
PHYSICAL REVIE% B VOLUME 21, NUMBER 8 15 APRI L 1980
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We have examined, using Monte Carlo techniques, the mean free path of electrons in a cylindrical wire.
The electrons were allowed to undergo isotropic scattering from impurities, diffuse scattering at the walls of
the wire, and both isotropic and anisotropic electron-electron normal scattering. A wide range of impurity
and electron-electron free paths were used so that the Knudsen minimum and the transition to Poiseuille

flow could be examined. An analytic expression for the electronic free path at very large impurity and

electron-electron free paths has been obtained from theoretical considerations. The data are consistent with

recent low-temperature measurement on potassium. They can be extended to situations involving other
normal scattering processes such as that of phonons in a wire.

I. INTRODUCTION

Rowlands, Duvvury, andWoods' measured the
electrical resistivity of potassium at tempera-
tures below 2 K. They found their data could be
fitted with the formula

p = p,(1+AT"),
where p is the resistivity at temperature T, p, is
the resistivity at T= 0 K, and A = (86+ 10) x 10 '
K ".They proposed that the temperature-depen-
dent term could arise due to the presence of elec-
tron-electron normal processes in a thin wire.

It is well known (cf. Ziman') that electron-elec-
tron normal scattering will not contribute to the
bulk resistivity of metals with a spherical Fermi
surface. This is due to the fact that such process-
es conserve momentum and hence current. Free-
man, Blatt, and Bass' suggested that the process-
es could contribute to the resistivity in a thin
wire by knocking electrons into the walls. These
electrons could then scatter diffusely from the
walls and reduce the current.

Rowlands et al. , by analogy with the Knudsen4
formula for the resistance to the flow of rarified
gases in a cylindrical tube due to molecular col-
lisions, proposed that an appropriate formula for
the resistance to the electron flow in thin wires
would be

p = p, (1+ka/X ),
where a is the wire radius, X, a mean free path
for electron-electron processes, and k is a con-
stant, which in the gas case was found empirically
to be of order unity by Knudson. They suggested
that the usual T' dependence of I/X, and the ex-
istence of dislocation nets might combine to pro-
duce a T" dependence. They also suggested that

po could be something other than the size-limited

resistivity which analogy with the Knudsen formula
would suggest. In the Knudsen case p, is propor-
tional to 1/a, and hence the dependence of p on
the residual resistivity would vanish from the
temperature-dependent part.

The primary objective of this study is to deter-
mine k for the case of electron-electron normal
processes in a cylindrical wire. In view of a large
residual resistivity in the experiments of Rowland
et al. , and for that matter in all low-temperature
experiments, effects of impurity scattering on k
are also examined.

In the course of setting up this study, two inter-
esting and related problems were encountered.
Whitworth' studied the contribution of phonon-
phonon normal processes to the thermal resis-
tivity of liquid helium. He found a dip in the re-
sistivity which he called the "Knudsen minimum. "
He noted that the minimum had never been ex-
plained theoretically, and that it was not obvious,
without detailed theoretical study, why phonon-
phonon processes in which phonons were knocked
into the walls of the container should predominate
over the processes in which phonons were knocked
away from the walls. Clearly such a predominance
is needed if the phonon free path is first to de-
crease as the phonon-phonon free path is de-
creased. Moreover, a reversal in the predomi-
nance is needed to explain the subsequent increase
in the phonon free path as the phonon-phonon free
path is reduced still further.

Ziman noted that the Knudsen minimum had not
been observed in solids; he also raised the ques-
tion as to whether the free path of such phonons
would increase or decrease as the phonon-phonon
collisions of the normal type were increased. In
view of the questions raised by Ziman and Whit-
worth, it therefore is an objective of the present
study to see if, in addition to obtaining the con-
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stant k, the geometrical origin of the increased or
reduced free path can be understood in terms of
the reduction of the free path for electron-elec-
tron normal processes, and more generally, for
any momentum-conser ving processes.

The above remarks apply to situations in which
the free path for the normal processes is larger
or of the same order as the size of the container.
When the free path is much smaller than the di-
mension of the container a region of Poiseuille
flow is encountered in which the free path asso-
ciated with the resistance to flow becomes many
times larger than the free path for the normal
processes.

Gurzhi' dealt with the latter region for the case
of electron-electron normal processes. He argued
that the actual path of the electron would, when
the path for the electron-electron normal process-
es became much less than the dimensions of the
wire, resemble a random walk. Then the free
path to be used in determining electrical resis-
tivity should be proportional to a'/X, where a is
the wire radius and X is the free path for elec-
tron-electron collisions. In a subsequent paper
Gurzhi' developed a theory of the region using a
magnetohydrodynamic approach.

There is no data in the literature as to the val-
ues of X for which the transition to Poiseuille
flow will take place and the Gurzhi formulas would
be appropriate. It is therefore an objective of
this study to determine this transition for various
impurity concentrations. Accordingly, we have
explored the behavior of resistivity for the region
of the free path well outside the Knudsen minimum.

II. THEORY

The original intention in this paper was to solve
the linearized Boltzmann equation subject to the
boundary condition imposed by diffuse scattering
at the walls of a cylindrical wire. This had been
solved exactly by Dingle' for the case in which

only impurity scattering was present, and at first
sight it seemed the work he did could be extended
to include electron-electron normal processes.
In fact it was not found possible to extend his the-
ory to include the normal processes. This is in

part because of the complicated integrals which
arise in electron-electron scattering even when a
spherical Fermi surface is assumed, and in part
because there is no simple analytic result over
much of the range of impurity free paths X,. even
when no electron-electron scattering is present.

The approach finally adopted here was to treat
the electron as a particle which traveled at the
Fermi velocity, and to determine, with Monte
Carlo techniques on a computer, the average dis-

tance (or mean free path) X traveled by the elec-
tron before it collided with either a wall or an
impurity. Collisions with electrons were taken
only to alter the direction of the electron's travel
and not to contribute directly to the mean free
path. The mean free path between collisions with
impurities was taken as A, , and the mean free
path between collision with electrons mas taken
to be X . In what follows these free paths, and any
others, will be understood to be in units of the
mire radius. The results then are quite general,
and independent of the absolute value of X or X,

A mean free path ). (p) at radius p was first
determined by launching particles in random di-
rections from location p and establishing the aver-
age distance traveled by the electron before a wall
or impurity collision took place. This supposes
the mall scattering to be totally diffuse rather than
specular. Collisions with electrons were taken
only to alter the direction as mentioned in the pre-
vious paragraph. The average mean free path X

was then obtained by avera. ging ). (p) over the cy-
lindrical cross section of the wire once X (p) had
been obtained at selected radii.

Two types of electron-electron scattering were
considered. In the first type the scattering was
taken to be isotropic. This isotropic scattering
was not taken to destroy the momentum gained
from the electric field by the electron, only to
alter the electron direction isotropically. The
electron following such a collision would emerge
on average with the local drift velocity. In the
second type of scattering a mechanism which fa-
vored forward scattering was used. This was
based on a screened Coulomb interaction between
the electrons.

Ziman' determined the contribution of screened
Coulomb electron-electron umklapp processes to
electrical resistivity when a spherical Fermi sur-
face was assumed. The calculation is quite in-
volved, but the point to note is that the integrand
is proportional to the rate of scattering of a pair
of electrons from a state k„k,to a new state k„k~.
Once the complicated integrations over k„andk,
have been carried out, the remaining integrand I
is a measure of the scattering rate of electrons
from state k, to state k, per unit solid angle. The
integrand Ziman obtains is

1
( Ik~ —k, I + q')' I k~ —k, I

'

when the reciprocal lattice vector is set equal
to zero for normal processes. Here 1/q is the
Thomas-Fermi screening length. If we now let
k3 and ky lie on a spherical Fermi surface and let
8 be the angle between them we obtain
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(1 —cose)'/' (2.612 —cosa)' ' (4)

where a Thomas-Fermi screening length appro-
priate for potassium has been introduced. This
formula was then used to scatter electrons aniso-
tropically.

In the introduction to the theory, it was noted
thai no theoretical results were obtained starting
with the Boltzmann equation. It is, however, pos-
sible to develop an approximate result for X which
is suitable for large values of X and X, The
theory is based on the case of isotropic electron-
electron normal processes.

If N particles are launched from a location p and
N (p} of these collide with electrons and the re-
mainder undergo their first collision with a wall
or an impurity we may write

Xr 1 —exp( d(p, 8, 9))/y ), (8)

where d is the distance from the wall to the launch
site. It follows that the average distance traveled
in all directions is

x
X(p) =r, [1 —exp{ d/Xr}]sin Hdedc). (7)

4m a

Evaluation of the double integral is not possible
analytically for all X~. It is of importance to note
that the integral is almost identical to that eval-
uated by Dingle in determining the free path needed
to determine electrical resistivity from the Boltz-
mann equation. His integral has a factor of 3 cos'8
in the integrand.

Dingle was able, by a variety of mathematical
methods, to obtain the series expansion solution
of the integral for X~»1 and A~«1. It is a
straightforward procedure to repeat his work
without the factor of 3 cos'8 in the integrand. We
find, for the region of interest X„»1,

Z = -', —(I/2)r }[ln(Xr /2}+ 2.449]+ O(1/X'} (8)

which may be compared with Dingle's result

X = 2 —(3/2X r )[ln(X r /2)+ 1.059]+ O(1/y'} . (9)

(P)

z (p) = z(p) ~ (/x Q d(p;) .
g=l

Here l).(p) is the a.verage distance traveled before
the first collision of any type. It can be evaluated
as follows.

Consider the average distance traveled by elec-
trons launched from location p, with a polar angle
8 with respect to the axis of the wire and azimuthal
angle P. Let the mean free path for collisions"
with electrons or impurities be X~. The average
distance traveled before electrons collide with
an electron, impurity, or wall may be written

Note then that the two methods give somewhat
different X when only impurity scattering is pre-
sent and X~ = X, On the other hand both give sim-
ilar temperature dependence of X if the tempera-
ture dependence is contained in ~~.

In Eq. (5) the d(p,.) represent the distance trav-
eled by the ith electron before striking a wall or
impurity following its collision with an electron
at location p, Since the electron-electron scat-
tering is isotropic, this distance is just X„(p,.) on
the average, and we may write

N (n)

X„(p)= X(p)+ I/N X (p,) . (io)

(12)

If we now average over the cross section of the
cylinder and solve for X we obtain

1 = X/(I - k "X/X,), (i3)

where k" is again between 0.85 and 1.33. Substi-
tution of X from Eq. (8) into Eq. (13) then gives
an estimate of the dependence of X on X~. It must
be noted that the accuracy to which k" is known
makes the introduction of the terms of order I/X'r
from Eq. (8) of little value and so they have not
been determined.

III, PROCEDURE

The problem here is to obtain an estimate of
1+ 1 l

X (p)pdp pdp.
"0 0

(14)

Here X (p) is the average distance traveled by an
electron launched from radius p in a random di-
rection before it collides with an impurity or a
wall of the wire. On route to such a collision the
electron may undergo one or more electron-elec-
tron collisions.

It is of interest to compare the method used here
with that of I uthi and Wyder. " They launched a
particle down the wire and then allowed it to move
finite steps along its trajectory. After each step
the computer was asked to decide if the particle
had undergone a collision with an impurity, a wall,
or a small-angle phonon collision which was what
they were studying.

In the actual Monte Carlo calculations to be dis-
cussed later, "we find that A. (p) varies from 0.85
to 1.33 times its average value of X . Accordingly
we may write

X (p)= X(p)+ [ N{p)/ N]k(p)X

where k(p) lies between 0.85 and 1.33. It can be
shown that N (p)/N is X(p)h(. , and hence we may
write
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TABLE I. X for isotropic scattering.

105 10 0.5 0.2 0.1 0.05 0.025

10'
10

5
2
1
0.5
0.2
0.1
0.05

1.33
1.15
1.03
0.80
0.59
0.38
0.178
0.094
0.047

1.30
1.15
1.04
0.82
0.59
0.38
0.180
0.094
0.048

1.31
1.17
1.06
0.,82
D.60
0.39
0.178
0.094
0.048

1.37
1.23
1.11
0.85
0.61
0.39
0.179
0.093
0.048

1.53
1.34
1.19
0.89
0.63
0.39
0.180
0.094
0.048

1.86
1.58
1.37
0.97
0.66
0.39
0.179
0.094
0.048

2.97
2.22
1.80
1.14
0.71
0.41
0.180
0.094
0.047

47
3.1 a

2.28
1.30
0.76
0.42
0.182
0.094
0.047

R

4.2
2.8
1.43'
0.80
0.43
0.183
0.094
0.048

16.1

3.3 a

0.44'

0 047

Values are accurate to +2%, all other values are accurate to +1%.

Our method consisted of using a random number
generator to launch the particle in a random di-
rection, and then using the generator to establish
how far the particle traveled before its first col-
lision with an impurity or electron. If this dis-
tance were outside the wall of the wire, then the
distance traveled was taken as the distance to the
wire wall. If the distance were inside, then the
random number generator was used to determine
if the collision was with an electron or impurity.
In the latter case the distance traveled to the col-
lision was taken as the distance traveled by the
electron, but in the former case the random num-
ber generator was used to launch the particle from
its new radial location, and the process was con-
tinued until it reached an impurity or a wall. In
that case the total distance traveled by the elec-
tron from its launch until it hit the wall or impu-
rity was used as the distance traveled by the elec-
tron.

Data on X (p) and X were obtained by averaging
over 9000 launches the distance traveled by the
electrons. Values of p selected were 0, 0.1, .. . ,
1.0 and the value of X was then obtained from a
Simpson's rule integration over these 11 points.

In order to obtain the more accurate values of

and X (p) needed to examine the Knudsen mini
mum 230000 launches were used at eight radial
locations and an eight-point Gaussian integration
was then performed to obtain X

Even with only 9000 launches it took about 5 min
of computer time to obtain X on the Burroughs
6700. A total time of about 2 h was needed for
the cases where 230000 launches were used.

As an indication of the accuracy of the Monte
Carlo values the standard deviation from the mean
of 13 samples, each sample averaged over 1000
launches, was determined for various combina-
tions of X,. and X . In this way it was found that
the runs on X using 9000 shots typically had a
standard deviation of 1%, whereas using 230000
shots the standard deviation was 0.002. These
standard deviations are given as guides to the ac-
curacy in the tables of the next section.

IV. RESULTS

The results of the isotropic scattering study are
shown in Table I for a wide range of X, and X,
Consider first the situation in which there is no
electron-electron scattering (X,= 10') and the im

purity scattering ranges from X, = 10' down to

TABLE II. X for anisotropic scattering.

10' 10 0.5 0.2 0.1 0.05 0.025

10'
10

5
2
1
0.5
0.2
0.1
0.05

1.33
1.15
1.03
0.80
0.59
0.38
0.178
0.093
0.047

1.28
1.15
1.04
0.81
0.59
0.38
0.180
0.094
0.047

1.29
1.15
1.04
0.81
0.59
0.38
0.178
0.093
0.047

1.30
1.16
1.05
0.82
0.60
0.38
0.179
0.094
0.047

1.34
1.20
1.09
0.84
0.61
0.38
0.179
0.094
0.047

1.46
1.30
1.15
0.88
0.62
0.39
0.179
0.094
0.047

1.88
1.59
1.38
D.98
0.66
0.40
0.179
0.094
0.048

2.6'
2.08 ~

1.66
1.10 L

0.70
0.41
0.182
0.093
0.047

4.1 ~

2 8a

1.24 ~

0 75a
0.42 ~

0.182
0.094
0.047

7.3 a

2.7a

0 44

Values are accurate to +2%, all other values are accurate to +lg.
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TABLE III. Details of X for isotropic scattering.

107 200 100 50
Xe

20 10

10
100
10

1.329
1.306
1.148

1.325
1.300
1.150

1.319 1.315
1.297 1.294
1.150 1.150

1.306 1.302 1.312 1.37 1.53
1.285 1.285 1.296 1.363
1.151 1.23 1.34

Values are accurate to +1%, all other values are accurate to +0.002.

0.05. Note that the introduction of impurities
monotonically lowers the free path, as one ex-
pects. The walls of the wire totally determine the
free path for X,. = 10', but reduce the free path on-
ly 5% below its impurity value when X,.=0.05. In
fact when X, is about 0.2 (one-tenth the diameter
of the wire) the walls reduce the free path only
about 10%.

Now consider the situation in which there is no

impurity scattering (),=10') and the value of X

varies from X = 10' to 0.025. Here a dip in the
free path is first observed, the Knudsen minimum,
and then the free path rises above its value with
walls alone. Note that the free path almost doubles
as A. is reduced from 0.05 to 0.025; that is the
region described by Gurzhi in which X ~1/X is
being entered.

It is quite interesting to obtain data for X =0.025.
Here, with a free path of 16.1, each electron un-
dergoes roughly 650 collisions before the walls
of the wire are reached and a great deal of com-
puter time was required to follow thousands of
these from their launch to the edge of the wire.

Finally consider the column in which ) = 0.05
and X,. varies from 10' down to 0.05. The free
path is seen to decrease monotonically, and below

X, =0.2, the electron-electron contribution to the
free path is not detectable. Incidentally, the
smallest value of X suggested by Rowlands et gl. '
is about 1 cm at T = 1 K. It is evident that a very
large wire would be required before the region of
Poiseuille flow was encountered. In their experi-
ment X & 5, and this is the region of the tables
appropriate to study their data.

The results of the anisotropic-scattering study
are shown in Table II. Here we see behavior sim-

ilar to that of Table I, but the increase in X as X

goes from X =10' to 0.025 is much reduced in this
anisotropic case. Note also that as A varies from
X =10' down to 1 there is very little change in X

The anisotropic scattering is not as effective in
altering the free path from its wall and impurity
value as is the isotropic scattering.

In Table III are the results of a detailed study of
the Knudsen minimum in the isotropic-scattering
cases. Here 230000 launches of electrons from
each of eight radii in the wire (the points of an
8-point Gaussian) gave an accuracy of +0.002. The
dip can be seen clearly for both X,. = 10' and 100,
but has vanished (to an accuracy of +0.002) for
1,. =10. Note that for 1,.=10' the dip is a minimum
in the vicinity of X = 10 and is over at X = 2.

Similar data are presented for the anisotropic
case in Table IV. The dip is clearly visible for
X, =10' and 100, and is not evident at X,.=10 in
this case. An interesting feature of the data is
the fact that the dip is both deeper and broader
when anisotropic scattering is present than in

the isotropic case.
In Table V are shown the values of X calculated

with Eq. (13) developed in the theory section. For
X, and X ~ 100 the agreement is good, but for X,.

and X = 10 the agreement is only to a few percent.
This is not surprising since the terms omitted in
the calculation of X are of order 1/X',. and hence of
order 1%. The value of k' used was unity for the
table. Better agreement can be obtained with a
larger value. The agreement suggests we use the
formula to determine the temperature dependence
of X in the region before the minimum is reached.

At first sight it is puzzling that the anisotropic
scattering should give rise to a deeper and broader

TABLE IV. Details of X for anisotropic scattering.

200 100 50 20 10

107 1.329 1.327 1.319 1.315 1.304 1.291 1.288 1.298 1.34
100 1.306 1.301 1.298 1.294 1.283 1.277 1.272 1.283

10 1.148 1.149 1.148 1.148 1.147 1.148 1.20 ~

~Values are accurate to +1%, all other values are accurate to +0.002.
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TABLE V. Prediction of X for isotropic scattering.

107 200 100 50 20 10

107 1.333 1.324 1.318 1.310 1.290 1.274
100 1.302 1.297 1.293 1.287 1.272 1.255
10 1.130 1.129 1.128 1.125 1.119 1.107

Knudsen minimum. The explanation for this curi-
ous effect can be seen in Tables VI and VII. There
the value of A. (p) are presented at selected radii
for X,.=~ and selected values of X .

Consider the isotropic case. Recall that the
average value of X reached a minimum at X,=10
and then began to rise. The data of Table VI show
this to be understandable in terms of two compet-
ing mechanisms. Near the center of the wire (p
= 0.02) the free path reaches a minimum at X = 20
and then begins to rise. On the other hand, near
the edge of the wire, the free path is continuing
to decrease even at X,= 5. The scattering lead-
ing to an increase in the free path then has begun
to dominate once X =10 is reached. [Preliminary
studies show that even at very small values of A.

the value of X (p=1.0) remains at about 1, while
the value of X (p= 0.0) has grown to many times
the radius of the wire. ]

Now if we examine Table VII we see that the path
lengthening which occurs in the central region is
just starting to be effective at X = 5, while the path
shortening at and near the walls is about as ef-
fective as that which is found in the isotropic case.
Since the anisotropic scattering is less effective
in deviating electrons from their initial trajectory,
it is perhaps not surprising that in central regions
the free path is not enhanced as rapidly as in the
isotropic case. On the other hand, electrons
launched near the walls can be deflected into the
wall even if only scattered through a small angle.

The above observations also provide some in-
sight into the Knudsen minimum. As Whitworth

noted, the problem is to understand why it is that
path-lengthening processes begin to dominate over
path-shortening processes. We see from Table VI
that at long enough A. the path is reduced every-
where over the cross section of the wire. Then
as X is decreased the path is gradually increased,
starting at the center and gradually spreading
toward the walls. At some X, the lengthening be-
gins to dominate and we have passed through the
minimum.

If we try to see why it is that the path is short-
ened at all, for large X, , it is evident that no sim-
ple explanation exists. In examining 10000 tra-
jectories at p = 1.0 for X,.= 10~ and X = 10 there was
no sign of any systematic reduction in the free
path even though the average value was reduced
12% below the value with no electron-electron
scattering. That the effect is an average one was
seen in the fact that for 10000 launches from the
center of the wire at p = 0.0 for X,. = 107 and ~ = 10
the value of the average was 2k below the average
with no electron-electron scattering; yet the ful-
ly converged value in this case gave the same
value as if there were no electron-electron scat-
tering. The study showed that the alteration of
path length by a few percent in the vicinity of the
minimum cannot be understood in terms of some
simple explanation.

V. COMPARISON OF EXPERIMENT AND THEORY

By writing the resistivity proportional to 1/X,
the experimental results of Rowlands et al. ' may
be put in the form

where hX is the dip in the free path from its value
at T =0. The largest value of 4X obtained in their
experiment is about 10~ at a temperature of 2 K,
and is for their cleanest sample in which X, =0.33.

We may compare this result with the data of
Tables III and IV by using the values of X that
Rowlands et al. used. They proposed values be-

TABLE VI. X (p) for the isotropic case and no impurity scattering.

P
0.020 0.102 0.237 0.408 0.592 0.763 0.898 0.980 Average ~

107
200
100

50
20
10

5

1.57
1.57
1.57
1.56
1.55
1.57
1.61

1.57
1.56
1.55
1.55
1.55
1.56
1.60

1.55
1.53
1.54
1.53
1.53
1.54
1.58

1.50
1,50
1.49
1.49
1.49
1.49
1.52

1.42
1.42
1.41
1.41
1.40
1.40
1.42

1.31
1.30
1.30
1.29
1.28
1.27
1.28

1.18
1.16
1.15
1.15
1.14
1.13
1.11

1.05
1.04
1.03
1.03
1.00
0.99
0.97

1.333
1.325
1.319
1.315
1.306
1.302
1.312

~Values are accurate to +0.002, all other values are accurate to +0.01.
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TABLE VII. X (p) for the anisotropic case and no impurity scattering.

P
0.020 0.102 0.237 0.408 0.592 0.763 0.898 0.980 Average ~

10~
200
100

50
20
10

5

1.57
1.57
1.56
1.56
1.54
1.54
1.55

1.57
1.56
1.55
1.55
1.54
1.54
1.54

1.55
1.54
1.54
1.53
1.52
1.51
1.52

1.50
1.50
1.49
1.49
1.48
1.47
1.47

1.42
1.42
1.41
1.41
1.40
1.39
1.39

1.31
1.31
1.30
1.29
1.28
1.26
1.26

1.18
1.16
1.15
1.15
1.14
1.12
1.11

1.05
1.04
1.03
1.03
1.00
0.99
0.98

1.333
1.327
1.319
1.315
1.304
1.291
1.288

~Values are accurate to +0.002, all other values are accurate to +0.01.

tween 5 and 50 at 2 K. The Knudsen minimum is
seen to lie in just this range. Unfortunately our
computation was not capable of detecting b X of
order 10 4, and such computer calculations would
have involved too much time. Note that at X, = 100
(Xo= 1.306) the dip in ). is substantially greater
than 10 ', but at X,.= 10 (X,= 1.160) there is no dip
detected in the isotropic case, and the anisotropic
dip has decreased to about one-sixth of its original
value. This decrease, were it to continue down to
X p

= 0.33 of the experiment, could well give rise
to the dip of 10 ' observed. Note that in Table I
Xp=0.38 at X, =0.5, so that if isotropie point scat-
tering were involved in the experiment a very
small value of X, would be involved. Note also
that the calculation predicts the increase in the
temperature-dependent part of the resistivity with
increased pp observed in the experiment.

It is also of interest to note that b, X goes as
roughly T'~, as X goes from 200 to 50, when

A, = 100 in both isotropic and anisotropic cases.
Moreover, for %, =10', there is a range of X val-
ues predicted by theory for which 4X goes as
(In). )/X, when isotropic scattering is involved. In
this range, if we take X ~ T ' as is usually done,
then again a dependence of roughly T" is encoun-
tered. This temperature dependence, while it may
not persist to small values of X,, is strongly sug-
gestive that Rowlands et al. are observing elec-
tron-electron normal processes.

VI. DISCUSSION

We have examined, using Monte Carlo tech-
niques, the mean free path of electrons in a cylin-
drical wire. The electrons were allowed to under-
go isotropic scattering from impurities, diffuse
scattering from the walls of the wire, and both
isotropic and anisotropic scattering from elec-
tron-electron normal processes. A wide range
of impurity and electron-electron free paths were

used so that the Knudsen minimum and the transi-
tion to Poiseuille flow could be mapped out.

It was found that the Knudsen minimum can be
understood as due to competition between normal
scattering lengthening the free path at the center
of the wire and reducing it near the boundaries
of the wire. The minimum occurs when the for-
mer processes begin to dominate the latter. We
have found an analytic expression for the free
path in the region where X and X,. are very large,
and evidence of a temperature dependence which
is roughly T" in that region.

The results are consistent with the main fea-
tures of the experiment of Rowlands et al. ' Thus
the magnitude, temperature dependence, and pro-
portionality to p„allmatch our findings in a qual-
itative way. Unfortunately it was not possible to
extend either the theory, or Monte Carlo calcula-
tions, into a region of impurity concentration
which is consistent with their experiments. It
would be of considerable interest to see if the ex-
perimental work could be carried out in a region
where the Monte Carlo calculations could be used
to determine the magnitude and temperature de-
pendence of the effect.
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