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The functional-derivative method of calculating the Green's function developed earlier for the Hubbard
model is generalized and used to obtain a fully renormalized solution. Higher-order functional derivatives

operating on the basic Green's functions, G and I, are all evaluated explicitly, thus making the solution

applicable to the narrow-band region as well as the wide-band region. Correction terms 4 generated from

functional derivatives of equal-time Green's functions of the type 0" (N)IS&", etc., with n ) 2. It is

found that the 4's are, in fact, renormalization factors involved in the self-energy X and that the structure

of the 4's resembles that of X and contains the same renormalization factors 4. The renormalization factors
4 are shown to satisfy a set of equations and can be evaluated self-consistently. In the presence of the 4's,
all difficulties found in the previous results (papers I and II) are removed, and the energy spectrum eo can
now be evaluated for all occupations n. The Schwinger relation is the only basic relation used in generating
this fully self-consistent Green's function, and the Baym-Kadanoff continuity condition is automatically
satisfied.

I. INTRODUCTION

For example,

((c (f)c,'.-(f)c, -.(f}c',.(I')))
. 6((c (f)c~,,(& )))

6q(RR' a't )

+ (c' (f)c, .-(f)) ((C„(&}c',,(& )&), (1.2)

where C~, is the distribution operator of an elec-
tron with spin cr at site R and cr denotes a spin op-
posite to o. Since an infinite hierarchy of equa-
tions is replaced by the functional derivatives
6G/6q and 6I'/6e, and only two basic Green's
functions G and I enter the two equations, the
problem can, in principle, be solved. The basic
difficulty associated with the equation-of-motion
method is thus formally eliminated.

In the first two papers in this series, I' and II',
we have developed a functional-derivative method
of solving equations of motion for basic Green's
functions and applied it to obtain a nonmagnetic
solution of the Hubbard model. ' The method is
neither a perturbation method in the conventional
sense nor a decoupling approach as used in the
equation-of-motion method. 4 By using an exact
relation found by Schwinger, ' higher-order Green's
functions 1 ', which appear in the equations of
motion for the basic Green's functions G and I',
are all transformed to functional derivatives of
G and I' with respect to an external field 5q

In fact, we have obtained an exact expression
for the self-energy ~ in Paper I and evaluated it
under the following two restrictions in Paper II.
First, the equal-time Green's functions, (N~(t))
= (C~,(t)cs,(f)) and (Cts, (&)C~,,(t)) defined by Eq.
(2.11) of Paper I, are assumed to be independent
of the external field 6e, that is, 6(N)/6e
=6(C C)/5e =0, and, second, acorrection term li(6)
involving higher-order derivatives is neglected;
otherwise, this solution is exact for any values of
the hopping matrix elements q», and the interac-
tion energy I. Here b, is the bandwidth. This so-
lution will be referred to as the step-1 solution.
The step-1 solution was improved in Sec. V of
Paper II by adding contributions 4 from 6(N)/6q
and 6(C'C)/6q as perturbations. From the calcu-
lation in Secs. II and III, it will be found that contribu-
tions from 6(N)/6&, 6(ctc)/6e, and II(4) are all of
order a'/I under expansions in powers of (e/I ), and
even that part of the step-1 solution linear in p

obtained in Paper I is exact in that order, a result
never attained before.

Nevertheless, serious defects still remain in
those solutions. First, since the term II(n) of or-
der A'/I is neglected, the result cannot be extended
to the wide-band region and hence the metal-non-
metal transition cannot be studied. Second, the
calculation of the correction terms P developed
in Sec. V of Paper II is incomplete, overestimat-
ing the value of P greatly. Moreover, the correc-
tion terms (t) are introduced to prevent functions
called p, K, and I- appearing in the step-1 solution
[see Eqs. (4.16) and (5.2) of Paper II] from di-
verging in the limit of low electron (or hole) con-
centration, but possible corrections to other
equal-time Green's function involved are not fully
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included. In fact, the parameters x and y involved
in $ are calculated under the restriction that
5(N)/5g = 5(C~C)/5q = 0 [see the paragraph involv-

ing Eq. (5.10) of Paper II]. The result given by
Eq. (5.12}of Paper II is then inconsistent, and the
value of $ so obtained becomes infinitely large in

the nearly empty limit because of this inconsis-
tency. Third, poles of the Green's function given

by the step-1 solution become complex in the limit
where the lower band is nearly or exactly filled.
This is in contradiction to the basic mathematical
requirement' that, except for the discontinuity
along the real axis, the Green's function must be
analytic in the complex (d plane. Hence proper-
ties of the Hubbard model cannot be properly
evaluated by the use of the step-1 solution in the
limit where the lower band is nearly or exactly
filled, even though this is one of the most interest-
ing cases in the Hubbard model.

Contributions from higher- order functional
derivatives operating on the basic Green's func-
tions G and I' can be included easily. Contribu-
tions 4 from functional derivatives of all equal-
time Green's functions, which include those en-
tering the coefficients x and y in the resulting
correction terms 4, can be calculated in exactly
the same manner as the original 4's themselves
are calculated. The divergences of p, K, and L
in the results of Sec. V of Paper II are thus eli-
minated, and the Green's function so obtained is a
renormalized one. Because of the inconsistency
discussed in the preceding paragraph and in par-
ticular, because of the divergence of the correc-
tion terms P, however, it is not fully renormal-
ized. A Green's function which is fully renor-
malized is introduced in Sec. II of this paper; it
is obtained by including the contributions from
5(N)/5q and 5(C'C}/5q everywhere, neglecting
only higher-order derivatives F (N)/5&", etc. ,

with n~ 2.
In Sec. II, we construct the fully renormalized

Green's function which is valid both in the nar-
row-band region and wide-band regions. The
analysis developed in Sec. III will suggest that the

correction terms 4 involved in the self-energy
Z are, in fact, renormalization factors. The 4's
are generated from equal-time Green's functions
in a manner analogous to the way Z is contructed,
and involve renorrnalization factors which are
closely related to the original 4's. Therefore,
the 4's can be evaluated self-consistently, eli-
minating all divergencies found in the step-1 so-
lution. As far as we are aware of, this is the
first time that such renormalization factors are
found based solely on first principles. ' Since the
Schwinger relation (1.1) or (1.2} is the only basic
relation used in generating the fully renormalized

II. FULLY RENORMALIZED GREEN'S FUNCTION

The exact expression for the self-energy Z found
in Eq. (3.21) of I may be rewritten as"

.,(tt') Q(x,(Bt)B,(Bt)l]=--
x dt, g I[5(Rot)]"[5(Rot}+5(Rot)]

4p Ry

x G„s„{tt,}tGg'~„,,{t,t'),

(2.1)

where

solution and the functional derivatives are all
evaluated self-consistently, particle number, mo-
mentum, and energy are conserved in the manner
discussed by Baym and Kadanoff, ' ensuring the
significance of the renormalization factors found

here. Any other method, which is by its definition
not completely based on the Schwinger relation,
does not necessarily satisfy this relation nor the
conservation laws. Hence, it is necessary to ad-
just approximations in such a way that these laws
are properly obeyed. In Sec. IV, we evaluate the
energy spectrum of an electron in the narrow-band
region and show that the fully renormalized
Green's function, having finite correction terms
4, is indeed analytic everywhere except for the
discontinuity along the real axis, and that pro-
perties of the Hubbard model can now be calcu-
lated for all occupations n without introducing
basic difficulties. For simplicity, however, we
shall treat only a less than singly occupied atomic
orbital or an exactly singly occupied orbital in the
narrow-band region so that the lower band is
partly or completely filled but the upper band
remains empty. The case where the upper band
is partly filled may be treated in exactly the same
manner by reversing the roles of electrons and
holes.

In the following paper, Ref. 9, we shall cal-
culate the ground-state energy, the chemical
potential, and the dynamic and thermodynamic
stability conditions in the narrow-band region
using the various approximate Green's functions
available. We find that all previous solutions fail
to satisfy these stability conditions for some oc-
cupations n while the fully renormalized solution
does satisfy them for all occupations n. Our re-
sults also suggest that the Landau theory of Fermi
liquids" does not apply to the Hubbard model and

that a gap appears between the chemical potential
and the excitation spectrum. The consequences
will be analyzed in detail (Ref. 11).
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c(R t)—= [X-,(Rt)] B (R,-!) I c{RR ct) "t
c „—', .} (2.2a)

C(R t)—= P~{Rt) Z (RcR' t)c{( tct)",. — *, )
—c(R Rt"l(( —tl '

ll (R'R ) 'll (R "R )

I =Is/sf,

X.-(RI) = [I) —(1 —&N„-. &) I] ',
F,(RI) = [&N,.-&(~ —I)-'+ (1 &F7,.&)~ -']

8;(Rt) = &N~&(1 —(N„;))+I ' Q [e(RR "crt)(C~~ C„.,;& —&(R-"Ref)&Cs„;Vs«&J,
R" WR

and &Ns, & is defined later in Eq. (2.14).
The fully renormalized Green's function is then calculated as follows:

2',.'((o) = «0 —8.({d)e« &N„.—&I{d[(0—-(1—(N;.)}I] P„({d)——8.((u)If.({d)e«[ar —(1 —(N,.-))I K.(td)) '-
—BNs;&(I —(Ns-, &)I'8 ((oR)» «+ L «,({d)»«[{d—(1 —(Ns;))I])

x [(d (1 (N, ))I](D,') '[(d (1 (N,-))I —I7,(&u)] ',

(2.2b}

(2.3a)

(2.3b)

(2.3c}

(2.3d)

(2.4)

where

P«,((t)) =g[(1 —2&Ns, &}ass,&C)«;CR,,-&+ 2ezs, (Cst,,Cz,&&Cst,Cs,,-&e '"" -R'](Dsz,,) ',
R'

If,((t)}=+[(&Ns,-& —&Ns, &)(D~s),) '+(1 —, &N„,) —&Ns,-&) (Dss),) ') ,eR&C~-,C s&,
R'

(2.5a)

(2.5b)

L„((o)=Q [(D,",,.) '+(D~,',.) ')&s,. (C„'-,C,.)(C,'.C,,&e- "'
R'

(2.5c)

8.(~) = [ I+(X. /)IZ„.) (2.5d)

D„,.=(-,' &N,.&)' (-.' (N,.&)'+ &C,'.C„,.&(C,',.C,.&, (2.6a)

D,','.=(I-g,-i«.-)(I —i«-.)(&R) '(g.-) ' —(R —&FTRR&)'+ &C~,C,.&&CR;C,.&+(I-gR)(&;) '(g-.) '(R —(N,.)}, (2.6b)

D,'= [~- (I —&Fr,.—&}I]'—&F7,.-&(I —&FT ))I', -

i«-, = ((t) —I/2)[(t) —(1 —(N„;))I] ',
g, = [1—(X-.)'&N -)(I —&F7„-&)]-'.

(2.6c)

(2.7a)

(2.7b)

The above result is obtained in the following
three steps.

Stej 1. If we neglect terms with n~ 1, which
involve higher-order derivatives on the right-
hand side of Eq. (2.1) and which is denoted by
II(n) in Papers I and II, and if we assume that
equal-time Green's functions &N„,(t)& and
&C~~(t)CR,,(t)& are independent of the external
field 5«(that is, 5&N)/5& = 5&CC&/5« = 0}, Eq.
(2.1) can be solved exactly by a power-expansion
method developed in Paper 1I. The result (G'")«',({t))
expressed by Eq. (4.15) of II may be found in Eqs.

(2.4)-(2.7) by removing bars over all letters and

by setting 8,((d) equal to unity. Here &N & =Rn,

and &Cs',Cs,,& are the values of equal-time Green's
functions &Ns, (t)& and &Cs~,(t}C„.,(t)& in the limit of
a vanishing external field.

The step-1 result 6'" contains a number of dif-
ficulties. First, the terms with yg~ 1, which are
neglected in the step-1 calculation, yield correc-
tions of order n, '/I and hence the result G'" is
limited to the narrow-band region even though,
after the neglect of those higher-order terms with
n ~ 1, the basic equation is solved by a nonpertur-
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bative method and all approximations included
thereafter are equally valid in the wide- and nar-
row-band regions.

Second, in the nonmagnetic case (n, =)2;) the de-
nominator D»,, of P~ becomes equal to (C~iCs,,)2,

making the value of P~ abnormally large. This
difficulty appears because {Csi,C„.,), which is given

by

&(0 &(a) I (- (0+ (a)+X

~ ((~(a)+ X ~()))2

+ 4 x[(d ~(' —(1 —n-, )I]}'"}, (2.11)

where X is a parameter of order q~. As long as
~())(')~» ~(d(~ ~, the above expression can be ex-
panded in the form shown in Eq. (2.9). In the
nearly-half-filled case, however,

{C( C ) gg(i)f (~(i))&-(2())-)2') (2 9) (2.12)

(1 2

n
(2.9)

is exact up through terms linear in q.
In a nearly-half-filled case (n, = n;= 2), the value

of the second-lowest solution g,"'

(()"'= [(1—n;} —[n,-(1 —n-,}]'i'}I+ ~ ~ ~, (2.10)

becomes small and comparable to g~. There-
fore, it is necessary to solve a "quadratic" equa-
tion obtained from Eq. (2.4) by neglecting K, and
L ~ of order q'.

The results are then

vanishes in the limit of a nearly empty band

(n, =n,=0) rega-rdless of the bandwidth 6, making
the value of P~ infinitely large in this limit. Here
A~' is the spectral weight of the ith solution &~'
of G~(&o) and f(&o) the Fermi function. " (Ciz,Cs,,)
also vanishes in the narrow-band limit (4 =0} of a
nearly-half-filled case (n, =n-, = 2), although P~
remains finite (and negative) because of the factor
(1 —2n, ) which also vanishes. Since, in the limit
of the half-filled case (n, =n-, = 2), K+L,a, becomes
equal to P~ and, even in other cases, shares es-
sentially the same functional form, it also exhibits
the difficulties just described. That is, K+J,&,
also becomes infinitely large in the nearly empty
limit and, although it remains finite, the value is
too large in the nearly-half-filled limit.

The third and the most serious difficulty is that
the excitation spectrum (d calculated from (G'") '
= 0 becomes complex in the nearly-half-filled case,
making G'" nonanalytic and unphysical as is ela-
borated in the following. If we regard P,((d),
K,(~), and L~((d) to be constants independent of
(d, the eigenvalue equation (G'") )(&o) = 0 is an equa-
tion of fifth degree in (d. We then find that, unless
P„and K, are abnormally large (of order I) and
unless n, =n-, = &, the lower-band solution &~ be-
ing proportional to 4 is isolated from all other
poles or~', i =2, 3, . . . , 5, involving the large
parameter I. The lower-band solution &~ can
then be expanded unambiguously in powers of z,/I
The result

where (aG} ' is a portion of the result G ', which
is proportional to q», + 52(RR'at). The result
(G(2))~(&g) is again expressed in the form (2.4) ex-
cept that bars over letters are all removed in

Eqs. (2.4}-(2.'7}. However, 8,((d} is now given by
Eq. (2.5d); that is,

(2.5d')

and the result can be applied to the wide-band re-
gion although it still exhibits the second and third
difficulties discussed in step 1.

SteP 3. Finally, the contributions 4 from equal-
time Green's functions can be included in a fully
self-consistent manner by repeated applications of
the basic method developed in Sec. V of Paper II
to all equal-time Green's functions, which enter
G'" including those involved in the resulting 4's.
The result is then given by Eqs. (2.4}-(2.7},
where

{Ãs, ,) = n, , + C,(Ro', (o), (2.14a)

{Cs(,ts, , ) = {Cis,.C„., )+ @),(RR '(r', (d}, (2 14b)

and the 4's are correction terms similar to

and hence the expansion (2.9) becomes invalid. If

q, & 0, in particular, the quantity f ~ }on the
right-hand side of Eq. (2.11) becomes negative
making &~ and &~o' a paired complex. This is a
serious defect in the present approximation be-
cause the Green's function should be a well-be-
haved function except along the real axis and should
not have complex poles. '" Therefore, the nearly-
or completely-half-filled case cannot be treated
under the present approximation, even though this
is the most interesting case in the Hubbard model.

Step Z. The contributions from higher-order
derivatives involved in Z can now be evaluated by
inserting the results G'" and '7'" obtained in step
1. Under the present approximation, only the term
n = 1 involving second derivatives contributes,
yielding

(2.13a)
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rtrRR, (R,R3; ur) introduced by Eq. (5.15) of II, and
can be obtained by inserting the following changes
in Eqs. (5.15}, (5.16), and (5.6) of II: (i) DBR...(t')
in Eq. (5.6) of Paper II is replaced by &NR, ,& or
&CR, , CR, &. (ii) AII equal-time Green's functions
denoted by n, and &CRt, CR,,& in Eq. (5.16) of II are
replaced by the expressions on the right-hand
sides of Eqs. (2.14a) and (2.14b).

The correction terms 4 are now included every-
where in the Green's function G in a fully self-con-
sistent manner. If, in fact, G given by Eq. (2.4)
is inserted into the right-hand side of the self-
energy expression (2.1}, we obtain I', which is
exactly the same as the original Z found in Eq.
(2.4) except for terms involving second derivatives
of equal-time Green's functions,

5'(N„,(t)&/[5q (RR 'a t) 5q(R "R"a't) ],
etc. Since the second derivatives are three-par-
ticle correlation functions and independent of the

e,(R o; (u) = X,-&NR. & p ~a+ yRr", + ~ ~, (2.15a)

(2.15b)

e.(RR a', ~)=~,—,&C~. C,.&e.(R~f;~)+ ",
(2.15c)

where

current density and the time derivative of the total
angular momentum, the conservation laws of num-
ber, momentum, and energy are indeed satisfied
by the fully renormalized solution (2.4) in the
presence of the external field 5q, proving our
assertion in Sec. I.

We now want to calculate the correction terms
C correctly through terms linear in p. Since the
expression for 4 is already linear in p, it is suf-
ficient to calculate 5&N&/5q through terms of or-
der e'. Use of the results found in Eqs. (Bl)-(B4}

[(dR'R .+ &.-dR'R .) [~RR,&R,R.(~)]+ (d R'R,.—&-. dR'R,.) [eR,R4R,.(~)]] (DRR,.dd) ',
1

(2.16a)

WR". = Q [2l!dR'R, .~RR, &CR.-CR, ;&&,(~)](DRR,.da)
'

*

Rz

da = 1 —A, X-,&N~&&NR;&.

d,",'„=(-,' —~/I)( .' —&N„.-&)+(-.'-—&N„&)' (c'„c„,&&c',,c„&,

and $, t), and g are the Fourier transforms of [G(tt, )G(t, t)G(tt, )];
-iB

&,(Z„)= dte'3"" "'G,(tt, )G (t,t)G,(tt, ),
0

t'-iB

7RR
~Jg

-iB

pR R,(Z„)= dt e'3"' ' "'GRR, (tt, )GR, R-,(t,t)G„R;(tt, ) .

(2.16b)

(2.17a)

(2.17b)

(2.17c)

(2.18a)

(2.18b)

(2.18c)

These values, calculated at discrete points Z„= ( rrv/i p)+ p with odd integers v, can be analytically con-
tinued" to all &o. For instance, 3iRR, (&u} becomes

darl d~3 d~3 +RRrr(~1) RRrr(~3)ARRrrr(+3) (2.19)

where

f((o,)[l —f((o,))f((o,) [I —f(~,)]f(&,)[I —f(~3)]
f (lO& —973+ (d3) 1 —f (Q7& —(d3+ (d3}

(2.20)

The Fourier transforms of Z eR R(RR,(~), etc. , are then reduced to the form

Q q3&~((o) = (2vN, )
' QtB'"((o3)f((o3)+B'"(&u3}[1-f(rd3)]]/(ar —rd3), (2.21)
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where

52i2 Q i3

(2.22)

III. CALCULATION OF THE RENORMALIZATION
FACTORS 4

4;(Ra; a!)= 4,(R 'o", u)),

4 ,(Ra-, a!-) = 4,(R 'o-, o!)
t', 3.2a)

D, = (C~!,Cs,,) + 2 5 [4 (Ro", a!)—4,(R(r, a!)]
—4,(Ra; a!)2+ 4,(Ra; a!)', (3.1)

where 5= &
—n, = ~ —n,. Since (C~C„,,) is -smaller

than the 4's entering on the right-hand side of Fq.
(3.1), the value of the denominator D, of the 4's
is determined by the original 4''s, suggesting that
the 4's are in fact the renormalization factors. It
is essential to evaluate the 4's given by Eq.
(2.15}-(2.18}self-consistently.

There are two sets of 4's: 4,(Ra', &o)'s entering
G~(co) for an electron k with spin a and 4 ,(Ra', a!}'s-
entering G~(a!) for electron k with opposite spin o.
If the number N of electrons is appreciably smaller
than the number N, of atoms (that is, N«N, ) and
the lower band is only partly filled, we may as-
sume that an electron A with opposite spin e be-
haves in exactly the same manner as the corre-
sponding electron k with spin a, making G~{a!)
equal to G~(&o); that is,

In Sec. II, we have shown that, in the absence of
the correction terms 4, the quantities P, K, and
I- become abnormally large both in the nearly
empty limit and in the nearly-half-filled limit, and
also the solution ~ becomes unphysical in the
nearly-half-filled case. We now demonstrate that
those two difficulties can be removed by the in-
clusion of the 4's and that the 4's can be regarded
as renormalization factors. For simplicity, we
shall limit our calculation to the narrow-band
region.

Let us first note that the structure of the 4's
given by Eqs. (2.15)-(2.18) resembles the struc-
ture of P defined by Eq. (2.5). P is generated in

the course of constructing the Green's function and
represents a static interaction energy with all
electrons of opposite spin cr, while the 4's result
from repeated operations of functional derivatives
on the equal-time Green's functions and represents
fluctuations in the densities of electrons at atomic
sites, which are introduced by the creation or de-
struction of electron-hole pairs with opposite
spin. Both P, and the 4's have a. common denomi-
nator D, given by Eq. (2.6a)

4'~(Ra ;&u) = 4,(R'a; (o),

4,-(Re; a!)= 4,(Ra; a!)
(3.2b)

for all R. Two electrons with opposite spin wil. l
then travel in time-dependent induced fields
created from the common (Ns, (t)) and (Ns,-(t)).
If an electron with spin 0 is at site R, the induced
field around a second electron with spin a will be
modified in such a way that the second electron 0
is energetically prevented from entering the same
site at the same time.

The following calculations will show that, al-
though the two types of solutions just described in

Eq. (3.2) are possible for all occupations n, = n-„
the solution satisfying condition (3.2a) is found to
yield the ground state in the partly-filled-lower-
band case (N«N, }, while the solution satisfying
condition (3.2b) yields the ground state in the
nearly-filled-lower-band case (N cN, )

The magnitude of pq, q~(u!), Ze, )~(a!}, and

$,(a!) may be estimated by replacing "R'( )a!in-
volved on the right-hand side of Eq. (2.21) by
average values B,',". We then find that

Q e,q~(a!) = -[n,(-,' —n-.)+ s.-(-,' —n, )]
&& (1 —n, )c S,(o)ff((„|),

Q &y0aa(~) = —[(z —n,}{2—n;)+ n, n;]

&& (1 —n, )&S,(a)E(a!},
(,(a!)= n-, (-,' —n.-)(I —n.)fC{~),

where

(3.4)

(3.5)

for the majority of sites R and R'(wR). If the num-
ber N of electrons is comparable to the number

K, of atoms, however, the number of empty sites
8 into which an added electron can hop becomes
small introducing strong correlations between two
electrons with opposite spins. We then recognize
that the equal-time Green's function (N~, (f)) en
tering G~(a!) must be the same as (Ns, (f)) ent,er-
ing G~((u) and
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and R ' is a nearest neighbor of R.
The magnitudes of the renormalization factors

4 in the narrow-band region (d « I) can now be
estimated as follows.

(i) In the nearly empty case (n, =n; «1), we
have

d~('~), ,= 6- 4.(Ro-, (d)+ ~ ~,

Bn("„,=, —,
' 5[1 —44,(R o(o)] —2 4,(Ro-, (o)

+ 4~(R(3~ (d} + ' ' '

3(y = —2[1 —24,(Ro- (d)l

(3.9)

and

~BR'o ~RR'e —2 ~ (y

Z/2

D,(Rrr; )=a{-ga,(~i )

If we neglect the term involving $,(&o), we find a
simple relation

[1 —25]4,(R(3'; (L)) = -[1+26- (2&()/I) ]4,(Ro-, (d),

(3.10)
yielding

=+ —,
'

[S,{n')K((o)& ]'i',
4,(Ro; (d) = v- ,' n, [-S,(o)K((o)a)'i',

P„(~)=+ 2[nS.(v)/K(~)]"'

(3 6)

and hence the solution, which is obtained by tak-
ing upper signs in Eq. (3.6) and which satisfies
condition (3.2a) for ail R and R', yields the ground
state with the lowest energy because both P~ and

P~ are small but negative, and the 4's are negli-
gible in Eq. (3.1).

(ii) If the lower band is nearly filled (n, =n; = —,'),
we find that

do 4 ) ~RRr()

and hence

D.= —,
' [4,(Ro-, (d) —4,(Rv; (d)]

= ~ —,' [S,((3)K(~)a]'",

o.()); rr) =
i

—+ I c((rr) —~ &,&.trr)(.(rr)) D.
)

= ~ ~ [S,(v)K((o)a]'"

( Or)))={+rgb, ( (rd) ~ + hS,(rr)(,(rr)
)

D,
j

(3 8)

=+ J22 [S,((3)K((o)b ]'i',

P„(~)=+ 2 [S,(tf)n/K(~) ]'1'.

Qfe again find that the solution for the ground state
is obtained by taking upper signs in Eq. (3.8) and
by imposing condition (3.2a).

(iii) In the nearly-half-filled case, where
5= & -n, = g —n; is of order 13/I, the 4's become
of order unity. Hence

In Eq. (4.9) of Sec. IV, we shall find that the energy
of an electron in the lower band is given by

(d)"=[I-n,-—4,(R|y;((7)][e +P~((d)]+ ~ ~ ~, (3 7)

(3.12)

P) (+) = —4 [5 —4,(Ro", (d}]S,(cr)

x a[5 (id jl)4,(Ro; (o)] ' [4,(R(3; (o)] '.
(3.13}

As long as 6 is greater than i4,(Ro-, (d)i and

j(d/(2I) i, the 4's evaluated from Eq. (3.12} remain
a small fraction of S,((3)'i'. A solution not very
different from that given by Eq. (3.8) is then ob-
tained by taking the upper sign in Eq (3.12),.
yielding negative P ~ and negative co~. The
ground-state solution is, therefore, obtained under
condition (3.2a).

If 5 is smaller than i(d/I i
and i4,(c)i, both P~

and (d~(' calculated from Eq. (4.9) will become
positive and the solution obtained under condition
(3.2a) no longer yields a state with the lowest en-
ergy. Instead, the ground-state solution is ob-
tained by taking the lower sign in Eq. (3.12) and
by assuming condition (3.2b). Since P~/2 and

~~ are of the same order, the value of &~ may
be computed from Eq. (3.13). In the limit 6-0,
we find that

~„("= [ II)S.(II)/84-. (R-~ ~)] i2

x [1 —24,(Ry(; &(3)]. (3.14)

By inserting the above result into Eq. (3.12), we
obtain

4,(R(r, (o) = --,' [Im, (tf)K((0)']' i'

x ]I+ 4 [I&S.(&)K((0)']'"}'

~„'"= —[I~S,(o)/K((d) )'~'

x(I ,' [II3.S.(o)K(~)'—)' —'}'

(d „'-"= —(Id s.(&r)/K(~) ]'I'

(3.16)

(3.16a)

(3.16b)

I3 = (C3(,C 3(,,} + 4 64,(Rcr, (())[I+24,(Ro; (d) ]
—(4(d/I) 4.(Ro-, (d )'+ ~ ~ ~ . (3.11)

For small 5, the 4's and P can then be evaluated
as follows:

1 S,(o)K((o)a
{
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IV. EXCITATION SPECTRUM OF THE FULLY
RENORMALIZED SOLUTION IN THE NARROW-BAND

REGION

(o~(~" = [I —n, —4.(a) + [n, + 4'.(tr)]'"

x [I, n. e,(tr}]'")I, (4 4)

We are now ready to calculate the excita, tion
spectrum of an electron added to the system of
N electrons in the narrow-band region by using the
fully renormalized Green's function. Since n/r«1,
we may again neglect terms of order n'/I in the
inverse Green's function 6 ' given by Eq. (2.4}.
This means that terms involving L~q, and K,&,
are discarded and the factor

6,{~)[~-(I-&N„.-))r]
[(o —(1 —(N~}}I —17,]

where 4,(a'} is shorthand for 4,(rta'; (o} with an

appropriate co. Here again we find that, unless n,
is nearly equal to &, the lower-band solution w~
being proportional to 4 is isolated from all other
solutions &~', i=2, 3, . . . 5, involving the la.rge
parameter I. In the nearly-half-filled case
(n„n; = &), however, the value of (o~' may become
small and comparable to co~{'). Therefore, we need
to solve the following quadratic equation by regard-
ing X((o) as a parameter with an appropriate (o

((o —(o~(' )((o —(o~(' &) —X((o) [(o —(1 —(Ã„,))I] = 0,
involved in the last term on the right-hand side of
Eq. (2.4) is replaced by 1. Then G '((o) is reduced
to

2~ „( )
((o —(o&'&u)((o —(op')

(1 &N,.)}r

where

( )
&N&(~)(I —&N&(,))I'g&, -

(4.8)

(4.8}

(N„,-}{1—&N&(;)) I 'E
&,

where &~ and &~ are solutions of

[(o —g, -P~((o}][(o—(1 —&Ãs,-))I]—& Nr(;}I(o = 0 ~

and may be expanded as

(o~(' = [1 —n. @,(a-)-][&,+P~((o)]+O(n.'/I),

(o„'"=I+[n,+C.(lf-)][&,+P~((o)]+O(o"/I),

(4.1)

(4.2)

(4.3}

The result is

~ (&& —& (g(l&+ g(a & + I(hr ~ Ae ke

((g(o+ ~ &( &)

+ 4x[u('& —(I —(Ã,,-))I])'~'} .
For n, «2, the above expression can be ex-

panded as

= [1 n. 4,(&y)](e,+P„)-—

[n;(1 —n;)+ a]&~

(4.7)

(4.8)

while g~(') and 9~{~' are where

F,(a') = 1 —2n; —24',((r) —[2(1 —n;) —2n-,(1 —2n-, ) —4(1 —2n-, ) 4&,((r) + 44&,(lf)'](P~/I) + ~ ~ ~,

a = (1 —2n-.)4.(v) —4.(tr)'.
(4.9)

In the absence of the correction term 4,((r), the
above expression is reduced to that given by Eq.
(2.9} and, hence, it is invalid in the nearly-half-
filled ca.se because of the condition (2.12). In the
presence of a finite 4,(o), however, the magnitude
of

((o~('+X- (o~(')'= [e.((r)I +P~/2+ ~ ~ ]'

(4.10)

is of order I' and hence remains greater than the
magnitude of

4x[v„"&—(1 —&N,.))I]= ,' &,I-
in the nearly-half-filled limit (n„n, = 2). There-

fore the condition (2.12) is never satisfied and the
expansion (4.8) is valid for all occupations n, = n;,
proving that the fully renormalized solution is in-
deed analytic everywhere in the narrow-band re-
gion.

V. CONCLUSIONS

We have eliminated the three difficulties discus-
sed in the Introduction. The fully renormalized
solution found in Sec. II, in fact, includes all higher-
order functional derivatives operating directly on the
basic Green's functions G and I' and also correc-
tions resulting from functional derivatives of
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equal-time Green's functions in a fully self-con-
sistent manner, neglecting only higher-order
derivatives of equal-time Green's function,
b" (N)ll&e" etc. , with n~ 2. Since the basic struc-
ture of the Green's function is obtained by a non-
perturbative method developed in Paper II, the
result can be applied to the narrow-band region as
well as the wide-band region, thus eliminating the
first difficulty discussed in Sec. I.

We have also shown that the correction terms 4
generated from equal-time Green's functions are
renormalization factors. Since the structure of
the 4's is analogous to that of P~ and the 4's
themselves involve renormalization factors which
are essentially the same as the original 4's, the
4's can be evaluated self-consistently. The re-
sulting 4's found in Sec. III eliminate all singu-
larities entering the step-1 solution thus elimi-
nating the second difficulty. We note that this is
the first time that fully self-consistent renormali-
zation factors are evaluated starting from first
principles.

The calculation in Sec. IV shows that the unphy-
sical result found in the nearly-half-filled case is
eliminated and the excitation spectrum co can be
evaluated in all occupations n, =n;, thus removing
the third difficulty.

Since the Schwinger relation (1.1) or (1.2) is the
only basic relation used in generating the fully
self-consistent Green's function, the conservation
laws on the number of electrons, momentum, and
energy are automatically satisfied in the manner
discussed by Baym and Kadanoff, justifying the
calculation of the renormalization factors. This
is a notable advantage of the present method not
found in any other many-body treatments.

In the following paper, we shall calculate the
ground-state energy and chemical potential, and
test the stability conditions of the present result.
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