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Exact elementary excitations with a complex wave vector in the
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Computer calculations of finite Hubbard chains indicate two peaks for the specific heat for a large

Coulomb interaction U for band fillings less than 1/2. Even though the origin of this is physically obvious,

no elementary excitations with a gap energy U have been explicitly demonstrated from the exact solution of
the Hubbard model. We here demonstrate that there exists elementary excitation with a complex wave

vector k for the N —1 spin-up case. These excitations with complex wave vectors have never been discussed

previously. These results suggest similar excitations for the case with more general spin arrangements and

may account for the specific-heat results.

I. INTRODUCTION

Recently there has been a lot of interest in the
so-called one-dimensional materials. Theoreti-
cally, there are three different approaches: (i)
using the "exact" results of the Hubbard Hamil-
tonian, ' (ii) doing computer calculations of finite
Hubbard chains, (iii) summing parquet diagrams,
using an analytic renormalization-group tech-
nique, and the exact results of the Tomonaga-
Luttinger model. These calculations are comple-
mentary to each other and they should perhaps be
synthesized to produce a more complete quantita-
tive picture of the problem. The present work is
motivated by these considerations.

Computer calculations of finite Hubbard chains
for the specific heat indicate two peaks separated
by an energy of order U (the on-site Coulomb re-
pulsion energy) in the limit of large U. These are
usually interpreted as due to the fact that it takes
an extra energy U to put two electrons on the same
site, so that if U is much larger than the bandwidth
a second peak should appear in the specific heat.
While the above argument is extremely suggestive,
it has not been demonstrated from the exact solu-
tions of the Hubbard model. There have been cal-
culations of the exact excitation spectrum of the
one-dimensional Hubbard model but these have
not included the possibility of excitations with com-
plex wave vectors ("bound" states). While in the
continuum limit no such bound states are possible
for a repulsive Coulomb interaction, such is not
the case on a discrete lattice, as one can easily
convince oneself by doing a two-body scattering
problem.

The Hubbard model is described by a Hamilton-
ian:

H= ~C],t, C],+U - n], n], .

Here C&, is the creation operator for an electron
of spin cr at site i. The hopping matrix element is
set equal to one. We are interested in the limit of
large U, in which case nearly all electrons are on
different sites. The first excitation of energy U

will arise from having only one doubly occupied
site. Because of this, and for the sake of making
the mathematics more accessible, we shall con-
fine our interest in this paper to the case of N —1

electrons with spin up, 1 electron with spin down.
This case would rule out the possiblity of spin-
waves as well as that of having more than one
doubly occupied site.

This paper is orgainzed as follows. The eigen-
values of these excited states are discussed in
Sec. II. Then we discuss the corresponding wave
functions in Sec. III. We conclude in the last sec-
tion.

II. EXCITED STATES

Assuming that the lattice constant a = 1, it is
found' that the total energy F of an eigenstate of
Eq. (l) is given by

E = —2 Q cosk(,

where the wave vectors k& satisfy the relations

sink, —X = —,'U cot(2N, k, ),
27fn

(4)

Here X is a constant to be determined from the
above equations, N, is the total number of atoms,
n is some integer. ' To appreciate the significance
of complex wave vectors k& we write down the
wave function in a region x, - x, - ~ ~ ~ - x„, where
x, corresponds to the position of the spin-down
electron. In this case

21 1980The American Physical Society



3270 S. T. CHUI 21

(&(x| '
x»&) = g[P, I] exp i k»x,

P
(5)

Here the summation indicates summing over all
permutations of the N indices j. [P, 1] are just
constant coefficients. Clearly complex wave vec-
tors must occur in complex-conjugate pairs,
otherwise F- will not be real. A pair of complex
wave vectors (k„+ik,) will produce terms in the
wave function (g) that are proportional to

exp [ -k„
i
x, -x,

i
+ ik,(x, + x,)], (6}

cosk, isinhk„
i

+ cot(-,'N k,)(sink, coshk„- y) = —U/4. (8)

In deriving (7) and (8), we have made use of the
fact that isi n(h-,

' Nk„)i=cosh( ,'N, k„), s-ince N, is
very large and k„ is not infinitesimally small.
Adding (7) and (8), we get

indicating that the first and jth particle are sitting
on top of each other and moving with a momentum
k„. This corresponds to the physical picture that
we have been describing. We shall come back to
the wave function in more detail in Sec. III, but
now let us focus on the solution of (3) and (4), al-
lowing for a pair of k, 's (say k, and k, ) to be com-
plex.

For a complex k, Eq. (3) separates into two

equations: one for the real part, the other for the
complex part. Writing k& ——k, +ik„, we get

(sink, coshk, -1}tan(~N, k,) —cosk,
i
sinhk,

i
= U/4,

(7)

Substituting back into (6) we see that the probabil-
ity amplitude that the two electrons hop from an
"on-top" configuration to a nearest-neighbor con-
figuration is down by a factor of 1/U, consistent
with first-order-perturbation results. 6F. can be
expressed in a more transparent form. Expres-
sing k, in terms of k, and U, and using (1) we get
(on assuming that cosk, ( 0}

5E =(U +16cos k,)'i

Thus 5E ~ U is consistent with our expectations.
In particular, for U much greater than the band-
width, we expect these excitations to form a sep-
arate band.

We now turn our attention to the evaluation of ~
and the k, 's. From (9) and (10) we get

tank, ( —,', U + cos k „)

For jc1,2, k& satisfies Eq. (3). By our assump-
tion k,„=k„,Eq. (4) thus reduces to

2k, + gk, =
0 =3

(14)

(15)

Analogous to the continuum case discussed by
McGuire' the solution of Eq. (3}is given by

2sw 2
&

4 . 2s7t' 4)
k, =~ ~—cot ' —sin

N, N, U N, U
(16)

s=0, 1, 2. . . ,

as one can verify by direct substitution.
Substituting this back into (15}and assuming that

the lowest N —1's are occupied, we get, as a par-
ticular case

2
(sink, coshk, -x}, =0.

a x

We thus get

sink, coshk„= g .
Substituting back, we get, in addition,

(9)

(&/2)c
2

-
4

2k„+ —cot~ —sin
U N, U

& 4 . 2sm Q, 2n'n—cot+ —sin +-
U N, U . N,

(17)

cosk, isinhk, i= —U/4. (10)

From (10) we see that no solution exists unless
cosk ( 0. This is quite reasonable because the en-
ergy due to this pair of complex wave-vector
states will be

M = -4 cosk„coshk„,

Converting the sum to an integral, we get

2 ~+ „4 . 4z
2k +— Ch cot~ —sin2x-—

m 0 U U

, 4 . 4Z 2m—cot —sin2x+—
U U

(18)
so that if cosk„ is negative, 6E is positive, indi-
cating a high-lying state. Furthermore, note that
in the large-U limit, we get for cosk„=1, for
example,

sinhk„= coshk„= U/4,

where F~=(~N — } /2vN Equation (18) can be
easily solved on the computer but to gain some
physical insight, let us consider the special case
of U»4x, k~«1. Under these assumptions, we
get

so that

k„= ln(U/4) . (12)

2~n Sx & 4= 2k„-—cot
Ã, " mU U

and from (14)

(19)
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k, = 21/2+ 4]]./U.

Thus
g =+ [P', 1] exp [ikgxl+ xp, 1,) —k,(x, —xp, , )]

P'

U ~21=—
wi
——1 1 ——cot '

4 gN, m U
(20}

xe p! Q k g*;).P' j&22 f
(26)

Note that 4%r/U is a ratio of the bandwidth to U.
Equation (2) provides a dependence of ]] on the
band filling. One can also calculate the change in
energy ~ of the N —2 particles with real k from
the ground state (]k =0) as a consequence of the
creation of the bound pair by substituting (16) into
(2}. However, it is not particularly illuminating
physically and thus will not be discussed here.
This finishes our discussion of the eigenvalue
spectrum; let us next turn to the wave function.

III. WAUE FUNCTION

Because x, &x, &. . . , x, -x, , is abvays posi-P'-X~
tive. Thus the above wave function is always ex-
ponentially damped. (k„ is also positive. ) Any

plane wave which is not exponentially damped does
not contribute to the wave function. This is pre-
cisely what we have alluded to in the previous sec-
tion. One can also work out the wave function in a
different region. For example, in region 2 denoted
by x2 & xl & x2. . . , the coefficients [P,2] are re-
lated'4 to the coefficients [P, 1] by [P,2]
= exp(ik»L) [P, 1]. Thus

[12 ] =e"2 [12 ]

=e"&e'p [12 ~ ~ ], .
Even though the wave function for a general spin

configuration is quite complicated, the wave func-
tion for the present case is not. Indeed, in the
notation of Eq. (5), the coefficients [P, 1] satisfy
the following conditions. ' Corresponding to a
permutation P =(', k:::"),let us denote [P, 1] by the
symbol [ab ~ ]„then we get in the region x, &x,
& ~ ~ ~ x„ the equations

[21 ~ ~ ]2 ——e"1 [21 ~ ~ .]
=e * e " [21 ~ ~ ]l.

Thus

[12 ' ' '12 2l! 1[ 12 ] l=e[21 ~ ~ ]2 [21 ]1

e-&&«Le+"iaaf

I, ~ oo (27)

[123 ~ ~ N], (1 —e"2 }
[q23 1 N], (1-e'"') '

[123".N], = [132.. .N]„.. . .

(21)

(22)

In this way we arrive at the fact that

[»" 12»[21 ]2' [lq 12 q-3
and

The first equation holds for all permutations in-
volving the first (spin-down) electron. The second
equation applies to permutations not involving the
first electron. Recall that

p=g[P, 2]e p ke, +Pk- *,
)P j12

=+[P,2] expllk (x +x- ) -ky(x, -x-, ,)]
P

k& ——k„+ik„, k2-—k, -ik„, k, & 0.
From (21) we get

xep'Zk;*;).
Pffft, 2

(26)

[12 N], (1-e"*e ~ )
[21 ~ ~ N], (1 —e"*1e'p )

-+e "«Ie*& (23)

Note that in the present case x2-x, is always pos-
itive so that once again the wave function has the
desired property. The calculation for the remain-
ing cases is now obvious and hence will not be ex-
plicitly carried out.

This implies

[21 ~ ~ N], » [12 ~ ~ N], , [q12 ~ ~ N], for q ~ 3, (24)

i.e., the wave function is equal to

N

P=l ]P', 1]e p' ke*!e k ! f).P' jpe
(25)

Here P' are permutations involving the N —1 in-
dices not containing 2. Any term in the wave func-
tion not involving k,x, in the exponent is equal to
zero. Equation (25) can be rewritten as

IU. CONCLUSION

In this paper we have demonstrated a new kind
of excitation with a complex wave vector exactly
for the one-dimensional model for the case with
N —1 spins up and one spin down. The physical
picture behind this is quite transparent. It is sat-
isfying that indeed this can be reproduced from
the exact solutions. As we discussed, we look at
this particular spin configuration because this
simplifies the mathematics considerably so that
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the physics is much more transparent. The case
of general spin configuration should be a tractable
problem, but it has not been addressed in this
paper.
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