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By inserting quasielectron energies co calculated from the fully renormalized Green's function of the
Hubbard model obtained in the preceding paper into the exact expression of Galitskii and Migdal, the
ground-state energy, the chemical potential, and the dynamic- and thermodynamic-stability conditions are
calculated in the narrow-band region. The results show that as long as the interaction energy I is finite,
electrons in the narrow-band region do not obey the Landau theory of Fermi liquids, and a gap appears
between the lowest quasielectron energy co and the chemical potential p, for any occupation n, regardless of
whether the lower band is exactly filled or not. This unusual behavior is possible because, when an electron
is added to the system of N electrons, the whole system relaxes due to the strong interaction, introducing a
relaxation energy difference between the two quantities. %e also show that all previous solutions which
exhibit the split-band structure, including Hubbard's work, yield the same conclusion that electrons do not
behave like Landau quasiparticles. However, the energy gap is calculated to be negative at least for some
occupations n, demonstrating the dynamic instability of those solutions. They also exhibit thermodynamic
instability for certain occupations, while the fully renormalized solution, having sufficient electron
correlations built in, satisfies the dynamic and thermodynamic stability conditions for all occupations. %'hen

the lower band is nearly filled, the nature of the solution is shown to change, making the coherent motion
of electrons with fixed k values more difficult. In the pathological limit where I = ao, however, the gap
vanishes, yielding a metallic state.

1. INTRODUCTION

In the preceding paper (Paper III),' we have ap-
plied the functional-derivative method of calculat-
ing the Green's function developed earlier' 4 to the
Hubbard model and obtained a fully renormalized
Green's function. In this paper, we calculate the
ground-state energy, chemical potential, and the
dynamic- and thermodynamic-stability conditions
in the narrow-band region using this fully renor-
malized solution and compare them with the results
obtained from the previous solutions. ' '

The results obtained from the fully renormalized
solution lead to the conclusions that, as long as the
interaction energy I is finite, electrons in the
ground state of the Hubbard model do not behave
like quasiparticles in the Landau theory of Fermi
liquids ' in the narrow-band limit and that there
exists a gap between the excitation spectrum and

the chemical potential regardless of whether the
lower band is completely filled or only partly fil-
led. 'The physical origin of this gap will be investi-
gated in detail in the following paper (Ref. 11).
According to the results, if an electron is added to
the system of N electrons, the strong interaction
causes the whole system to relax. Therefore, the
ground-state energy Eo(N+ 1) of N+ 1 electrons in
the Hubbard model is not given by the sum of the
ground-state energy Eo(N) of N electrons and the
quasiparticle energy ~ of the added electron. In-
stead, a relaxation energy &E,(N) appears between

the two, yielding

E,(N+1) =E,(N)+ a —zE, (N) .
In order for the system of N+1 electrons to be
stable, the relaxation energy bEo(N) must be posi-
tive. Our result indeed yields a positive value for
dEo(N) of the order of bandwidth g in the partly-
filled-lower-band case and of the order of interac-
tion I in the nearly-filled-lower-band case.

We shall also nohow that all previous results,
which include Hubbard I' and III, and which yield
the split-band structure predicted by Hubbard, lead
to the same conclusion that the Hubbard electrons
do not behave like quasiparticles, although there is
an important and distinct difference between the
present solution and all the previous solutions. In
the previous solutions, electron correlations are
inadequately included and we find the gap dEO(N}
between the lowest excitation energy ru, and the
chemical potenti'al g to be negative at least for
some occupations p, demonstrating dynamic insta-
bility for those occupations. Those solutions also
exhibit thermodynamic instability for certain oc-
cupations g, suggesting that all of the previous sol-
utions contain serious defects, and some proper-
ties such as susceptibility calculated by using those
solutions may not be at all reliable. On the other
hand, the present solution satisfies the dynamic-
and thermodynamic-stability conditions for all oc-
cupations pg.

In the pathological limit where the interaction en-
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ergy I is infinitely large, however, the energy gap
AEO(N) is shown to vanish in agreement with
Brinkman and Rice's ca1.culation~ as we shall dis-
cuss in Sec. IV.

Since the appearance of an energy gap at the
Fermi level for all occupations n under a finite I
is a very unusual and rather surprising result, we
summarize the basic results of the Green's-func-
tion method" in Sec. II, while, in Sec. III, the
ground-state energy E&(N), the chemical potential
))(N), and the dynamic- and thermodynamic-stabil-
ity conditions are calculated in the narrow-band
region for the following approximate solutions:
Hubbard I and III, the coherent-potential approxi-
mation (CPA) solution of Soven, )k )5 the zeroth or-
der approximate solution of the present method, '
the E sterling-Lange result, ' the Fedro-Wilson re-
sult, ' the step-1 solution, ~ and the present fully re-
normalized solution. In Sec. IV, we summarize the
results and discuss the natures of all of those sol-
utions. The emPhasis of the Present PaPer is on
obtaining concrete results demonstrating the exis-
tence of a gaP and testing stability. Their physical
interpretation will be taken up in detail in Ref. 11.

I

For those purposes, we do not need the elaborate
functional-derivative techniques developed so far.

II. THE GROUND-STATE ENERGY, CHEMICAL
POTENTIAL, AND THE STABILITY CONDITIONS

The ground-state energy Eo(N) can be calculated
from the exact expression obtained by Galitskii and
Migdal"

(2.1)

where the spectral function Ak, (&o) with real &u is
given by

A, ((u)= limi[G„(~+i)l) Gk-(~-i)i)]. (2.2)

In the cases we shall be considering, the continua-
tions of G(&u) onto the unphysical sheets [we call
them the advanced and retarded Green's functions
G'"' and G's' (Ref. 12)] have several poles so that
the spectral weight function can be replaced by a
sum of Lorentzians with width I'~", , I',", etc. ,
centered at ~,"', ~,",', etc. The ground-state ener-
gy is then given by

d(u 2&~ 'Z((u~ ')
Eo(NO»()) =gg 4 (&k+ ~) ) -((k) )2 i (a) ikf (+)!

p, a a
(2.3)

where the weight Z(ar) involved in 5 Ek{N,N~) 0
5 Ek(NO, N~)

ka ( ) (~ a)(k() )&+ (Zl(~) }2

(2.4)

(2.8)

II'E, IN„Ã~) I!'E (N N ,! 6 E (Ã„„N—,))''„—

is determined from Eq. (2.2).
The chemical potential )k(N) in the nonmagnetic

case (N, =N ,) is calculated from—

y (N) =pu(N~, Ng) =ED(N, +1,N~) —Eo(N~, N~)

= 5EO(N„Nu)/5Nu {2.5)

for n, =n—=
& n under the condition that

The foregoing relations are all exact except for
Eqs. (2.3) and (2.4). Let us now adopt the conven-
tional interpretation that the poles of the single-
electron Green's function yield the quasiparticle
energies, that is, the energy aHk,)(N) of an electron
added to the ground state of N electrons. The en-
ergy E', '(N, +1,N—,) of the resulting N+1 electrons
is then given by

Ek )(N~+1, N~) =Ek(N~, N~)+(o(~J(N). (2.9)

A„,((o)f((u)
1T

(2.6)
Since this energy E~ ' cannot be lower than the
ground-state energy Eo(N, +1,N ,) of N+1 elec-—
trons, we obtain the dynamic-stability condition

Eo(N~+ 1,N )=Ek(N„N~)+ p(N~—, Nu), (2.7)

where n, =n-= —,'n. The requirement that the
thermodynamic potential is minimum yields the
following thermodynamic stability conditions:

for o'=cr and o. From Eq. (2.5), we find that the
ground-state energy of N+1 electrons is given by

(2.10)

If the above inequality is violated, it implies the
existence of a state having a lower energy than the
"ground"-state energy, and hence the putative
ground state is dynamically unstable.

If the system is a normal Fermi liquid with a
singly peaked spectrum, the index e is deleted.
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The lowest excitation energy e» u(N) (which is the
F

energy of an electron at the Fermi level k~) is
equal to the chemical potential p, (N),

(2.11)~,.(N) = q(N),

(unless the valence band is exactly filled and the
conduction band empty with a finite gap between
them}. For a Fermi liquid, furthermore, the en-
ergy &u„(N) of an electron removed from the sys-
tem of N electrons can also be calculated from

(u»~(N) = 6EO(N~, N~)/6N», , (2 12}

under the condition (2.6) and for k near kz.
The calculations in Sec. III will show that all ex-

isting nonmagnetic solutions of the Hubbard model
do noi satisfy Eqs. (2.11) and (2.12) in the narrow-
band regime, demonstrating that the electrons of
the Hubbard model do not obey the Landau theory
of Fermi liquids. However, only the fully renor-
malized solution satisfies the thermodynamic- and
dynamic-stability condition. In the following, we
shall again limit our calculation to the case where
the lower band is partly or completely filled but the
upper band is empty. The case where the upper
band is partly filled may be treated in exactly the
same manner by reversing the roles of electrons
and holes.

ground-state energy Eo(N„Nu} —= E,(N) and the
chemical potential p. (N) can be calculated by in-
serting &o»&'J and A»tJ obtained above into Eqs. (2.1)
and (2.5). We then find that

p(N) =(1 —&n ,)e—»»+(1—»nu)nu(I —n, )
' e» o

—(» —n )N, Qe»f» (3.4)

he average energy of the occupied states defined
by

e =Q e»f» f». (3.6)

is negative and less than ek„, that is

6&0, E& EkF

By inserting Eq. (3.6) into Eq. (3.5), we find

(3.7)

where f», is shorthand for f(&u»'J) and e» is thekFa
band energy of an electron with spin o at the Fermi
level. Note here that the chemical potential g(N)
is not equal to the quasiparticle energy, +k'",F
= (1 —n ,)e», +—~~ ~, at the Fermi level thus violat-
ing Eq. (2.11). In the nonmagnetic case where n
=n- = 2n, the difference ~E,(N) between ~k"', andF
p, (N) is calculated to be

dE, (N)=-
2 2

e + ,'(3 —n)-e f, . (3.5)
n(3 —n)

III. EXAMINATION OF VARIOUS EXISTING
SOLUTIONS

n(3 —n)~,(N)=
2(2 )

(e —e» )&0 (3.8)

n-I~
2WG»o(~) = ~ —t»—

&u —(1 —n —,)I
(3.1)

The poles &u'»,' may be expanded in powers of e»/I
as follows:

v»», ' = (1 —n —,)e» —n —,(1 —n ,)(e'»/I)+ ~ ~ ~, —

&u»",' =I+nues»+ nu(1 —n ,)(e»/I) —'—
while the spectral weights A'~,' are given by

A'" =1 —n-+ A' ' =n-+ko o k4y o

(3.2)

(3.3}

As long as the lower band ~k'" is partly or com-
pletely filled but the upper band is empty, the

Let us now calculate the ground-state energy
E,(N„N-, ) and the chemical potential p(N) by using
the various approximate solutions available and
test whether these solutions are dynamically stable
via Eq. (2.10). We also examine whether these sol-
utions satisfy the thermodynamic- stability condi-
tion (2.8). Whenever feasible, the calculation has
been carried out correctly through terms linear in
e/I. Except for the Hubbard-I case, however, we
shall show only the leading terms in the following. "

A. Hubbard-I approximation5

The inverse Green's function is given by

+ (E —Ek ),n
2 —n

(3.9)

where e «k . When the lower band is nearly emp-
F

ty (n =0, k =0) or nearly filled (n =1}, 6e» /6Nu
vanishes, making the expression on the right-hand
side of Eq. (3.9) negative. Hence the Hubbard-I
solution is thermodynamically unstable in these
limits.

The foregoing results follow exactly from Eq.
(3.1) in the narrow-band limit (6 « I) and are ra-
ther surprising. The Hubbard-I solution, being
dynamically unstable, cannot be used for calculat-
ing thermodynamic properties of the Hubbard mod-
el. This solution is also thermodynamically un-

stable in the half-filled case, even though it is
most often applied for that case.

for all values of n(~1), proving that the inequality
(2.10) is never satisfied. Therefore, the Hubbard-
I solution is dynamically unstable for all occupa-
tions n.

By differentiating Eq. (3.4), the second derivative
can be calculated. In the nonmagnetic case (n
=n—,= —,'n), the result is reduced to

6 Eo(NO, N~) 4 —n 6e»»
2(2 „)
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B. Hubbard-III approximation

The inverse Green's function may be written as

n-(1 —n-, )I'Q, ((d )
~- (1 —n-, )I [a) —(1 —n-, )I]' —[~- (1 —n-, )I]Q,(u))

' (3.10)

Here Q, (ru) is the sum of the scattering correction
Q'((()} and the resonance broadening corrections
Q-,'((u) and Q —,"(ru),

Q, ((d) =Q,'((d) + Q-,'((d) + Q-,"((d),

where

(3.11)

C. The zeroth-order approximation to the selfwnergy
correction

Let us now consider the result contained in Eq.
(4.12) of Paper 1 (Ref. 3)

and Q,"((d}=-Q,'(I- (d), while F ((d) =2wG, ,'((d}+&, .
The last term on the right-hand side of Eq. (3.10)
is a new correction added to the Hubbard-I solution
given by Eq. (3.1). Since, in the narrow-band re-
gion, this additional term yields corrections only
of order a~2/I to the quasiparticle energy a),"&, the
total energy E,(N)/N and the chemical potential
g (N), respectively, it is not possible to remove
the instabilities of the solution found under the
Hubbard-I approximation, which enters to order
ck. Therefore the Hubbard-III approximation does
not give any improvement over the Hubbard-I solu-
tion in the narrow-band limit, although it exhibits
a metal-nonmetal transition not found in the Hub-
bard-I solution. As has been proved by Velicky
ef al. ,

"the coherent-potential approximation (CPA}
solution obtained by Soven'4 under the frozen-lat-
tice approximation is equivalent to the Hubbard-III
solution, and hence it is also unstable.

I

second term, and hence it will also be neglected in
the following, although we have calculated the con-
tributions explicitly. " The above result is obtained
by inserting the Hubbard-I solution into the basic
equation for the self-energy correction given by
Eq. (3.25) of Paper 1, and the last two terms in Eq.
(3.13) are additional correction terms obtained be-
yond the Hubbard-I approximation. Similar ex-
pressions have been obtained by E sterling and
Lange' and by Fedro and Wilson. '

In the absence of g, the quasiparticle energy co

is calculated from the cubic equation G '((()) =0 as
follows:

(1 —2n, ) 1

1 —n- N,

The corresponding spectral weights are given by

a~'& = i —g-+ a~'~ =n-+ ~ ~ ~ X&'~ =0ko o ko o ko ~

(3.16)

Inserting Eqs. (3.15) and (3.16) into Eq. (2.1) yields
the ground-state energy E,(N„N,) and hen—ce the
chemical potential p(N):

4 —s —n n(1+2n)
g(N)

(2 ) 2(2 )
eo (3 17)

The above results again show that g(N) is not
equal to the quasiparticle energy ek", =

&k + ~ ~ ~ at
the Fermi level, thus violating Eq. $2.11). In the
nonmagnetic case (n, =n , = 2n},—the difference
~0(N) between (d(~'&, and g(N) is calculated to be

(3 —2n)n~,(N)=-
(2 ), (e, —e, )

n-,I~
2vQ~~((()) = (() —e), —

&o - (1 —s-, )I

2n 1—+
(2 ). (2 e. + ") (3.18)

where

a

g(ko ) = n-(1 —n —,)a~ + (1 —2n )N,
' g e, n,

+2N, 'gg e, , „n, —,n, , (3.14)
al as

Since g(ko, a)) involving 5(N)/6e etc. , yields a cor-
rection of order e'/I, it will be neglected in the
following. The third term on the right-hand side
of Eq. (3.13) is similar to and smaller than the

Since ek &a~ and 6'p & 0 the above result appears
to suggest that zEp(N) is negative and that the
present solution is dynamically unstable. For n
& —,', however, terms which are generated from
the third term in Eq. (3.14}and which are denoted
by ~ ~ ~ in Eq. (3.18) are positive, and the sign of
AE0(N) cannot be determined until the values of
those omitted terms are evaluated explicitly. We
also find that the second derivatives are negative
in the limit of the nearly-half-filled case, making
the zeroth-order approximation solution thermo-
dynamically unstable.

The solutions obtained by E sterling and Lange'
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and by Fedro and Wilson' are similar to our zero-
th- order solution. Unfortunately, the two-particle
correlation functions involved in these solutions
make them difficult to use for the present calcula-
tion. By comparing the results with the expression
in Eqs. (3.13) and (3.14), however, we find that
terms corresponding to the second and third terms
in Eq. (3.14) have minus signs in the Fedro-Wilson
result, and therefore their result will correspond
to

~»a =e»
N ~ &»f»a''' ~

1 —n a a» (3.19)

In the nonmagnetic case (n, =n —,= &n), the differ-
ence between &o»'" and g(N)F

n n
2

——
(2 „)2 », ' 2(2 ) o

"
remains negative as long as the lower band is more
than half filled. Therefore the solution is dynam-
ically unstable for n, =n-, a —,'. The same conclusion
is also obtained for the Esterling-Lange result.

In summary, the approximate solutions discussed
in the present subsection are all equally unsatis-
factory.

D. Step-1 solution

Before testing the fully renormalized solution, it
is instructive to examine the step-1 solution, the
complete solution of the restricted equation for the
self-energy 5 obtained in Paper II.' As has been
discussed in Sec. IV of Paper III,' the step-1 solu-
tion cannot be applied to the cases where the lower
band is nearly or completely filled, since the poles
of the Green's function become complex, thus vio-
lating the basic requirement that G is analytic in
the complex co plane except for the discontinuity
along the real axis. Therefore, we have to omit
these cases in the following. The lower-band solu-
tion re~", can then be expanded unambiguously in

powers of ek/I. The result

)2
~, +(I —n —,)J „+O(e/I) (3.21)

0

is exact up through terms linear in e, where &k,
is obtained from Eq. (2.5a) of Paper Ill by remov-
ing bars over N, Ct, and Q. By differentiating the
total energy Eo(N, N ,), the che—mical potential
p, (N) can be expressed as follows:

» 0 a k

2n, 5n.'+ 4n', —
(3.22)

where P», is reduced to

P„=(1 —2n, )Q, g
"",+ 2e» . (3.23)

(C,'.,C„...) =(1--,'n)S.(o'), (3.24)

o estimate the magnitude of P», we assume that

&„& is nonzero only for nearest neighbors R and
R'. Then (Cat C&,) may be evaluated explicitly for
the one-dimensional case and the three-dimension-
al case with a spherical Fermi surface (SP) as fol-
lows:

vanishes and, as the filling n increases, S,(o') cal-
culated from Eq. (3.24) remains small compared
to unity. (This is true even when the lower band is
more than half filled and the Fermi surface no
longer resembles a sphere. ) Therefore terms in-
volving P» will dominate over other terms in the
expression for p(N). In the nonmagnetic case
(n, =n , =-,'n), th—e difference sE, (N) between &u&~'J

and p, (N) can be written as

n(4- n) I d, n(1- n)
4(2 —n) 'r 4 S(n, } (2 —n)' S(n )'

where

s.(o') =
(I /v) sinkrr, ,

(3.25)
(I/2w )](sinkrro —krr coskrr ),

+ (I n}e(-»2 —n)S(n, }d.

4n - Sn'+2n'
+ 1 — 81 ASn ). (3.26)

(for the one-dimensional and SP cases, respective-
ly, and r, = ~R -R'

~
is the nearest-neighbor separa-

tion, and $ is a lattice-dependent number equal to
or less than unity. ) If the lower band is nearly
empty (n =0), S (&r') being proportional to n nearly

If the lower band is significantly more than half
filled (n & —,'), ~» becomes positive and large, mak-

F
ing the relaxation energy ~E,(N) positive for three-
dimensional cases. If the lower band is less than
half filled (n s —,'), however e» becomes negative
making dE»(N) negative for all cases. Therefore,
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P(O)~n )

is,
$2P

a

(3.27)

(b)
n] np np

I

n )

A plot of P», defined by Eq. (3.23) and illustrated
in Fig. 1(b) shows that P„ is locally maximal at
g„minimal at g„and has a point of inflexion at

rr, & rr & rr, . The condition (3.27) is then satis-
fied only for n &n, . A term which corresponds to
P„does not exist in the Hubbard I nor the Hub-
bard III. In the zeroth-order approximate solution,
the term,

(c)
np

r

I

I

I

I

I

I
r

PIf~ = (1 —2gfy Na a a&
a

corresponds to P, .
(3.28)

FIG. 1. Plots of P&, P&~ and P~, as functions «
occupation n~ .

the Hubbard-type solution may be dynamically sta-
ble when the lower band is significantly more than
half filled (n&3), but, otherwise, it becomes un-

stable. Note that the previous results have all ex-
hibited dynamic instability when the lower band is
more than half filled.

Unfortunately, the step-1 solution breaks down'

when the lower band is nearly filled, which is, of
course, the most serious defect of that solution.
Furthermore, the thermodynamic- stability condi-
tions (2.8) are satisfied in a very narrow region of
occupation z. 'This can be demonstrated by evalu-
ating those stability conditions by using the most
dominant terms. These are the ones having the
highest derivatives of P with respect to N, ; that where

[n—,(1 —n~) + a] ea
F,((r)

(3.29)

E. The fully renormalized solution

We now want to calculate the ground-state energy
E,(N„N—,) and the chemical potential rr. (N) using the
fully renormalized Green's function given by Eq.
(2.4) of Paper III and suggest that this solution fin-
ally satisfies the dynamic- and thermodynamic-
stability conditions for all occupations n.

As we have discussed in Sec. IV of Paper III, the
energy co~" of an electron added to the system of
N electrons in the narrow-band region is given for
all occupations n by the completely renormalized
solution as

a = (1 —2n —,@,(o) —e, (rr)

F,(rJ) = 1 —2n —,—24, (g) —2[1 —n ,—n —,(1 ——2n—,) —2(1 —2rr —,) C, (a) + 24 (g) 2]P,/I + ~ ~ ~, (3.30)

and C', (o) =C, (Ra; &o) is the correction introduced to the equal-time Green's function (N (f)) by the effect
of 5(N)/&e and 5(C C)/5e. Similarly, contributions from fr(N)/5e and 5(CrC)/5e modify P, given by Eq.
(3.23) to the form given by Eq. (2.5a) of Paper III, that is,

Pr, ~
=g{[1 —2n~ —24o(o)] ebs (Cs~Cs —) + ' ' ' )D~ (3.31)

{3.32)

In order to simplify the following illustration, we have neglected terms which correspond to the third term
in Eq. (3.14) in the above expressions, although those terms are included in our original calculation. "

Since the aH„r are complex, the ground-state energy should be calculated from Eq. (2.3). In the narrow-
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band region where Im&u~»', & and Im4~(o') are negligibly small, however, the spectral weight A,"J(u) defined by

Eq. (2.4) may still be replaced by 5 function. The ground-state energy is then estimated by inserting

A~&',& =1 —n , -—4, (o) ~

and ek",' given by Eq. (3.29) into Eq. (2.1), yielding

~(&) (&)

w(x&=l(. + l".& l "Al"f '. t" l".—,—&l". &
"'f..)bN,

(3.33)

(3.34)

The 4's and the P's involved in the expressions
(3.29)-(3.34) have been evaluated in Eqs. (3.6),
(3.8), (3.15), and (3.16) of Paper III. The results
show that, when the lower band is only partly fil-
led, 4,(o') and P„,/I (or o&» /I) are proportional
to s[S~(o)]'I' and s(Z/I)[S~(o)]'I', respectively,
and remain small, but that, when the lower band is
nearly filled, their magnitudes increase rapidly
and become proportional to +[(I/s)S, (o)]' ' and

+[(~/I} S (o)]'I», respectively. Here S (o} defined

by Eq. (3.24) is calculated from

We find

[1 — n.- 4.-(o)] 6P,.
5No 5No

(e,+P,.)64.(o), 0
6No

(3.40)

for n =n —& 2
—)4 (o)~, because when the lower

band is more than half filled, the second term in-
volving 64, (o)/6N, becomes dominant over 6P/6N.
Inserting Eqs. (3.38b) and (3.40) into Eq. (3.34)
yields

S,(o) = N, ' g [1 —n, —4 (o) —P /(2I }~ ] y(N) & 0, , (3.41)

xffka (3.35}

As long as the lower band is only partly filled,
terms involving the P's are the most dominant
terms in the expression (2.1) for the ground-state
energy. Hence the ground-state energy is minimal
when both P, and p'k —, are negative. This can be
achieved if the condition (3.2a) of Paper III

4,(o) =4,(o); 4-{o)=4,(o) (3.36}

is assumed and if the upper signs are taken in Eqs.
(3.6) and (3.8) of III. If, instead, the condition
(3.2b) of III is assumed, we find a state having a.

total energy higher than the ground-state energy.
For the partly-filled-lower-band case with 5 = —,

'
—n» & (4 (o)( and (o&/I&&, the quantity S,(o}calcu-
lated from Eq. (3.35) is roughly equal to sinx with

x = v —kr(R -R ') and hence
4-.(o) =4.(o); 4-.(o) =4.(o), (3.43)

I»E, (N) = ~»'". —g(N) & 0, (3.42)

in the partly-filled-lower-band case. We also find

that the magnitude of dE, (N) is of order a.
Exactly the same analysis can be extended to the

evaluation of second derivatives, finding the
thermodynamic- stability conditions (2»8) satisfied. "

If the number N of electrons increases further
and 6 = —,

' —n, becomes comparable to
~
~/I~ and

(4,(o}(, the solution satisfying the condition (3.36)
no longer yields the ground state because, for 5

&4,(o), P» given by Eq. (3.37b) becomes positive.
In this region, 4 (o) and 4, (o) will deviate from
4, (o) and 4,(o), respectively, and, in the nearly-
half-filled limit, a solution satisfying the condition
(3.2b) of Paper III,

4, (o) =-C, (o) =» (wK sinx/x)'I',

P =-2S [xsinx/(sf')]'I',

which yield

(3.37a)

(3.3Vb)

yields the ground state having the lowest energy.
In the nearly-half-filled limit, the magnitude of

S,(o) is mostly determined by -4,(o) —P», /I in-
volved on the right-hand side of Eq. (3.35}, making

S,(o) of order I»/I. Under the condition (3.36),
furthermore,

64, (o) 64, (o}
5No 6No

(3.38a) S,(o) =-S,{o), (3.44}

6A»o

ONo
(3.38b)

&P»o 1) 0 o o 3n =n—)=. (3.39}

for n, =n~ & —,
' —(4, (o)). Although P», is minimal

when the lower band is nearly half filled (n, =n —,

=-,') and

A&'.& =I-n . 4.(o)+ "=-,'-~4.(o)), -- (3.45)

and, as n =n —, increases, the magnitudes of 5 (g)
and $ (g) increase as illustrated in Fig. 2. 4 (g)
calculated from Eq. (3.15) of III is then negative
and of order unity, while Pk—and ~k~ evaluated
from Eq. (3.16) of III are negative and P» «P», —

and 9»"-' « ~»"'. The spectral weight for an added
electron kg,
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S{n.-)

(2.8) are again satisfied.
In conclusion, the fully renormalized solution

satisfies the dynamic- and thermodynamic-stability
conditions for all occupations in the narrow-band
limit.

s{n ) IV. DISCUSSION

FIG. 2. Plots of S~(a) and S~ (g} as functions of occu-
pations n~ .

is appreciably smaller than —,', while the spectral
weight for the corresponding electron k with op-
posite spin g

A,"-,' = 1 — n, -@,( o) + = 2 + (@.(o)
~

(3.46)

is nearly equal to one. This leads to the conclusion
that, in the nearly-half-filled limit (n =n , =2), all-
states are occupied by single electrons with opti-
mum energy e~& with A~"—' =1, and whenever an
electron k with spin o = ) or 4 is added, the elec-
tron feels as if the state k is occupied by another
electron with opposite spin 0 and the added electron
with A,",' «1 has difficulty finding an unoccupied
state in the lower band, making its energy co„"' ap-
preciably higher than that of the corresponding
electron k with opposite spin o. Because the de-
rivative of S (o) introduces the factor,

[S.(o)] '[6S.(o)/6N. ], (3.47)

of order I/b„, derivatives of the 4 's and the P's
can be accurately estimated giving

6A~~' /6N, &0,

5a&~&~ /6N, & 0 .
(3.48)

Since A,"—' »A~,' for all k," the chemical potential
p, (N) evaluated from Eq. (3.34) is determined by the
two quantities in Eq. (3.48), yielding

p(N) & 0, (3.49)

(3.50)gE', (N) = ~,'&, —~{N)&0.

We further find from Eq. (3.47) that zE, (N) is of
order I.

By increasing the filling z, =z—from zero to —,',
the state satisfying the condition (3.36) will gradu-
ally change to the state satisfying the condition
(3.43), but an explicit calculation of such a gradual
transition is difficult. In Ref. 17, instead, we have
assumed Eq. (3.36) for 0 & n, & n, and E q. (3.43) for
np & n, & —, and show the dynamic stability for all
pg„where ~ is a number smaller than but nearly
equal to —,'. Second derivatives can also be esti-
mated in exactly the same manner, leading to the
result that thermodynamic-stability conditions

E,(N+1) =E,(N)+~, .—~,(N).
F

Consequently, the lowest energy of an electron
added to the system of N electrons is not equal to
the chemical potential g(N)

(4.1)

p(N) =Ep(N+ 1) —Ep(N)

=~„.—~E,(N) ~~. ..F F

and, instead, a. gap equal to aE, (N) (&0) appears.
According to our estimate, the value of the gap

LEO(N) calculated from the fully renormalized sol-
ution is indeed positive for all occupations, (and of
order & for the partly-filled-lower-band case and
of order I for the nearly-filled-band case provided
I is finite), illustrating that the system of N+1

(4.2)

The results obtained in Sec. III may be summar-
ized as follows. The Green's functions used have
been obtained under various approximations. For
each approximate Green's function the poles are,
in principle, calculated correctly through terms
linear in q~ and hence are exact in the narrow-band
limit (a/1-0) within the approximation used to ob-
tain each Green's function. The ground-state ener-
gy, the chemical potential, and the stability condi-
tions, calculated by using a rigorous formalism,
are therefore "exact" consequences of the approxi-
mate Green's function and reflect the nature of the
approximate Green's function precisely in this lim-
it. The power series expansions in g/I used in
evaluating these quantities will not modify the con-
clusions of Sec. III.

All results following from all approximate
Green's functions, including Hubbard I and the fully
renormalized solution, clearly suggest that as long
as 5 is finite, electrons in the Hubbard model do
not behave like quasielectrons in the Landau theory
of Fermi liquids, and the "quasielectron" energy
co~ calculated from the poles of the Green's func-
tion cannot be reproduced from the derivative of
the ground-state energy with respect to the occupa-
tion of that electron, 5E,(N)/5n~ . This failure of
the Landau theory is due to the fact that, when an
electron is added to the system of N electrons, the
whole system relaxes and the ground-state energy
Ep(N + 1 ) of N + 1 electrons is not given by the sum
of the ground-state energy Ep(N) of N electrons and
the quasiparticle energy co of the added electron in
the split-band limit. Instead, a relaxation energy
aEO(N) appears between the two, yielding Eq. (1.1);
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electrons obtained by adding an electron is stable.
Although this calculation involves approximations
beyond simple expansions in powers of r»/I and
hence the result is no longer exact, the conclusions
will remain valid, demonstrating the existence of
a solution with the Hubbard-type tmo-peak struc-
ture. Our calculations also show tha, t only the fully
renormalized solution satisfies dynamic stability.
AII other solutions yield negative values for d.E,(N)
for some occupations p, demonstrating their dyna-
mic instability. Those previous solutions also
yield thermodynamic instability for some occupa-
tions z, while the fully renormalized solution sat-
isfies the thermodynamic-stability conditions for
all occupations yg. The reason for the appearances
of those instabilities is obvious. Electron correla-
tions are included insufficiently in all previous sol-
utions, while sufficient correlations are included
in our fully renormalized solution. This also sug-
gests that thermodynamic properties of the Hub-
bard model cannot be ca.lculated correctly unless
the fully renormalized solution is used, at least in
the narrow-band limit. We further note that, since
the fully renormalized solution (and also the step-1
solution in Sec. III D) is exact up through terms in

ek, our conclusions may be regarded as "rigorous"
consequences of the Hubbard model when the lower
band is half filled (n, =n —,=-,'}and the renormaliza-
tion factors 4 involved in Pk are not dominant.

In Sec. IIIE, we have demonstrated that the na. -
ture of the solution in the region where the lower
band is nearly or completely filled is quite differ-
ent from that in the low-density region where the
lower band is only partly filled. Here we sha. ll
show that these tmo types of solutions are already
apparent a,mong the previous solutions and allow us
to classify them into two groups. The Hubbard-I
and -III solutions belong to group I, where the
leading term in the quasielectron energy ~k",) has
the form

(u&'& =(1 —n—}e + ~ (4.3)

explicitly suggesting that the space occupied by
electrons with opposite spin g is not available for
the motion of electrons with spin g. This interpre-
tation is supported by the fact that the Hubbard-IG
solution is equivalent to the CPA solution under the
frozen-lattice approximation. " The solutions
given by Eqs. (3.13), (3.19), and (3.21) belong to
group II. The first one is the zeroth-order approx-
imate solution discussed in Sec. IIC, the second
one is obtained by E sterling and I ange, and also
by Fedro and Wilson, and the third one (step-1
solution} is the complete solution of the restricted
equation discussed in Sec. III 0, in which renor-
malization factors 4 are not included. 'The first
two are expanded as

(d(1) —~ + ~ ~ ~
ka k

while the last one as

(4 4)

(4.5)

PA»'.'f». e ' /N .-=1-(N.) =-I —n. -4-.(o),
k

(4.6)

at the site R at this time is nearly equal to unity,
while the probability for the first electron o to hop
into the site g

gA&J f», e ' /N, =I -(N;) =I —n —,—4,(a)

(4. I )

is nearly zero. This suggests that, in the nearly-

Here electrons appear to hop through the lattice
without the volume exclusion observed in the
group-I solutions. The magnitude of the "kinetic"
energy in Eq. (4.5) is, in fact, greater than that of
the free-particle energy qk to compensate for re-
striction that, because of the small spectral meight
&k(',) =1 —z—,& 1, only a portion of each state is
available for occupation by electrons in the lower
band, thus increasing the total energy.

The fully renormalized solution exhibits the
above two distinct properties. When the lower band
is only partly filled, the volume exclusion will not
appear since, just before an electron with spin cr

tries to hop into an occupied site, the second elec-
tron o can easily find an unoccupied site to move
in and to avoid the large repulsive interaction I.
Consequently, the probability for an electron p to
hop into a site may not be determined solely by the
fact that, until a moment before the intended move,
the site was occupied by another electron 0, and
hence the spectral weight A'k" for the first electron
0 is by no means a "conjugate" of Ak(~) for the sec-
ond electron o. Instead, the motion of electron
kcr cannot be distinguished from that of electron
ko, thus yielding A",J =A,"—,', that is, 4;(v}=4,(o) and
4&-, (o) =C,(o) and satisfying the condition (3.36).
Our solution given by Eq. (3.29) can indeed be re-
duced to the form of the step-1 solution given by
Eq. (3.21) except that P», is replaced by P», given
by Eq. (3.31). Hence, it can be expanded as shown
in Eq. (4.5) but not in the form given by Eq. (4.3).

When the lower band is nearly filled, however,
almost all sites are occupied and it is difficult for
a second electron g to find an unoccupied neighbor-
ing site to hop in, thus introducing a volume ex-
clusion in this region. For example, if a site is
occupied by a second electron o, the first electron
0 cannot hop into the site, because the probability
of finding the second electron o,
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filled-lower-band case, condition (3.43) is satisfied
and 4, (o) =4, (o) and 4-, (o) =C,(g). In this region,
our solution given by Eq. (3.29) can indeed be ex-
panded in the form given by Eq. (4.3) but not in the
form shown in Eq. (4.5) because of F,(&r) given by
E q. (3.30). The foregoing discussion demonstrates
the ability of the fully renormalized solution to ex-
hibit the two types of properties. 'The above re-
sults, Eqs. (4.6) and (4. 'I), also show that, even
though the lower band is not completely filled, an
electron g with a fixed momentum k will have dif-
ficulty finding vacant sites to hop through in the
lower band in the atomic limit.

None of the previous solutions includes the fluc-
tuations described by the 4 's explicitly, thus fail-
ing to satisfy the stability conditions in the nearly-
filled-lower-band limit. In the partly filled case,
we have shown that the most important quantity is
p~, . This quantity is not included in Hubbard I nor
III, thus making those solutions unstable for all oc-
cupations n. In the zeroth-order approximate sol-
ution discussed in Sec. III C, the corresponding
quantity P~~o has the form given by Eq. (3.26) and
illustrated in Fig. 1(a), making this solution un-

stable when the lower band is more than half filled.
In the absence of a renormalization, furthermore,
the magnitude of p» ' is too small to maintain the
stability even in the lower-density region. In the

solutions obtained by Esterling and Lange and by
Fedro and Wilson, the sign of p,',' is reversed, in-
troducing more confusions but yielding equally un-

satisfactory results. In the step-1 solution, renor-
malizations are overestimated in p~ introducing

the divergence in the perturbation expansion and
instability of the solution in a large region of the
occupations yg.

It is also possible to explain why previous solu-
tions exhibit either the properties in the partly
filled case or the properties in the nearly filled
case but none of them exhibits both of these prop-
erties. In Hubbard I and III, collisions between
two electrons with opposite spins 0 and g are re-
placed by an average field by decoupling them.
Hence sites occupied by electrons with opposite
spin 0 are permanently excluded, yielding the
group-I solutions. In the group-II solutions, on the
other hand, the collision terms, ((C~,C~~~C„.—,;
Ct, ,)) etc. , are calculated without including the
strong repulsive interaction I, thus the volume ex-
clusion involved in the nearly-filled-lower-band
limit is completely neglected.

In the pathological limit I=~, the inequality

~
~/I(& 2 —n, =5 can never be satisfied and the sol-

ution given by Eqs. (3.14)-(3.16) of Paper III never
appear. Instead, we find that the self-consistent
solution satisfying Eqs. (2.15)-(2.22) of III is 4, (p)
= -4, (cr) = 2, yielding P~, (tu)= 0 and A»",' = 1 or 0.
The gap aE (&) then vanishes in agreement with
Brinkman and Rice's calculation. "' We shall dis-
cuss the relaxation mechanism yielding the energy
gap and consequences of the energy gap in the fol-
lowing paper (Ref. 11).
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