ei~,

5l(l, 3) =-(A B)t, -
5l(1, 4) =-(A +B)t,
5l (1, 5) = (A +B)t,
5l(1, 6) =2Bt,

5 l(1, 7) =5l(1, 8) = 5l (1, 9)= 5 l(1, 10)

=5l(1, 11)=5l(l, 12)=5L(l, 13)

=5l(1, 14)=0,

5l(2, 2) = (Mi —M~)&o~+ 2Au+ 2Bu

+ (A -B)x (E» +E„),
5l(2, 3) =5l(2, 4) =5l(2, 5) = 5l(2, 6)=0,
5l(2, 7) =—(A -B)Eis,
5l(2, 8) =-(A+B)u,
5L(2, 9) =(A+B)u,

5l(2, 10)=2Bu,

5 l(2, 11)=5L(2, 12) = 5l(2, 13)= 5 l(2, 14)=0,

5l(3, 3) = (A —B)t,
5L(3, 4) = 51(3, 5) = 5l(3, 6) =5l(3, 7)

=5l(3, 8}=5l(3, 9) =5l(3, 10}

= 5l(3, 11)= 5l(3, 12)=5l(3, 13)

=5l(3, 14)=0,
5L(4, 4) =At,

5L(4, 5) = Bt,-
5L(4, 6) = -Bt,
5L(4, 7) =5l(4, 8) =5l(4, 9) =5l(4, 10)

—5L(4, 11)=5l(4, 12)=5l(4, 13)

=5l(4, 14}=0,
5l(5, 5}=At,

5l(6, 6) =Bt,
5l(6, 7) =5l(5, 8) =5L(6, 9) =5l(5, 10)

= 5L(5, 11}=5l(5, 12)=5L(5, 13)

=5L(5, 14}=0,
5L(6, 6) =At,

5l(6, 7) = 5l(6, 8) =5l(6, 9) = 5L(6, 10)

=5l(6, 11)=5L(6, 12) =5l(6, 13)

=5L(6, 14)=0,
5l(7, 7) = (M i -M 8)&o + 3Av

+Bv+ (A B)E~6, -
5L(7, 8) = 5l(V, 9) = 5l(V, 10)=0

5l(7, 11)=-(A. +B)v,

5l(7, 12)= (A +B)v,

5l(V, 13)=2Bv,

5l(7, 14)= -(A B)v, -
5l(8, 8) =Au,

5l(8, 9)= Bu, -
5l(8, 10)= Bu, -
5 L(8, 11)= 5l (8, 12)= 5 L(8, 13)= 5 l(8, 14)=0,

5l(9, 9) =A.u,

5l(9, 10)=Bu,

5l(9, 11)=5L(9, 12)=5l(9, 13)=5l(9, 14)=0,
5l(10, 10)=Au,

5l(10, 11)=5l(10, 12)=5l(10, 13)

= 5 l(10, 14)=0,
5 l(11, 11)=A v,
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5l(11, 12)=-Bv,
5l(11, 13)= -Bv,
5l(11, 14)=0,
5l(12, 12) =Av,

5l(12, 13)=Bv,

5l(12, 14)=0,
5l(13, 13)=Av,

5l(13, 14)=0,
5l(14, 14)= (A -B)v,

where

and

I12 ——0+8 —Qv+ F26 ~
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