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The energy-band structures of (GaAs),(AlAs),, heterostructures with 2 <n +m <8 and of the
corresponding virtual-crystal alloys are calculated with the empirical pseudopotential method. Our results
indicate that cation order effects do not play a significant role for these heterostructures and can be handled
in perturbation theory. Our picture is in agreement with all the available experimental data. The use for
heterostructure calculations of empirical pseudopotentials derived from a fit to the band structures of the

pure GaAs and AlAs compounds is critically discussed.

I. INTRODUCTION

GaAs-Ga,_, Al, As multilayer heterostructures
(HS’s) with ranging layer thickness have recently
been obtained by molecular beam epitaxy.’ These
HS’s are characterized by microscopic potential
fluctuations which affect their electronic energy
levels depending on the particular repetition lat-
tice constant. When the layer thickness is in the
range from a few tens to a few hundreds of A the
HS’s show characteristic one-dimensional peri-
odical effects usually referred to as the super-
lattice regime.!

The situation is more intricate for HS’s having
smaller layer thicknesses, of the order of few
GaAs lattice constants., In this case the effects
of layering cannot be modeled by simple one-di-
mensional potential wells, and a full three-di-
mensional calculation of the energy-band struc-
ture is required. A question naturally arises:
Are these HS’s to be considered as new materials
or instead their electronic properties are similar
to those of the random alloys with the same com-
position?

Experimental investigations have been reported
for various (GaAs),-(AlAs),, HS’s with (n +m)
ranging from 2 to 10. They include measurements
of luminescence,?’? optical absorption,?'* two-
photon absorption,® and also Raman and infrared
spectra.® All these measurements indicate that
within differences of the order of ~0.1 eV, the
energy levels of ultrathin multilayer HS’s are
practically indistinguishable from those of the
corresponding random alloys. This means that
the transition to the superlattice regime, which
is controlled by the degree of order of the cation
sublattice, takes place rather slowly with increas-
ing layer thickness.

This behavior can qualitatively be understood
on the basis of the strong similarity of the two
isovalent cations Al and Ga. However, it has
not been reproduced by two recent theoretical ap-
proaches, one’~® based on the empirical pseudo-
potential method (EPM) and the other!°~!2 on the
empirical tight-binding method (ETBM). Though
quantitative discrepancies exist between the re-
sults of these two calculations, they both predict
a substantially more rapid transition to the super-
lattice regime. Particularly interesting in this
respect is the pseudopotential calculation of Car-
uthers and Lin-Chung (CL) which is applied to
both alloys and HS’s. It predicts significant
changes of the electronic properties on passing
from the alloy to the HS of the same composition,
even in the case of the monolayer HS (n=m =1),
where a shrinkage of the fundamental gap ranging
from 0.3 to 0.5 eV is predicted. This result is
quite surprising. Indeed changes of this order of
magnitude exist between a typical chalcopyrite
compound A"'BVCY (e.g., ZnGeAs,) and its II-V
(e.g., GaAs) analog whose properties are expected
to differ more, in view of the nonsimilarity of the
nonisovalent cations Zn and Ge.

The conflict between experimental data and phys-
ical intuition on one side and theoretical predic-
tions on the other side raises a rather puzzling
point. In particular, this makes it questionable
the use for heterostructure calculations of EPM
and ETBM, both adjusted to reproduce the band
structures of the pure compounds GaAs and AlAs.

In two previous communications®®*!* we have al-
ready shown that with a different and more real-
istic choice of the pseudopotential difference
AV(7) between Ga and Al, the EPM gives results
in reasonable agreement with experimental data
and provides a more physical picture of the ef-
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fects of cation order for HS’s with low values of
n=m,

In this paper we report in more detail our prev-
ious calculations and extend them to HS’s with
larger layer thicknesses and different composit-
ions. We discuss in detail the empirical pseudo-
potential AV responsible in our calculation for
cation order effects and compare it with the re-
sults of a recent self-consistent pseudopotential
calculation on the z=m =9 (110) HS (Ref. 15) by
Pickett, Louie, and Cohen (PLC). Detailed crit-
icisms and comments on the previous EPM and
ETBM calculations are also included.

In Sec. II we describe the crystal structures of
(GaAs),-(AlAs),, HS’s with any (n, m). In Sec. III,
after a brief presentation of our method (Sec. II1A)
we discuss our choice of the pseudopotential AV
(Sec. IIIB). Our results for the energy-band struc-
tures of various HS’s are reported in Sec. IV and
compared to experimental data. The final section
(Sec. V) is devoted to our conclusions.

II. CRYSTAL STRUCTURE

Both GaAs and AlAs have the zinc-blende struc-
ture. Their lattice constants are nearly equal,
being a=5.64 A for GaAs and a=5.63 A for AlAs.
Owing to the quite perfect matching of the lattice
constants, GaAs-AlAs compound systems exhibit
very small differences between GaAs and AlAs
bond lengths. This suggests that, at least in a
first-order approach, one can neglect lattice dis-
tortion effects and assume that the atomic positions
of the anion and the cation sublattices remain un-
changed on going from pure to compound systems.
However, compound systems with the same aver-
age composition can differ, depending on the par-
ticular ordering of the cation sublattice.

When cations are randomly distributed, the re-
sulting system is the homogeneous alloy
Ga,_,Al, As which can be treated, in a first-order
approximation, within the so-called virtual-crys-
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FIG. 1. Cation sublattice on the (100) plane for the
(1,1) HS (a) and the (2,1) HS (b). Solid arrow is the HS
basic vector; broken arrow, the basic vector of the
zinc-blende structure.

TABLE I. Primitive vectors of the direct and of the
reciprocal lattice for both D}, HS’s and D}! HS’s. The
units are 11'0 and 27/a for direct and reciprocal lattice
vectors, respectively. The reference frame is that of
the zinc-blende lattice.

Type of Direct lattice Reciprocal lattice
heterostructure vectors vectors
evenn +m [1,1,0] [1,1,0]
(D} [i,1,0] 1,1,0]

[0, 0, m +m] [0,0,2/(n +m)]
odd n=m [1,1,0] [1,1,1/(r +m)]
(D)) [1,1,0] [1,1,1/(n +m)]

[0,1,7+ml [0,0,2/(n +m)]

tal approximation (VCA). In this approximation
the randomly fluctuating cation potential is re-
placed by a compositionally weighted cation po-
tential and therefore the VC alloys have the same
zinc-blende structure as the constituent crystals.
When cations are ordered, so that » GaAs layers
are followed repeatedly by 7 AlAs layers, the
system is the (GaAs),~(AlAs),, heterostructure and
it does not have the zinc-blende structure. In
fact some lattice vectors of the face-centered-
cubic lattice are not lattice vectors of the hetero-
structure. This is illustrated in Fig. 1, which re-
presents a cross section of the cation sublattice in
the (100) plane for the HS’s with (n +m) =2 [Fig. 1(a)]
and (n +m) =3 [Fig. 2(a)]. In each case we show the
primitive vectors of the HS and of the VC alloy,
with a nonzero component along the [001]direction,
which is the direction in which the layer planesare
stacked. We notice that for even (z +m), the prim-
itive vector is always parallel to the [001] direc-
tion, whereas for odd (n+m), the primitive vector
has also a component along the [010] direction.
In Table I, we report the basic vectors of the di-
rect and reciprocal lattices for both kinds of HS’s,
HS’s with even (n +m) have the simple tetragonal
structure with spatial symmetry D},;, while HS’s
with odd (n +m) have the body-centered-tetragonal
structure with spatial symmetry Dii. In both cases

FIG. 2. Direct lattice (left) and Brillouin zone (right)
of the (1,1) monolayer HS. The simple tetragonal Bril-
louin zone of the monolayer is drawn inside the zinc-
blende Brillouin zone of the VC alloy.
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FIG. 3. Direct lattice (left) and Brillouin zone (right)
of the (2,1) multilayer HS. The body-centered-tetrag-
onal Brillouin zone of the HS is drawn inside the zinc-
blende Brillouin zone of the VC alloy.

the volume of the unit cell is (n +m) times the vol-
ume of the unit cell of the zinc-blende structure
which results when all the cations are of the same
type, as is the case for the corresponding VC
alloy. As a consequence the Brillouin zone (BZ)
of a (n+m) HS can be obtained by folding (»n +m)
times the BZ of the corresponding VC alloy. This
is illustrated in Fig. 2 for the (n+m) =2 and in
Fig. 3 for the (n+m) =3 HS’s.

III. PSEUDOPOTENTIAL APPROACH
A. Outline of the method

We write the potential Vg seen by an electron
in the (n, ) HS as

VM@ =vEm® « vERT@, (1)

i.e., decomposed in its zinc-blende component
V. which is the potential of the VC alloy
Ga,_,Al, As of corresponding composition x=m/
(n+m),

V(Z"B' M)(B =(1 - x) VGaAs(F) +xVA1As(F) ’ (28.)

and its tetragonal component Vs, which de-
scribes cation order and is expressed in terms of
the difference AV of the two cation potentials

V™ = Zi: a,AV(F -R,),

+x, if £=Ga
ai:{ ’ (2b)

’
—(1-%), if i=Al

AV(F) = Vp(d) = VarP) .

The above expressions allow us to compare di-
rectly the HS’s to the corresponding VC alloys and
show that the difference between the two band
structures on the strength of AV with respect to
Vzs.

We calculate the energy bands of the two sys-
tems within the framework of pseudopotential the-
ory, and use empirical pseudgpotentials for (2a)
and (2b).

First, we determine eigenvalues and eigenfunc-
tions of the alloy Hamiltonian,

HE™ =T+ V™, (3)

where T is the kinetic-energy operator and Vg is
defined in (2a). We diagonalize (3) at I" with 89
plane waves as basis functions, and use the K 3
method®® for any k throughout the BZ. A 15x15
ﬁ-ﬁ matrix suffices to give good convergence in
the first v =10 energy bands which span an energy
range of ~24 eV,

Second, we use the alloy eigenfunctions as a
basis set to diagonalize the heterostructure Hamil-
tonian:

HiW=HE" + VI, (4)

H%3™ is obviously diagonal in our basis, while
ng'(;"') has nonzero matrix elements only between
alloy states corresponding to wave vectors Kk and
kK’ where K-k’ is a reciprocal lattice vector of the
(n,m) HS (see Table I). The energy range we are
mainly interested in is that close to the energy
gap. In this region, a relatively small number
v=10 of alloy bands for each k suffices to guar-
antee the convergence of the HS’s. The size

of the matrix to be diagonalized for a (n,m) HS
is =10 X(n +m),

In the case of the monolayer HS, we have nu-
merically verified the accuracy of our procedure
to determine differences in the band structures of
the two systems in the energy range of interest.
No significant change is found when we drop the
simplification of the K+ method in the alloy calcu-
lation and use a larger number v of alloy states
for the HS.

B. Choice of the pseudopotential

The VC alloy that we use as starting point for
the HS problem has already been studied and fully
discussed by Baldereschi ef al.” In particular,
they have shown that

(a) the VCA (2a) is appropriate to study the alloy
Ga,_,Al,As and

(b) their choice of the pseudopotential V,; is
able to reproduce sufficiently well the experi-
mental results over the whole compositional range
(0sx<1),

In fact, to further investigate the validity of (a),
they have estimated the effect of both compositional
and positional disorder on the band structure of the
VC alloy and showed that disorder produces small
effects. They concluded that, since the disorder
mainly occurs in the cation sublattice, it cannot
have but small effects due to the similarity of the
two cations (the electronegativity difference is

AX G, 4 =0.06 according to Phillips!®).



TABLE II.
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used in recent calculations of GaAs and AlAs.
volume is the atomic volume.

Comparison of the symmetric and antisymmetric pseudopotential form factors
The units are Rydberg and the normalization

GaAs AlAs

This work This work

and Ref. 17 cL? pLc® and Ref. 16 cL? pLC?
Vs -0.2290 ~0.2408 -0.2129 -0.2200 -0.2600 -0.2583
vi 0.0700 0.0592 0.1007 0.0720 0.0400 0.0553
vi 0.0600 0.0410 0.0729 0.0625 0.0420 0.0387
v 0.0123 0.0102 0.0273 0.0260 0.0456 0.0144
Vs 0.0600 0.0731 0.0477 0.0700 0.0710 0.0425
Vi 0.0100 0.0231 0.0084 —0.0075 0.0210 0.0032
v 0.0 0.0120 0.0065 0.0 0.0200 0.0031
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2 Reference 8.
b Reference 15.

As concerns point (b), a more detailed discussion
is needed here, because we use'®'* thier em-
pirical pseudopotential V,3 not only to recalcu-
late the alloy through (1), but also to derive the
individual screened ionic pseudopotentials in
Vs (2b). The EPM! requires the knowledge of
the values of the Fourier transform V;3(G)’s only
at a few specific reciprocal lattice vectors of the
zinc-blende structure. The values of V,3(G)'s
are not unique and depend on the special choices
made in the fitting procedure, i.e.,

(1) the experimental data to be fitted,

(2) the cutoff value G[ V25(G) =0 for G = G,],

(3) the number of plane waves used as basis set.

In Table II, we quote three different sets of
empirical pseudopotentials for GaAs and AlAs
used in two recent calculations of the alloy
Ga,_,Al, As®*"" and to construct the starting po-
tential in a self-consistent calculation of the (9, 9)
(110) HS.'® In spite of the differences they all re-
produce the gross features of the band structures
of the pure compounds within the uncertainties of
the experimental data and within the typical ac-
curacy of EPM calculations based on local pseudo-
potentials (~0.1 eV).

From the three sets of pseudopotentials quoted
in Table II we can construct three different sets
of V,3(G)’s through the VCA (2a). Once the val-
ues of V,5(G)’s are adjusted to the system
Ga, ., Al, As, still a large arbitrariness is left
in the choice of the individual atomic form factors
and in particular of the values A V(G)’s which are
needed for the calculation of the HS’s. Moreover,
in order to obtain the values of AV(q) at the ad-
ditional reciprocal lattice vectors of the tetragonal
structure (Tablc I), an extrapolation is required.
Throughout this procedure, the discrepancies be-

tween the three choices of V,5(G)’s, become of
critical importance.

In Table III we quote three different sets of val-
ues of the difference AV(q) of the cation pseudo-
potentials: the one corresponding to the first
choice of pseudopotentials in Table II and used in
the present calculation, the one corresponding to
the second choice of pseudopotentials in Table II
and used by CL’"° in their calculation of the HS’s,
and finally, the one corresponding to the last
choice of pseudopotentials in Table Il and used by
PLC (Ref. 15) in the first iteration of their self-
consistent calculation of the (9, 9) HS. The dif-
ferences are already very large for the values of
q which correspond to the reciprocal lattice vec-
tors of the ZB structure. For smaller ¢q values,
the results of the three extrapolations are also
strikingly different. In particular, our values
are at least one order of magnitude smaller than

TABLE III. Atomic pseudopotential difference AV =V,
—Vy (in eV, normalized to the atomic volume) at some
selected reciprocal lattice vectors of the tetragonal
structure. The PLC data refer to their starting (i.e.,
non-self-consistent) atomic form factors.

o/ Wt
a This work CL PLC

(0,0,1) -0.028 0.980 -3.057
(1,1,0) -0.059 1.088 -1.688
(1,1,1) -0.155 0.522 -1.234
2,0,0) ~0.193 -0.027 -0.931
2,2,0) -0.080 -0.963 -0.352
(3,1,1) 0.098 0.060 -0.141
2,2,2) 0.137 -0.218 ~0.091

2 Reference 8.
b Reference 15.
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FIG. 4. Screened Ga-Al pseudopotential difference AV
in momentum space. AV is normalized to the atomic
volume. Curve 1, present work (from Ref. 17); curve 2,
Caruthers and Lin-Chung (Ref. 8); curve 4, ionic core
Ga-Al pseudopotential difference used by Pickett, Louie,
and Cohen (Ref. 15), screened with the Penn dielectric
function (Ref. 21) of GaAs; curve 3 = AV from the
Animalu-Heine model (Ref. 20) screened with the Penn
(Ref. 21) dielectric function of GaAs. The insert gives
the core Ge — Zn pseudopotential difference calculated
from the Animalu-Heine model (Ref. 20) screened with
Penn dielectric function (Ref. 21) of GaAs.

the other two.

In Fig. 4, our AV(q) is compared to AV . (9)
(curve 2), in the whole range of q. The shape and
smaller values of our A V(q) are supported by
several reasons:

(i) Since Ga and Al are isovalent, AV represents
only core differences which are not much relevant
to their chemical properties (Phillip’s electro-
negativities,'® proper to ions in tetrahedral en-
vironment are 1.13 and 1.18, respectively) and in
real space are confined to a small region near the
nucleus.

(ii) As shown in Fig. 4, our A V(q) quantitatively
agrees with the one (curve 3) derived by subtract-
ing the Ga and Al model potentials of Animalu-
Heine? (AH) and screening the difference with
Penn dielectric function of GaAs (Ref. 21); Ani-
malu-Heine model accounts for the similarity of
the atomic energy spectra of Ga and Al.

(iii) In their self-consistent calculation, PLC
(Ref. 15) have found that the order of magnitude
of their initial atomic form factors (Table III) is
not realistic; in fact, e.g., the consistency pro-
cedure changes the difference between the average
bulk potentials AV=V,,,, - V5., from the initial

value of 1.70 eV to the final value of —-0.05 eV.

It is well known that in a self-consistent calcu-
lation, the choice of the starting potential is not
relevant to the final results, which only depend on
the choice of the ion-core potentials. PLC used
model ion-core pseudopotentials derived from
those of Heine—Abarenkov?? (see note in Ref. 23).
The self-consistency constraint, which accounts
for the screening of the core potentials due to the
valence electrons in the crystal, has the effect
of weakening the difference between the bare ionic
pseudopotentials. We expect that their final AV
does not suffer significantly from the one obtained
by screening the difference of their bare Ga and
Al ionic pseudopotentials with Penn dielectric mo-
del: The result of this procedure is shown in Fig.
4 (curve 4) and its order of magnitude definitely
confirms our choice. We point out that the values
of this final AV differ from the starting ones (Ta-
ble III, 3rd column) by one order of magnitude.
Therefore, after comparing the work of PLC to
that of CL, one can reasonably expect that the
values of AV used by CL in a non-self-consistent
calculation of HS’s”~® would be changed signifi-
cantly by the self-consistency requirement. We
also notice that the results of PLC indicate that
only a negligible redistribution of charge, par-
ticularly of the bonding charge, occurs at the in-
terface from GaAs to AlAs and this is again a
consequence of the strong similarity of the two
cations [see (i)].

However, some criticism which is common to
all previous calculations of alloys and HS’s, can
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also be made. All calculations in fact, neglect
the nonlocality of the pseudopotentials and the
spin-orbit interaction. Nonlocality properties of
the pseudopotentials might be relevant, particu-
larly for an accurate description of the charge
distribution, as shown in the case of GaAs.*
Nonlocality emphasizes the core difference be-
tween Ga and Al, mostly due to the presence of

d states in the core of Ga. However, as pre-
viously dicussed in (i), whatever description of
the core differences cannot qualitatively affect
our conclusions on AV, Spin-orbit effects show

a nonlinear variation with composition in several
alloys?®* 2% and the validity of the VCA in explain-
ing this behavior is still questionable.?® Spin-orbit
effects, however, should not be relevant to any
modification of electronic states near the band
edges from the alloys to the HS’s; in fact spin or-
bit coupling is especially important for the valence
states which, being anionic, remain essentially
unaltered by the cation ordering.

IV. THEORETICAL RESULTS AND COMPARISON WITH
EXPERIMENTAL DATA

A. (1,1) heterostructure

The energy bands of the (1, 1) monolayer HS
[Fig. 5(a)] are very similar to those of the
Ga,.;Al, ;As VC alloy [Fig. 5(b)] folded into the
tetragonal BZ. Energy differences are generally
of the order of 0.01 eV and they become of the
order of 0.1 eV whenever the tetragonal potential
Vs couples alloy states which are degenerate
either by symmetry (i.e., all the states lying on
the external faces of the irreducible tetragonal
BZ as illustrated along U, in Fig. 5) or acciden-
tally [e.g., all the band crossings appearing in
Fig. 5(b) and not in Fig. 5(a)].

According to our previous discussion in Sec.
III B, the additional potential Vs is only a weak
perturbation on V5, since the average strength
of AV is only 0.1 eV. We have verified that per-
turbation theory can be applied to the alloy bands
[Fig. 5(b)] and gives, at the lowest nonzero order,
the correct splittings in the HS. In fact the tetra-
gonal perturbation acts in first order when it
couples degenerate alloy states, and in second
order it couples alloy states which are generally
separated by ~1 eV or more. Both the small Vg
and the large energy denominators contribute to
the validity of the perturbative argument.

The splitting AE, of the topmost valence-band
state I, and the lower singly degenerate I,
amounts only to ~2 meV. However our nonrela-
tivistic calculation should be corrected here by
the effect of the spin-orbit interaction which, in
the absence of the tetragonal perturbation, splits

the I'j;, state into the two levels I}, and I';,. The
spin-orbit splitting A, is larger than AE, [A/,
=0.34 eV for GaAs and A, =0.29 eV for AlAs (Ref.
27)] and cannot be neglected. When both the spin-
orbit interaction and the tetragonal perturbation
are taken together, the I'j,, state splits into the
three levels Ty, I7,, and I7,.

The relative position of the triplet levels of the
HS with respect to the doublet levels (I, and T';,)
of the alloy is determined by Vs as well as by
the tetragonal component Vi of the spin-orbit
potential in the HS Hamiltonian. As already noted
for Vg, also V3;acts as a second-order pertur-
bation on the topmost valence band at I in the al-
loy. The average strength of Vg is Al,— A%,
=0.05 eV for the levels under consideration and
is therefore comparable with the average AV,
This does not allow us to make any quantitative
estimate of the final splitting in the HS. However,
a qualitative estimate can be made if we neglect
the effect of V¥;. In this case, the energies of
the triplet levels of the HS with respect to the in-
itial T',;, level of the alloy are given by

E(T) = +% Ao,
E(T2) =E(Ty) = 3 (Ag + AE,)
i% [(Aso + AEv)z - ‘g- ASOAEU]1/2

(5)

in terms of the spin-orbit splitting A, of the al-
loy doublet and of the tetragonal splitting AE,.
Equations 5 constitute the so-called “quasicubic”
model of Hopfield®® and have already been applied
to crystals of the wurtzite type®® and of the chal-
copyrite type.*® Since in our case AE, is much
smaller than A, we can further simplify Eqs.
(5) by a first-order expansion with respect to
AE,, giving

E(Tq) =+3 Ay,
E(T7,) =E(Ty) -~ 5 AE, , (6)
E(P;v) =E(rs) - Aso —%AEU .

This description is quite general and applies to
any (n,m) HS. A schematic representation of the
resulting valence band structure near the I point
is given in Fig. 6, which shows the different split-
tings of the state I'j,, of the alloy that occur as a
consequence of the spin-orbit and of the crystal-
field interaction. We notice that the crystal-field
interaction has the effect of pushing downward

the heavy-hole band edge with respect to the light-
hole band edge. This can be explained by consid-
ering that AE, is due to Vs acting in second ord-
er and that the interaction of the top of the valence
band with the conduction-band states dominates
over the interaction with the lower valence-band
states, since V; is mostly localized in the cation
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FIG. 6. Schematic representation of the topmost group
of valence bands near the point I" for (a) the VC alloy
without the inclusion of spin-orbit interaction, (b) the
VC alloy with the inclusion of spin-orbit interaction,
and (c) the heterostructure with the inclusion of spin-
orbit interaction.

sublattice. The calculated splitting 2 AE, ~1.3
meV between the light- and heavy-hole bands,
however, should be considered only as an order
of magnitude, because its quantitative estimate
is very critical as it depends on AV to the second
order. Also its sign is quite uncertain in view of
the neglect of V55 is our approximation. In any
case our calculated splitting for the (1, 1) HS is
in order-of-magnitude agreement with the 5.3-
meV splitting observed in the (9, 1) HS (Ref. 5)
by measuring the two-photon absorption spec-
trum,3! where in addition the polarization data
indicate that the heavy-hole band edge has the
lowest energy. CL (Refs. 7 and 8) obtain
instead AE, ~170 meV, due to the too large
strength of their AV, discussed above (Sec. III B).
We notice that the self-consistent calculation of
PLC (Ref. 15) gives AE, ~50 meV in the (9,9) HS
where layering effects are expected to be larger.
In Fig. 7, we report the charge density corres-
ponding to the valence state I',,. The charge is
heavily concentrated on the bonds and has still the

pla.u)

6.0

40+ [

20t fic

00l &= V=" Se
AP amn As am Ga
(GaAs),-(AeAs),
FIG. 7. Charge density corresponding to the states
Ty, Jower state of the topmost group of valence bands
at T') and Iy, (lowest conduction state at T') for (GaAs),
— (AlAs); along two bond directions.

character of a VC alloy state since only negligible
asymmetry exists between Ga-As and Al-As bonds.

Both the VC alloy and the monolayer are indirect,
the conduction-band minimum of the monolayer ly-
ing on the A line (A, axis in the zinc-blende BZ).
The indirect gapE ; =2.05 eV of the monolayer is ~1
meV smallerthanthe calculated oneinthe alloy. The
experimental value for E , reported in Ref. 4 is ~2.06
eV. Inagreement with experimental evidence,*the
lowest gapE &’ ofthe HS at I" (T'y, - I, ) is pseudodi-
rect, i.e., the one-photontransitions are weakly al-
lowed, sincethe final state I', derives from the X
point of the zinc-blende BZ and is only slightly mod-
ifiedby V.;. In Fig.Tthe corresponding charge den-
sity exhibits only a negligible difference betweenthe
values along thetwobond directions, in agreement
with perturbative arguments. Inpractice, this allows
one to classify still the Bloch states in the mono-
layer with the momentum of the zinc-blende BZ.

In our calculation, E}’ is ~20 meV wider than
our indirect gap E . Intense optical absorption
starts at E=E %’=280 meV above E ), in corres-
pondence to transitions from the I';, state to the
upper conduction state I, .. The ratio of oscillator
strengths of the pseudodirect and the direct optical
transition at I" is less than 1073,

Our results strongly disagree with those of CL
(Refs. 7 and 8). According to these authors the
VC alloy is indirect whereas the monolayer HS
is nearly direct. Moreover, they find both the
pseudodirect gap E ’ and the direct gap E 2’ of
the monolayer smaller than the indirect gap of the
corresponding VC alloy by ~0.5 eV (or ~0.3 eV with
modified pseudopotential form factors®) and by
~0.2 eV, respectively. Since the experimentally
measured gaps®'*'® are larger, CL (Ref. 8) inter-
preted the discrepancy as due to the disorder ex-
isting in the samples of the monolayer HS used
in the experiments. Disorder effects, however,
are unlikely to increase the monolayer gaps by
such a large amount. In fact, energy shifts due
to disorder in GaAlAs compound materials are
expected to be smaller than 0.1 eV, as can be
deduced by the observed bowings of the band gaps
in the alloys, where, in addition, they act in the
opposite sense? (i.e., tend to decrease the band
gaps).

Comparison of theoretical and experimental re-
sults is made more difficult by the presence of
compositional and positional disorder both in the
HS’s and in the alloy samples. Furthermore, it is
very difficult to obtain HS and alloy samples with
exactly the same composition. All these effects
originate some scattering in the experimental data
(for instance, the experimental values for the in-
direct gap of the Ga, ;Al, ; As alloy range from??
1.9 to 2.1 eV). However, transmission electron



microscopy® and x-ray diffraction® confirm that
the HS’s are substantially more ordered than the
corresponding alloys. All these considerations are
important when comparing theory and experiment.
Our calculation predicts that the onset of both in-
direct and direct transitions does not significantly
change on going from the VC alloy to the mono-
layer, whereas optical data® indicate that both

E, and E 2’ are wider in the HS, by ~70 and 110
meV, respectively. This discrepancy is reduced
if we correct our VC alloy values by the downward
bowings observed in the real alloy. It should be
noticed, however, that the monolayer and the alloy
samples used in Ref. 4, were not of exactly the
same composition.

A more conclusive argument in favor of the
strong similarity of the monolayer and the alloy
is given by very recent experimental data by Mil-
ler.® In a very accurate experiment he was able
to see the variation of the luminescence of a mono-
layer sample when this was changed into an alloy
sample by annealing. His results indicate that the
fundamental gap of the alternate monolayer is
within 50 meV of the band gap of the alloy.

As a final remark, we point out that also the
results of a TB calculation by Schulman and Mc-
Gill'? (SM) for the (1,1) monolayer HS give a funda-
mental gap of 2.16 eV, very close to the alloy gap
which is of 2.18 eV according to SM.

B. (n,n) heterostructures

We have seen that the (1,1) HS is very similar
to the VC alloy. It is also evident that the (z,n)

HS with large » has a gap which tends to that of
GaAs. We have therefore calculated the electron-
ic states at the band edges of HS’s with n=m =2, 3,4
in the attempt to determine when cation order
starts to play a significant role.'*'* We did not
extend our investigation to HS’s with larger =, be-
cause this requires the knowledge of the pseudo-
potential at small g values where a self-consistent
calculation is probably necessary.

In Fig. 8 the energy levels at I" are shown for
the different monolayer HS’s and compared to the
corresponding levels of the alloy Ga, ;Al, ;As.
The splitting of the top valence bands at I' remains
of the same order as in the monolayer; the shrink-
age AE, of the lowest, still pseudodirect gap is
also very weak: AE_=4, 10, and 16 meV for n
=2,3,4, respectively. This gap decrease is in
qualitative agreement with the results of the em-
pirical tight-binding calculations of SM (Refs.
10-12); however, their values are one order of
magnitude larger [e.g., E (n=2)-E (2=3)~80
meV compared to our 6 meV]. As already dis-
cussed in Ref. 13, our values are supported by
experimental data on ultrathin HS’s (Ref. 2) where

21 SIMILARITY OF (Ga,Al1,As) ALLOYS AND ULTRATHIN... 3341

rxeo Lo Lo
mr T, r ry r I
L e
—_ I 1
é 08} 7
=] -
i _.)E‘P_ _ri Mg e e
106
- 2
1859
rlSV r!V r5¥ r5V r-w 1858
Fy T M My 857
1856
A M M, M M

FIG. 8. Calculated energy levels at I for (GaAs),
- (AlAs), monolayers (M,) compared to those at T and X
of the virtual-crystal alloy (A).

the absorption edge seems to be only weakly de-
pendent onn. The gap I';, ~ I, shrinks more
rapidly for » = 3, due to the appearance of new
lower I', states which result from A states folded
into I'. The progressive folding of the BZ in HS’s
with » >4 will eventually cause the I'; level to
cross the I', level, in qualitative agreement with
the results of CL.° As n increases, this mech-
anism appears to be the one responsible for the
further narrowing of the lowest gap that eventually
merges with the GaAs gap which is direct and ~0.5
eV smaller,

For low n, our results show that the HS’s are
still indirect and similar to the alloy; the tetra-
gonal potential can still be treated as a weak per-
turbation acting on the zinc-blende VC alloy. Con-
sequently the electron states at the band edges
keep their nature of “alloy states” as in the mono-
layer.

CL (Ref. 9) show their results only for the three
lowest conduction states at T for 1 <#n<9 and dis-
cuss the cases n=3 and 9. As in the case of the
monolayer, all these HS’s exhibit substantial dif-
ferences with the alloy; however the energy vari-
ations with increasing n are one order of magni-
tude smaller than the difference between mono-
layer and alloy. According to CL the two lowest
conduction states are GaAs states and the third is
an AlAs state. This would indicate that the tran-
sition to the superlattice regime starts to take
place quite rapidly. In particular, in the trilayer
they already find a charge transfer of 0.2¢ from
GaAs layers to AlAs layers through the interface.
This disagrees with the results of PLC (Ref. 15)
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who obtain a negligible charge transfer of 0.02¢
even in the 9-layer HS.

The ETB calculation of SM (Refs. 10 and 12)
gives an even faster shrinkage of the direct band
gap for increasing n, due to the lowering of the
level at I'. Their TB parameters were adjusted
to fit two independent pseudopotential results®® for
the pure compounds and, in particular, the band
gaps. They are not able to reproduce the conduc-
tion bands sufficiently well and this is probably the
reason why in their calculation the (z,n) HS’s are
direct for n> 2.'* They also find that, already in
the bilayer,'® the band-edge wave functions are al-
most entirely confined to GaAs layers. It is not

easy to understand what gives rise to this behavior.

Indeed, it is well known that the TB method, when
used as a Slater-Koster® interpolation scheme,

by assuming nonoverlapping Wannier functions and
a limited number of interactions, does not give
reliable wave functions in semiconductors, par-
ticularly for the conduction states.’” Comments
about the dependence of TB parameters on the fitt-
ing procedure can be made, analogous to those
made in Sec. III B about the choice of the empir-
ical pseudopotentials. In addition, in the ETBM
the wave functions are particularly sensitive to
the quality of the fitting itself. On going from a
ZB lattice to a superlattice, the ETBM does not
present intrinsic difficulties as the EPM does,

due to the ignorance of the form factors for small
q values. However, one should notice that, due to
the progressive folding of the BZ, the quality of
the TB fitting for the HS’s is guaranteed only if the
original one reproduced well the bands inside the
original BZ,

We remark that the results of SM (Refs. 10-12)
for the HS’s with larger number of layers (=T or
10) do not agree with those of PLC.*® In fact SM
describe the states at the band edges as superlat-
tice states confined to GaAs potential wells, while
PLC find that the (9,9) HS still belongs to an inter-
mediate regime of interacting potential wells.

C. (n,m) heterostructures withn #m

We have calculated a few HS’s with n #m and
with compositions x=0.33 (n+m =3 and 6), x=0.25
(n+m=4), x=0.715 (n+m =4), and x=0.67
n+m=3).

Our results show again a strong similarity be-
tween HS’s and VC alloys. The energy differences
are of the same order as for the HS’s with x=0.5
and the band-edge wave functions do not show any
definite preferential confinement, in contrast with
the results of SM,'%"!2 who obtain band-edge wave
functions heavily confined to GaAs layers in the
whole range of the composition considered
(0.25< x<0.67). Furthermore, the HS’s are di-
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FIG. 9. Variation with the composition x of the lowest
direct gaps and of the indirect gap for the HS’s and the
VC alloys.

rect or indirect according to the direct or indirect
character of the corresponding alloys.

In Fig. 9, we report the values of the lowest
direct gaps and of the indirect gap for the HS’s
and for the VC alloys.!” It should be noticed that
all our results have been obtained with a nonrela-
tivistic EPM calculation and therefore spin-orbit
corrections should be added to the values of Fig.

9 before comparing them with the experimental
data. However, as already remarked in Sec. III B,
we do not expect that spin-orbit effects signifi-
cantly change on passing from the HS’s to the al-
loys.

Both direct and indirect gaps of the various HS’s
scale almost linearly with composition, thus re-
producing the behavior of those of the VC alloys.
This is a consequence of the weakness of our tet-
ragonal potential V., with respect to V5 [Eq. (1)].
In fact, V,4 [Eq. (2b)], when acting as a second-
order perturbation on the energy levels, would
introduce a nonlinear dependence with composition.

The available experimental data are very few*
and cover only a limited portion of the x range.
The gaps of the HS’s have been measured for
x=0.12, 0.35, 0.50, and 0.60 and compared to the
alloy gaps obtained from interpolation formulas,3®
In both cases, they show a quite linear variation
with composition, confirming our theoretical pre-
diction. Again, the experimental data seem to in-
dicate that the HS gaps are wider than those of the
corresponding alloys by ~60-70 meV. The com-
ments already made in Sec. IV A for the monolayer
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retain their validity for the (n,m) HS’s.

As shown in Fig. 9 the direct and indirect gaps
cross at x =x,=0.34. The lowest direct gap of the
HS corresponds to the direct alloy gap for x < x,
and becomes pseudodirect for x >x,, in corres-
pondence to the folding of a Kk point in the A di-
rection (A in the zinc-blende BZ) of the alloy into
Ir.

We have studied the effect of increasing the num-
ber of layers for x=0.33. For n +m =6 we find
that the folding of the X point causes the pseudo-
direct gap to cross the direct gap. A more de-
tailed comparison between the electronic states
of the x =0.33 VC alloy and those of the (2,1) and
the (4,2) HS’s is given in Fig. 10, where the en-
ergy bands of the three systems are reported
along the A direction. Layering effects are not
yet evident, even if the first conduction band seems
to show the tendency to separate into a miniband
on going from the (2,1) to the (4,2) HS.

V. CONCLUSIONS

The calculations presented in this paper show
that the electronic properties of (GaAs),~ (AlAs),,
HS’s with n +m < 8 are very similar to those of the
corresponding alloys Ga,_,As As. This seems to
limit the importance of these ultrathin HS’s for
practical applications.

Our results agree with all available experimen-
tal data, but disagree with the results of previous

calculations based on the EPM (Refs. 7-9) and on
the ETBM (Refs. 10-12) which both indicated a
rather rapid transition from the alloy to the super-
lattice regime. In Secs. IIIB and IV we have fully
explained the reasons of these discrepancies. An
important consequence of our investigation is that
empirical calculations which fit reasonably well
the energy bands of GaAs and AlAs do not nec-
essarily give equally good results for the HS’s.

It is interesting to compare our results for the
monolayer (1,1) HS to the well-established data®®
for A"BIVCY chalcopyrite compounds, in particu-
lar those where atoms A and B belong to the same
row of the periodic table, so that crystallographic
distortions are negligible. The chalcopyrite (e.g.,
ZnGeAs,) can be considered as an HS and the zinc-
blende binary analog (e.g., GaAs) plays the role
of the alloy. By analogy with the formulation pre-
sented in this paper, the chalcopyrite crystal po-
tential can be written as the sum of the potential
of the zinc-blende binary analog (V) and of a
tetragonal component (V;s). Inthis case, how-
ever, the two cations (Zn and Ge) are not isovalent
and their potential difference AV’ is stronger and
long range in real space. Inthe insert of Fig. 4
we report the g-space dependence of the screened-
core pseudopotential difference AV’ (Zn-Ge) cal-
culated from the Animalu-Heine model.?° AV’ is
larger than AV (Ga-Al) by an order of magnitude
and therefore, according to our perturbative ar-
gument, we expect the effects on the energy bands
to be ~100 times larger. Experimental data®® show
that the fundamental gaps of chalcopyrites differ
from those of the III-V analog compounds by ~0.3
eV at most. This would imply a fundamental-gap
shrinkage of ~3 meV on passing from Ga, ;Al, ;As
to the (1,1) HS which further confirms our results.
The analogy with the chalcopyrite compounds in-
dicates that cation order will produce effects of
the order of 0.1 eV in the energy bands of noniso-
valent HS’s like Ge,-(GaAs), for low n.

We expect therefore that the similarity found in
the present work between ultrathin HS’s and the
corresponding Ga,_ Al As alloys will generally ap-
ply to superlattices made of a small number of al-
ternating isovalent atoms and also to nonisovalent
systems though the energy differences will be
scmewhat larger in this case.
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