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A microscopic model of thermal desorption and dissociation from metallic surfaces which exhibits explicit
dependences on characteristic parameters of the adsorption system is developed. The evaluation of the rates
of these processes involves: (i) a derivation of the thermal adatom-solid coupling, (ii) a stochastic incoherent
multiphonon mechanism for the evolution of an excitation for bond rupture, and (iii) coupling to final-state
reaction channels. Transition probabilities and rates obtained by using both truncated-harmonic and Morse-
potential descriptions of the chemisorptive bond are presented and compared with experimental data for
xenon and potassium desorption from a tungsten substrate. The results show agreement with experiment
and exhibit a bnear relationship of the logarithm of the rate versus inverse temperature.

I. INTRODUCTION

The fundamental understanding of the mecha-
nisms of surface-catalyzed reactions is one of the

major objectives of past and current surface-
science studies. The three main methodologies
which have been developed towards that goal can
be classified as: (i) Phenomenological kinetic ap-
proach, ' which consists of a reaction scheme and

a corresponding system of kinetic equations which
incorporate rate constants and species concentra-
tions. In this class of studies the rate constants
are regarded as parameters to be determined by
fitting the solutions of the kinetic equations to ex-
periments performed at a number of system con-
ditions (temperature, pressure, etc.). (ii) Therm-
odynamical and statistical-mechanical ap-
proaches, 2 ' in which rate constants (at equilib-
rium) are evaluated using statistical quantities
such as partition functions in juxtaposition with

certain models of the reaction. Most notable
among these methods are the transition-state
theory and «phase-space theories", Rice-
Ramsperger-Kassel-Marcus (HRKM) and vari-
ants thereof, ' and theoretical trajectory analy-
sis" (although the latter, HHKM in particular,
while most popular in gas-phase kinetics, have
not been thoroughly investigated in surface-reac-
tion studies). (iii) Microscopic models of the re-
action mechanism. In these theories the
underlying physical processes governing the re-
acting system (such as, excitation, energy trans-
fer, mode-mode couplings, transport) are in-
vestigated and an expression for the reaction rate
is derived.

While all the above provide valuable information,

it is obvious that the microscopic models carry
the largest potential of providing fundamental
understanding of the reaction processes. Studies
of this kind would allow the investigation of the
dependence of reaction paths and rates on char-
acteristics of the reaction system and could pro-
vide cubi, teria for matching catalytic partners and
ambient conditions such as to allow for optimal
catalytic selectivity and specificity. It should be
recognized, however, that studies of type (iii)
present great theoretical difficulties and thus are
scarce. Nevertheless, current advents of theo-
retical methods and novel surface experimental
techniques, in particular electronic and vibra-
tional spectroscopies (ultraviolet photoemission,
Auger chemical shifts, electron-loss spectroscop-
ies, surface infrared techniques —to name a
few)~~'24 and kinetic measurements (molecular
beams2' and mass- and state-selective spec-
troscopies), provide the impetus for an increased
activity in the above direction.

In discussing the kinetics of a reaction it is con-
venient to formulate it in terms of elementary re-
action steps. "" For a surface reaction, typical
elementary reaction steps are: adsorption, trans-
port (diffusion), excitation, dissociation, associa-
tion, and desorption, not all of which necessarily
occur for one given reaction. In the present study
we focus on bond-rupture elementary reactions,
i.e. , dissociation and desorption. Moreover, we
investigate the thermal phenomena as distinct from
the corresponding induced processes '~: electron-
stimulated desorption (ESD), electron- impact
desorption (EID), photodesorption (PD), and field
desorption (FD). In the present study we formu-
late a theory of thermal desorption processes,
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which exhibits explicitly the dependence on the
rates on parameters characteristic to the adsorp-
tion system.

To facilitate our discussion we specify the fol-
lowing ingredients of the theory (a) coupling of an
atom or a molecule to the surface, (b) substrate-
induced thermal-energy transfer and excitation,
and (c) temporal evolution of the system, i.e. ,
time evolution and calculation of reactional prob-
abilities and rates. Accordingly, the organization
of the paper is as follows: The Hamiltonian and
couplings are derived in Sec. II. Models of the ex-
citation mechanism and temporal evolution yielding
expressions for reaction rates are discussed in
Sec. III. A systematic analysis and discussion of
results of the models and further remarks are
given in Sec. pJ.

II. HAMILTONIAN AND COUPLINGS

A. Hamiltonian

The first step in our formulation is a statement
of the Hamiltonian of the system. The total Hamil-
tonian of the adsorption system may be written as

8= TR + T„+V(r, R}, (2.1)

where T, and TN represent kinetic energies of
electrons and nuclei of the system (molecule and
substrate) and V(P, R), various contributions to
the potential energy (r={r„,rd], R-={R„,Rg,
where r„and r, are the electronic coordinates of
the adsorbed molecule and solid respectively, and

8„,R, the corresponding nuclear coordinates). In
the adiabatic approximation the total wave function
is taken as27

())(r, R) =$(f', R)}f»(R). (2.2)

The electronic wave function satisfies the equation

[ TR + V(r, R)] (II) ( r, R) = g, (R)(t) (r, R) (2.3)

(d(R)=$ f dxd (- x x'„)d, (2.5)

and the summations are over all the nuclei. The
effective potential [expression in square brackets
in Eq. (2.4}] for the nuclear motion is dominated
by the electronic energy e, (R) and the term V'(R)

solved for fixed R, where the direct interaction
between nuclei is included in V(F, R). The equa-
tionfor the nuclear motion can be found varia-
tionally28

( X„+[X/8)y) ( )])XX(R)= X (R)
„ i 2M„

(2.4)

where

is small. It is interesting to note here that the
exact eigenvalue z,~„is bounded between z» [the
solution to Eq. (2.4)] and z „' [ the solution to Eq.
(2.4) with V'(R) neglected]; i.e. , z» ~hexad(~E». '

At this stage the electronic energy e, (R) may be
modeled in the following manner. First one identi-
fies in e, (R) those components which correspond to
intramolecular bonds and to binding between atoms
of the molecule and a localized region in the solid.
The electronic interactions for a fixed configura-
tion of nuclear molecular coordinates {R„]and
solid nuclear coordinates {R,j determine the ad-
sorption potential between the solid and the ad-
sorbate. We separate the interaction into two
parts: one in which the solid is kept stationary
and the other where the solid is allowed to vibrate.
It is via the latter contribution that an energy ex-
change between the molecule and solid (which may
eventually yield desorption or dissociation) be-
comes possible. The first contribution to these
s bond potential energies" may then be modeled by
some analytical potential formulas such as a
harmonic well, a Morse potential, or other sug-
gested potential formulas. The rest of e, (R), i.e. ,
that part which can be identified with the solid co-
ordinates, may then be replaced by a certain
model of the solid [remember that internuclear
interactions were included in e, (R)].

The corresponding nuclear-motion equations
(2.4) may then be solved with the above-mentioned
model replacement for e, (R), and their solutions
provide the vibrational spectrum for the modeled
system.

B. Coupling

In this section we derive, under certain ap-
proximations, an expression for the coupling be-
tween a point charge (of charge + Z„e,where Z„
is the effective charge of the ion) adsorbed at a
distance z& from a metal surface and the fleets
aNng part of the metal substrate. As discussed
previously, in the model in which we develop the
role of the electronic (including direct nuclear in-
teractions) energy is to establish a bounded
molecule-solid system characterized by, for
example, a Morse potential with an equilibrium
distance d& of the atomic constituents from the
surface, with an associated manifold of vibra-
tional levels.

To make the calculation tractable and yet pre-
serving the essential physical features, we model
the surface in the following manner. %'e consider
an electron gas bounded by an infinite potential
barrier (Fig. 1). The static ions are then placed
within this potential and the first plane is posi-
tioned at a distance I.—z, with zo- 0 from the
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6u~(r) = Z"„Z,&
(r —r')

(2.8)

5u, (r) = —Z„ZP2
( r —r')

with Z~z and Z, and atomic charges (possibly
screened) of the adatom and metal iona, re-

(2.7)

potential barrier, where L is the linear dimension
of the slab.

Vfe now relax the static ions and allow them to
fluctuate by emitting phonons. Denoting such a
density fluctuation of the ions as 5n~(r) and the
electronic response to such a fluctuation as
5n, (r), the coupling may be written as

v (r) = 5u~ (r) + 5u, (r),
where 5u~(r) and 5u, (r) are the fluctuating ionic
and electronic interaction potentials with the
adsorbed charge (+ Z„e)positioned at r; i.e. ,

spectively. The position vector r of the point
charge is set equal to z, + L in Eqs. (2.6) and

(2.7), where L is the thickness of the sample
(Fig. 1). We choose next a wave vector q of the
fluctuating ionic background and express the
single Fourier component of the density fluctua-
tion as

5n~(z, r~~ ) 6ny(q, , q~~ )

x exp[f(q, z+qg rg)] +c.c. (2.8)

In the following we omit writing explicitly the
parallel components r„,q„from 5n~ due to trans-
lational invariance in planes parallel to the sur-
face, and denote 5n, (z) =5n, (z,r„)and 5n, (q,)
—= 6n,(q„q,~} It is convenient to define an extension
of 5n, (z) (see below} by an even function 5nt(z)
such that for z in the range (-L,O), 5n~(z) = 5n~(-z).

The potential v(r) (for r =z& + L) can be evalu-
ated yielding

5n~(r') 5n,'(r'}
v(z, + L) = Z "„Z,e2 d r,', dz'

jz, +L —r'[ [z, +L —r'I

=2 z" z e'e '»'x ' ' — ~n'(a
&)

.A 4 q2 +q2 P2 +q2 8 j (2 9)

a -- a a' = 5f (p r ) = =f (~ ) ' =5s(r)
m Br '

Pp ' ' Pr (2.10)

where z~=p'/2m, fo(e~) is the Fermi-Dirac dis-

2=0 Z=L

[In Eq. (2.9) we have neglected exponential terms
like e ~ and also recall that, e.g. , 5n,'(k, )
=-5n,'(k, , Q„).] Note that the sum over k, in Eq.
(2.9) reflects the fact that the electronic charge
density responds with all 0, values to the single
Fourier component of the background fluctuation
in Eq. (2.8).

Our final task is to evaluate the sum over k, in

Eq. (2.9). To do that we treat the electrons semi-
classically, which amounts to solving the linear-
ized static collisionless Boltzmann equation'

tribution function and 5s(r) the self-consistent
field given by Eqs. (2.6) and (2.7) (with Z„omit-
ted).

The electron density 5n, (r) is given by

6n, (r) = . , f(p, r) . (2.11)

The boundary conditions dictated by the infinite
barrier at the surface are those of specular
reflection.

5f(P, , z = 0, L) = 6f( P, , z = 0, L) . — (2.12)

The solution of Eqs. (2.10}—(2.12) is not difficult"
and we present in the following only the key rela-
tionships. It is convenient to extend the definition
of Eq. (2.10) to the range (- L, L) by defining the
primed quantities 6u'(z), 5f'(P, , z), . . . as even
function extensions of 5M(z), 5f(P, , z}, . . . . A
Fourier transformation of Eq. (2.10) yields

0 0 0 0 0 0 0 0

(} 0 0 0 0 0 0 0 0 &)

() 0 0 0 0 0 0 0 0

i) 0 0 0 0 0 0 0 0

f'( )= " ' '(
6p

where
1 L

6f'(p, , k, ) -=— dz e''i'5f'(P, , z)

(2.13)

(2.14)
Z=Z0 Z=L-Z0

and
FIG. 1. Model adsorption system. The electron gas

is bounded in a slab of linear dimension 1.. The first
plane of substrate ions is located at z=I —zo with zo

0. The adsorbed ion is located at z=I.+z&.

k, =nv/L, n=0, s 1, +2, . . . .
6N'(k, } can be easily derived from the even ex-
tension of Eqs. (2.6) and (2.7) and is given as
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6u'(k, ) =
6u p(k, ) +V(k, )6n,'(k, )

(2.15)q„v(k,}~~ 6n,'(k,')
I2 2~ O,' +q„

where V(k~) —= 4ve2/(k2 +q2) and the sum over k,'
is over even integers if k, is even and odd in-
tegers if k, is odd. We note from Eqs. (2.13)-

(2.15) that the solution of Eq. (2.13) satisfies the
specular reflection boundary condition automatical-
ly which was the motivation underlying the exten-
sion of the functions from —L to 0. Integrating
both sides of Eq. (2,13) over p and using Eq. (2.15)
for 6u'(k, ) gives the following self-consistent
equation for 5n,'(k, ):

[1+v(k )N(0)] 6n', (k, ) = —N(0)6up(k, )+v(k~)N(0) —"~ k, 2',, A, +q„
L

(2.16)

where the density of states at the Fermi level N(0) is
af, (p, ) d'P

Bop (2&)P
'

Dividing both sides of Eq. (2.16) by 1+v(k )N(0), multiplying by (k, +q„)', and summing over k, we can
finally solve for the restricted sum over k,' to give the final form

N(0), q„N(0)V(k, ) ~. 1 6u,'(kJ
1+N(0)V(k ) DL W 1+N(0)V(k,')k,"+q„ (2.1V)

t

where
q„~, N(0)v (k,' )

(k,'2 +q2)[1+N(0)V(k,')]

2(q'+W )'"[ +(q'+&' )"'] (2.18)

6np(r) = Q 6np(q)e'p' '
e

and 6np(r) is given as '

6np(r) = —Z,n q pD,

(2.21)

(2.22)

where

X'r =4ve2N(0),

4ne2
6up(k, ) = 6np(q, )

2

q,'+q, ', ' ' ' L(q,'+q, ', )(q,', +k, ))

(2.19)
and TF represents Thomas- Fermi. Substituting
Eq. (2.19) in Eq. (2.17), the sum over k, in Eq.
(2.9) may now be evaluated yielding our final ex-
pression for v(z&+L):

v(z&+L) =v(z&)

„Z,Z2e& 6n(qp, ) exp( —q„z,)
(q2 +q„)D

2

(2.20)

Within the context of the infinite surface barrier
as a model for the static semi-infinite crystal the
generalization of Eq. (2.20) to include crystallinity
of the substrate would involve simply treating
6np(q, , q„)in terms of the phonon crystal propa-
gator. In the present calculation we, however,
would use a continuum Debye model of the solid.

In a continuum model of the solid the Fourier
components of the positive background number-
density fluctuations, 6np(q) see Eq. (2.8), are
defined by the relation

where no is the ionic number density of the solid
and D is the displacement of the background from
its equilibrium position. From Eqs. (2.21) and

(2.22) it follows that

6n, (q„q„)—= 6np(q, }
( g 1/2

=Z, np~ q(b;+b~), (2.23)s 0 &2M no&co

where M, is the atomic mass of a solid atom, g
is the volume of the solid, and b; (b;) are the an-t

nihilation (creation) operators of a phonon of wave
vector g and frequency &a;. We now express the
instantaneous position of the adsorbed atom z, as
z f dq +u), where d& is the equilibrium distance
of the atom from the surface, and expand the
exponent in Eq. (2.20) as

e '~~'~ = e '~~~&(1 —q„u,+ q,', u, + ~ ~ ~ ) . (2.24)

1 y i 1(

5v2(q;u) =g '2'u2(b; + b~ ), (2.26b)

where 6v&(g;u&) is the potential corresponding to
bilinear coupling between the vibrations of the
atom and the phonons of the solid. Assuming for
simplicity an acoustic continuum model for the
solid, i.e. , ~, = sq, where s is the sound velocity,
g-'~' in Eq. (2.26) is given by

Substitution of Eqs. (2.23) and (2.24) into Eq. (2.20)
yields an expression for v(z, ), which may be writ-
ten as

v (zg) = vp(g'd~) + 6vg(q;u&) + 6v2 (q;uf) + ~ ~ ~

(2.25)

6v qu )=g."'u (b +b -), - (2.26a)
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1/2 ( Q 2

q2+ ~21' 2(q~2+ 2)1/2[q+(q2+g2)1/2]g2 (2.27a)

where
1/2

F =2 Z, Z„' '(
i2M, g~ s (2.27b)

The above derivation of the vibrational coupling
can be applied to any of the atoms of the molecule
which interacts with the surface by simply using
the appropriate effective atomic charge Z„and
equilibrium distance d, . For the sake of sim-
plicity, we will limit ourselves in the following to
a single adsorbed atom (the extension to a poly-
atomic molecule is easy and will be presented
elsewhere). Our results can be summarized by

writing the Hamiltonian for our model system as

a =E0+a0+H',

H'=Q v(z, ),
j

(2.28a)

(2.28b)

[the index i in Eq. (2.28b) simply generalizes our
coupling to several adsorbates] where e,' is the
electronic energy (including direct nuclear-
nuclear interactions) for equilibrium nuclear
positions and 8

„

is the zeroth-order Hamiltonian
for the adsorption syst: em

Ho = g Ro; (b; b; + —,') + g H„ (2.29)

C. Transition rate

where the first term on the right corresponds to
the harmonic solid (and in our model a Debye
model is employed), and the second term corre-
sponds to the vibrational energies of intramolecu-
lar and chemisorptive bonds (the m summation
extends over all bonds). The last term [Eq.
(2.28b)] in Eq. (2.28a) contains couplings between
the vibrations of intramolecular and chemisorptive
bonds and fluctuations in the solid, see Eqs.
(2.25)-(2.27). We note that in a more refined de-
scription local modes due to the adsorbate could
be included.

where we sum over phonon final states n,' and

average over phonon initial states n, using the
probability distribution P(n ).

In order to evaluate 5'„„.we need to specify the
manner in which we model the vibrational spectrum
of the adsorbed molecule.

(i) In the crudest approximation the vibrations
are modeled by harmonic oscillators, truncated
at the appropriate predissociation levels (see
Sec. III). Keeping only terms up to bilinear
coupling [bv„seeEq. (2.25)] allows only for
single quantum transition (v —v s 1), accompanied
by the absorption (emission) of a phonon. Denoting
the harmonic frequency by ur„bv, in Eq. (2.26a)
can be written as

1/2
bv|(q)=g"' (a+a~)(b~+b -),

(2.31)

where M„is the mass of the adsorbed atom and
a(ai) are creation (annihilation) operators of the
harmonic-oscillator states. Substitution of Eq.
(2.31) in Eq. (2.30) yields for the transition rate
between levels

2m
Wy „,i = — (v + 1)

2+0 M„

where the phonon occupation number is given by

H~& ——[exp(Plf&u~) —1] ', P =(ksT) i. For an iso-
tropic Debye model of the solid, i.e. , co, =sq, and

a cutoff frequency ~D given by Suro=ksqo =kO~
where O~ is the Debye temperature, we replace
the summation over q by an integral. Using the
energy-conservation Dirac delta function and

cylindrical coordinates the integration is straight-
forward, yielding

The final quantity which we require before
turning to the stochastic evolution of the system
(see Sec. III) is the transition rate between vibra-
tional levels of the adsorbed system. These tran-
sitions occur due to the coupling Hamiltonian H'

in Eq. (2.28a). To lowest order in perturbation
theory the transition rates can be calculated by
the golden-rule formula

~ (k)
o v+1
v+1 —

0

Sv e (Z„'Z,)'n,'Xrv
M~M~&o3v(q20+Azr)2 "~0 i+ 2+ s

d

J,= x~ exp( —2K~|x)dx,
0

(2.33a)

(2.33b)

w„.. =—' g p(n ) I(v', n'IH'Iv, n, ) I2

net ne

x 6(fy —E„+E„E~),n
fthm

(2.30)

d

Z2 ——2 J
x ~ exp(- 2Xrrd|x)/[ 1 + 2x2 + 2x (x2 + I)i / ]dx,

0

(2.33c)
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b

J,= x'exp(- 2x~x)/(I —4[1+x'+x(x2+ I)'~'] +4(1 +x')[1+2x'+2x(x'+ I)' ~'] }dx,
0

(2.33d)

(2.35)E„=K(00(V —xgv }—Dg,

and therefore the vibrational level spacing is

4e„,,~
„——Crea [1—x, (2v+ 1)] . (2.36)

Using Eq. (2.30) for W, „.with H' given by Eqs.
(2.28b), (2.25), and (2.26a), i.e. , to linear order
in u, (the derivation of the bond length from
equilibrium), we observe that we need to compute
the matrix elements l(v'lu, lv)l~, where lv) is the
Morse eigenfunction corresponding to q„in Fq.
(2.35). These matrix elements have been calcu-
lated by several authors. 'I While the results
given in Eqs. (21)-(24) of Ref. 35 are valid for all
v, v' we will be interested only in nearest and next-
nearest level transitions, i.e. , v —v+1 and v —v
+ 2. In addition the expressions simplify signifi-
cantly in the approximation (v'+v")x, « I, yield-
ing"

l( v + 1
l u( l v) l

= (d(B /m 0) (v + 1)[ 1 +x (1 + v)]

(2.37)

l(v+2 luilv) I'=(de. x./4~, )(v+»(v+2). (2.38)

The expression for the transition rate between
Morse levels v and v' can now be written as

W(Afk g (i) 2g vl gg v

where equal sound velocities for transverse and
longitudinal modes have been used, 5 =qQI /Xrv,
(qv„=-,qv), and sq, =~, Th. e integrals J, and Z,
are easily computed by numerical quadrature.
The superscript (h) in W„'~',, &

is introduced in
reference to the harmonic-oscillator model. An
analysis of the dependence of the transition rate
W,'~'„&[Eq. (2.33a)] on characteristics of the
adsorption system is presented below.

(ii) As an improved model of the bond potential
energy between an adsorbed atom and the surface,
we consider the Morse potential 3

z, (z —d, ) =D, fl —exp[ —P(z —d&)] j2 —D, , (2.34)

where D, is the dissociation energy referred to the
minimum, d& the equilibrium distance of the ad-
sorbed atom from the surface, and the parameter
P determines the width of the potential. Qne often
defines the anharmonicity parameter x, =garo/4D,
where mo is the vibrational frequency for infinite-
simal amplitudes (x, is often determined empiri-
cally). The eigenvalues of the one-dimensional
Schrodinger equation with the Morse potential are
given by34'35

where

and

BA ((o,)
A (~,) 8~,

(2.40)

(2.41)

W (v) "'' =-,'x, (v+1)(v+2)A(2&v, ), (2.42)

where A(~, ) is given in Eq. (2.33).
To demonstrate the dependence of the transition

rates between vibrational levels on the model of
the potential well, the temperature and charac-
teristics of the adsorption system such as the
equilibrium distance and fractional charge on the
atom, we present the numerical evaluation of Kqs.
(2.33) and (2.34) in Figs. 2-4. In Fig. 2, the vari-
ation of W. .. for potassium adsorption on tung-
sten, 3' with temperature and model potential is
displayed. The differences between the results
using harmonic and Morse potentials are evident.
Note that for the Morse potential W, 2» W& 3. In
addition the transition rates between high-lying
vibrational levels in the Morse potential are much
larger than between the bottom-lying levels. This
indicates that transitions between the low-lying
levels may be the bottle neck in the incoherent
multiphonon evolution of the system (see Sec. III).
The marked dependence of the transition rates on
temperature should aI.so be noted, and is as-
soc iated with the temperature-dependent phonon
occupation number Fs~, .

Similar dependences are seen for xenon ad-
sorbed on tungsten" ~' (Fig. 3) where in addi-
tion the sensitivity to the equilibrium distance d&

and fractional charge on the atom are demon-
strated. Finally, in Fig. 4, W„'",', , as a function
of the level number v for Xe/W system at T
=100 K is shown to increase markedly. The in-
fluence of these results on the rates of desorption
will be investigated in Sec. III.

III. EVALUATION OF FIRST PASSAGE TIMES FOR
THE TRUNCATED-HARMONIC-OSCILLATOR AND

MORSE-POTENTIAL MODELS

Using the matrix elements given by Eqs. (2.37) and
(2.38) and the Debye model for the solid we obtain
to first order in the anharmonicity x, the following
expressions for v' =v + 1 and v + 2,

W(ht)' "' =A(ufo) f 1+x, [(v+1)—(2v+1)B(&oo)]j,

x 5(zq. —E~ —)f(d~ }. (2.39)
Having obtained explicit expressions for the

couplings between the adsorbate and the substrate
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FIG. 2. Transition rate (W„„.) vs temperature for
potassium adsorbed on tungsten. The parameter used
in the calculation: fractional charge on the potassium
z& —0.27e and equilibrium distance of the adsorbate
from the substrate, df = 2.38 A, were chosen after Ref.
37. The transition rate, W„„,f, for a harmonic-well

description of the chemisorption bond, is marked by
solid dots, usiag a vibrational quanta Sg= 13.7 meV
rafter L. M. Kahn and S. C. Ying, Solid State Commun.
16, 799 (1975)]. The rest are results of calculations

(N)employing a Morse-potential description, for Wf

3 2f 8 2fs and W2f 8 220, where e = 220 is the predis-(e) Gv) (N)

sociation level. Note the change of scale in +'f 3 The
Debye temperature of the substrate was taken as eL)
= 220 'K, the electron number density of the substrate
was n~= 38 X10 cm and x,= 6.5 &&10

I I I I I I I I

100 300 500 700
tK)

I

900 1100 1300

FIG. 3. Transition rates, W„„., using both harmonic
(dashed) and Morse (solid line) potentials for Xe ad-
sorbed on tungsten, vs temperature. The harmonic vi-
brational quanta S(do was chosen as 3.0 meV. The sensi-
tivity of the transition rates to variations in the equil-
ibrium distance df (in A) and fractional charge on the
adsorbed xenon are shown. The substrate parameters
were taken as QD=220 'K, n, =38 X10 cm 3, and x,
=1.25 &10 '.

and for the rates of transitions between vibra-
tional levels of the binding potential, induced by
the couplings, we turn next to the temporal evolu-
tion of the excitations. Since for most systems of
interest the allowed quanta of excitation, dictated
by the characteristics of the phonon spectrum of
the substrate are much smaller than the barrier
for bond rupture, an incoherent multiphonon
mechanism is formulated. This, however, is ap-
plicable to systems in which the spacings between
vibrational levels of the potential associated with
the reaction coordinate do not exceed the maxi-
mum phonon frequencies. When the above is not
satisfied coupling may occur through a mode other
than the bond-rupture reaction coordinate which
serves as a "doorway" state (see Sec. IV).

Consider an oscillator system with z, (t) the
distribution describing the population of vibronic
levels n at time t. The time evolution of this dis-
tribution is governed under certain approximations
by a master equation4'

1012

I

10"

1010
10 30 50 ?0

v (LEVEL NUMBER)

90 11P

FIG. 4. Morse transition rate, W„'~„,f vs level num-
ber v, for Xe adsorption on tungsten, at T=100 K. The
equilibrium distance was taken at df -—2.0 A. and fraction-
al charge zz= 0.04e. Note the monotonous increase in„,f as ~ increases. The substrate parameters are
as given in the caption to Fig. 3.

(3.1)

where N is the predissociation level, 9
„

is the
transition probability per unit time from m to n.
In the above equation second-order terms due to
recombination are neglected. The initial distribu-
tion (t=0) is normalized according to
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x„(0)= 1, (3.2)
that in our case the exchange of excitation is with
a solid characterized by thermal occupation num-
bers

N

x„(0)=8 e'n Q e e'e.
n=o

(3.3)

For the calculation of the reaction rate we will
be interested in the mean time for the system
specified above, to pass the Nth level for the
first time i e —, th. e.mean first passage time, i.
The distribution of first passage times P(i) is
given by4'

and the x„(0)'sare given by a Boltzmann distribu-
tion at temperature T; i.e. ,

n„=[exp(goo, /k T) —I]

I +iel p+ 2eo p+ ii+
DpDp i Dp Dp, i

(3.7)

Consequently contributions corresponding to tran-
sitions between the Morse-potential levels must
be weighted appropriately. Starting from Eq. (6.6)
of Ref. 42,

d
'

P(f) =
d Q xn(t)

and i is the first moment of P(t); i.e. ,

t = tP t)dt.

(3.4)

(3.5)

with Qp, up, and Dp given by

q — e-~&n
p'

(3.Sa)

An expression for the mean first passage time for
an initial population distribution x„(0)= 6„ofor a
truncated-harmonic-oscillator system and transi-
tions between neighboring levels only, was first
given by Montroll and Shuler. ' This has been
generalized by Kim42 for the Boltzmann initial
distribution [Eq. (3.3)] for both a truncated har-
monic and Morse oscillators with nearest- and
next- nearest- neighbor transitions.

(i) For the truncated harmonic oscillator the
result is4~

u = x„(0) (3.8b}

D =hp, ) p +h, 2 +h, i p (3.8c)

—B( oe)(o2p+ I)]je e'e. &,

h .2,
——A(2&go)(x, /4)(p+1)(p+2)e e'e o,

(3.9a)

(3.Bb)

see Eqs. (4.13), (4.4), and (6.1) in Ref. 42, and the
h „given explicitly by

he, , e =A(ooo)(P+I)

x 11+x,[{p+I)

N+

t &o& ( +1) &(ere 1-)(1 —s-ee)~ th) (I s -e)

(3.6)

he, , e q
——A(2(uo)(xe/4)p(p+1)e e'p

we obtain

(3.9c)

with 8=h&ugkT, where &oo is the harmonic-oscilla-
tor frequency.

(ii) To obtain an expression for the mean first
passage time out of a Morse-potential well t '"'
with transitions between nearest and next-nearest
levels, we adopt the methods developed by Kim.
The generalization of Kim's result [Eqs. (6.15)
and (6.16) of Ref. 42] amount to taking into account

l

t '" ' = t o + [x,/A ((oo)] t, . (3.10)

(3.11)

In Eq. (3.10)
8+1 g6I+a g s P

(I s-ee)o
A((uo) e, P

where 8= (Iso/kT ), A(&uo) is given by Eq. (2.33a),
and a= I/(ee —I). t, in the above equation is given
by

t, =A(&oo) to [a8(1+2a) +Z(&oo)/[4(1+a)] —B(ur )]o+e "' '
—,'Z(&uo)[2+a/(I +N) +3a]

Ã+i
ee'e [ I +a+-,'Z(a&o)(3 +4a) —2(1+a)B(&oo)] —N8(N'+1)(1+a)

n

+ (2N a)[1+a—+ —,
' Z(&oo)(1+2a) — 2(1+a)B(&oo)] +28a(1+a)(1+3a—2N) — Z (&oo)(1+a), (3.12)

where

A(2(do) no(go ( qo +3/
A(~o)

= n„ i4q oo+
and sqo —wo.

(3.13)

In the stochastic formulation of nonequilibrium
kinetics which we have employed, the reaction
rate R is given by the inverse of the mean-first-
passage time f (see also discussion in Sec. IV).
Results for the rates of desorption of potassium
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10I

1 I I I

and xenon from a tungsten substrate are shown in

Figs. 5-7. In Fig. 5 results for the two models of
the binding potential (harmonic —solid line, and

Morse —dashed line) using experimentally3' sug-
gested values for the desorption energy D, = 2640
meV, equilibrium distance d, =2.38 A and frac-
tional charge Z„=0.27e are compared, along with

the experimentally obtained'4 rate, given by R
=10"'x exp( D,/k-T) (open circles). It is evident
that the results for the Morse-potential and
truncated-harmonic-oscillator models yield both
an Arrhenius-like straight line in the semiloga-
rithmic plot of R vs 1/T. The pre-exponential
factors, however, differ markedly with the Morse
potential in agreement with experiment. It should

be noted that the differences between the two
models are less pronounced than those which
were exhibited in the transition rates (see Figs.
2 and 3). Similar results, with a somewhat less
pronounced difference between the two models and
in agreement with experiment are shown for
xenon desorption from tungsten (with the param-
eters given in the figure captions) in Figs. 8 and 7.
In Fig. 7 the rather weak dependence of the results
for the rate of desorption on the equilibrium
distance parameter is exhibited.

IV. DISCUSSION AND PERSPECTIVES

%e have formulated a theoretical model for the
calculation of desorption rates of an adatom from
a metal surface. The formulation relied on sev-
eral key stages: (a) the evaluation of the coupling
between the solid and the adatom induced by the

d
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FIG. 5. Semilogarithmic plots of desorption rates vs
inverse temperature for the system potassium adsorbed
on tungsten. The desorption energy D, was taken as
2.64 eV after Ref. 37, and the rest of the characteristic
parameters are as given in the caption to Fig. 2. The
experimental points (open circles) were taken after Ref.
37, R(T)=10 '8&&exp( —D /kT). Both the Morse potential
(dashed) and truncated harmonic (solid) yield linear re-
lationships in the plot of ln R(T) vs inverse temperature,
parallel to one another (same activation energy for
desorption) but with different intercepts (frequency fac-
tors). The results based on the Morse-potential de-
scription of the chemisorptive bond are in better agree-
ment with the experimentally deduced results than those
derived from a truncated-harmonic potential.

i

0 2 4 6 B 10 12

IOOO/T ( K)

FIG. 6. Semilogarithmic plots of desorption rates
R(T) vs inverse temperature for the system xenon ad-
sorbed on tungsten. The characteristic parameters are
those given in the caption to Fig. 2 and the desorption
energy D, was taken as 217 meV after H, ef. 38. The ex-
perimental points (open circles) were calculated from
the rate expression given in the above reference R(T)
=1iii& xexp( —DJQTI. Results obtained by using Morse
(triangles) and truncated-harmonic potentials (dots) are
shown.
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FIG. 7. Semilogarithmic plots of desorption rates
R(T) vs inverse temperature for Xe adsorbed on tung-
sten, characteristic parameters are as in Fig. 4 with
D,= 300 meV. Results are shown for both truncated-
harmonic (solid and open dots) and Morse (triangles
and squares) potentials. The apparent slight sensitivity
of the rates to the equilibrium distance of the adsorbed
atom from the surface is shown.

nonstationary substrate, (b) the stochastic inco-
herent multiphonon mechanism of excitation, and
(c) the coupling to the final-state channels. From
the results presented in Figs. 5-7, it is apparent
that the model provides a rather adequate descrip-
tion of desorption for both weak (Xe/W) and strong
(K/W) chemisorption systems. The principal
merit of this model is that it exhibits explicitly
the dependencies on various microscopic quanti-
ties characteristic to the substrate and adatom.
Due to the complexity of the problem, our model
relies on a number of simplifying assumptions
certain of which we enumerate below: (a) the
substrate was modeled as a continuum structure-
less solid, (b) surface phonons have been ignored,
(c) the electron response to fluctuations of the
ionic charge was calculated semiclassically (quan-
tum interference effects neglected) and with specu-
lar boundary conditions imposed, (d) electronic
band-structure effects were ignored which im-
plies weak electron-ion coupling in the substrate,

(e) bilinear coupling between the nonstationary
adatom and substrate was used in the numerical
examples and transition rates due to these cou-
plings were calculated using the Fermi golden
rule, and (f) an immobile adsorbate was assumed.
The inclusion of adsorbate migration on the sur-
face will add an entropy correction to the rate ex-
pression. Virile further improvements within this
model are possible, the present study allows for a
first evaluation of the sensitivity of desorption
kinetics to the various microscopic parameters.

The standard approaches to reaction kinetics,
such as absolute rate theory' (ART) and the vari-
ous statistical methods'0 (e.g. , RRKM) rely upon
certain criteria of applicability. The main re-
quirement of the above is that the initial and final
(or transition complex) states are uncorrelated. 2

As discussed originally by Kramers' and further
investigated recently, '3'4'43 the applicability of
ART is related to the strength of the fluctuating
part of the coupling (friction in the nomenclature
of the above studies) between the adsorbate and
the adparticle. The analytical results obtained'
in the limits of small and large coupling support
the assertion that the applicability of ART is
limited to an intermediate regime of the coupling
strength. In this regime the coupling is strong
enough as to replenish instantaneously the equilib-
rium Maxmellian tail of particle momenta, nec-
essary for surmounting the reaction barrier, and
thus the rate becomes independent of the coupling.
Outside this regime the Arrehnius behavior of
the rate constant gets modified by multiplicative
factors which vary with temperature. Our calcula-
tion of f [e.g. , in Eq. (3.6)] in principle assumes
the weak-coupling regime since our transition
rates g„„,, are treated to lowest order in per-
turbation [e.g. , Eq. (3.30)]. This assumption of
weak coupling has internal consistency in that our
low-order treatment does yield good agreement
with experiment (Figs. 6 and 7). While clearly the
interplay between the temperature dependence ofW„„,and the usual statistical occupations [the
sum over j in Eq. (3.6)] is a complica, ted one and
cannot rigorously reduce to an Arrehnius-like
form our numerical results (displayed in Figs. 6
and 7) give a measure for the weak deviation from
such a behavior. This conclusion cannot be in-
ferred directly from the evaluated transition
rates alone (Figs. 3-4) but requires an analysis
of the rates. In this context it is important, how-
ever, to notice the dependence of the results on
the model potential used (truncated-harmonic vs
Morse potentials), and that the difference in rates
of desorption corresponding to the two model po-
tentials is smaller than that exhibited in the as-
soc iated level transition probabilities.
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The stochastic treatment of the time evolution
of the vibrational excitations leading to desorption
which we have used, is a convenient formulation
of nonequilibrium kinetic processes. In the
equilibrium theory the rate constant depends only
upon transitions which couple bound vibrational
levels directly to the dissociated state, 42 N +1,
and similar to the basic assumption of ART there
is no dependence on the details of the excitation
mechanism. The first passage time t calculated
via the stochastic nonequilibrium formulation does
not in general equal the reciprocal of the equilib-
rium rate constant. 42 One limit in which the above
equality holds is when the energy required for a
transition is large compared to the available
thermal energy. This condition was not obeyed
in our cases. Thus, it was necessary to investi-
gate the full stochastic behavior.

The order of coupling in our model should also
be commented on. While we have used bilinear
coupling [E(l. (2.26)], a generalization would in

principle allow treatment of higher-order cou-
pling terms. In this context we could argue that
by a proper transformation of the coordinates
(RE) and (R„)the bilinear coupling term could be
removed and the frequencies of the substrate-
adatom system renormalized accordingly. The
coupling enters now through the new frequencies
in these transformed canonical coordinates. It is
now, in principle possible to calculate desorption
rates with the simple assumption of a Boltzmann
occupation of these new levels, and with proper
retransformation of our coordinates to define the
stage of dissociation. Such a calculation is ex-
pected to yield similar results to ours (particular-
ly in the weak coupling limit) but it is rather com-
plex and has not as yet been carried out for the
model systems discussed in this study.

A detailed investigation of reaction mechanisms
requires an analysis of the reaction products. In-
deed a well-established practice in gas-phase
kinetic studies44 is to perform state-selective
measurements, i.e. , identification of products,
their center-of-mass translational energies, and
excitation of internal degrees of freedom. This
mode of investigation is not common practice in
current studies of surface reactions. In most, if
not all, studies to date the experimental informa-
tion consists only of mass, and in certain cases
angular, distribution of the products. In the fol-
lowing we remark briefly on the possibility of
final-state branching and suggest methods for its
evaluation.

Having achieved the (N+ 1)th level, (t(„,&, whose
energy Eg f lies above the dissociation energy,
the system may evolve via several channels. For
example the Q„,f state may decay into the trans-

lational continuum which corresponds to desorp-
tion, it may couple to a manif old of bound vibra-
tional states associated with an excited electronic
term or to a bound vibrational manifold or trans-
lation continuum corresponding to binding or dif-
fusion along the surface. The problem is formally
similar to that encountered in the study of auto-
ionization and predissociation~~' "phenomena,
and applied also to the study of radiationless tran-
sitions in molecules4 " and photodissociation
for which a number of methods of solution have
been suggested. In the following we outline re-
sults obtained through the use of one of these
methods. '48 Consider the case in which the ex-
cited vibrational state Q~, f is embedded and

coupled to two manifolds of states: (i) a manifold
of bound vibrational states, (()(„)associated with
an excited electronic state of the adsorption sys-
tem, (ii) a translational continuum, (4). These
two manifolds are assumed uncoupled to one
another. Coupling of (t(„,, to (((ig is achieved via
the nonadiabatic nuclear-kinetic-energy terms in
the total Hamiltonian, and the corresponding ma-
trix element will be taken as a constant vf. The
matrix element coupling Q„,f to the translational
continuum ()E) is denoted by v2. The manifolds
are normalized with ( P„!H! P&)

= 5„&E„and
( )E!H! )E,) =E5(E—E') The co. nfigurational
mixing of ft)„,f with the above final-state mani-
folds results in a stationary state 4E, given by

(d(d i+ 1 d„(E(d„+fc (d(( .dd',

(2O 2

P (t) dEe-(cE/hl(t -t) ja(E)!2

(4.2a)

(4.2b)

oo (20 2

P (t)= dE' dEe "E "'" "a (E)C, (E)
((o oo

(4.2c)

where t is the mean first passage time calculated
in Sec. III, i.e. , the mean time for "preparation"
of the system in state Q„,f. In addition I'~+ I'„
+ P& ——1. U'sing the by now standard methods '5'
with the appropriate scattering boundary conditions

(4.1)
where the vibrational energies of the (P„)mani-
fold are taken as E„=E„,, —o. + m, n = 0, a 1,
a2. . . etc. and a=Ed' f Ep .

The probabilities for finding the system in the
vibrational manifold (P„),P,(t), for remaining in
((((„,„Ph(t)and for being in the translational con-
tinuum, PI(t), are given bys2

((o CO 2

P„(t)=g dEE "Eh'" "a (E)b„(E)
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closed form approximate solutions can be ob-
tained in the "statistical limit, "'0 i.e., for time
t, such that r= t —t-«g/e,

P (r)= ' (I —e ' ")lvgl
F lv l2+~ lv l2

P~(r) = exp( —r/I'),

(4.3a)

(4.3b)

(4.3c)

(4.3d)

If the decay into the final states is fast the above
expressions allow us to follow the reaction through
its evolution. It is seen from Eqs. (4.3c), (4.3a),
and (4.3b) that the average lifetime of the P„,,
state is given by I where I' is given by Eq.
(4.3d). Thus, if a two-step process is postulated,
i.e. , preparation of the excited Q„,& state fol-
lowed by coupling to final states, the total rate of
desorption is R = (t + I') '. The probabilities
given by Eqs. (4.3) could be used for the elucida-
tion of the reaction products. The task of evalu-
ating the matrix elements v, and v2 which deter-
mine the magnitudes of the above quantities is the
subject of further investigation. In particular we
should note that in our results transverse motions
of the adsorbates have not been considered. In a
classical sense such motions would correspond to
activated diffusion of the adsorbate near saddle
point of the Born-Qppenheimer potential surface.
Associated with these motions is an activation
entropy which would modify the value of the rate
constant. Indeed recent data for the desorption of
CQ from metals shows pre-exponential factors
much larger than previously measured. 5'

Finally we comment on the application of our
model to adsorbed molecular species. These sys-
tems possess additional degrees of freedom cer-
tain of which are of bond-stretching character and
others which describe bond-bending, wagging, etc.
While the energies typical to molecular bond-
stretching modes might (and often do) exceed in

magnitude those of single-phonon excitation by the
solid, the energies associated with the non-
stretching modes are smaller. Consequently it
is suggested that the latter modes through their
coupling to the vibrations of the solid may be ex-
cited up to high levels via an incoherent multi-

N+i

E-
V p(cu)

Dg
E=O

p(~)

FIG. 8. Schematic picture of the door way-state model
for thermal surface desorption or dissociation reaction
mechanism. A characteristic Debye phonon density of
states p(~) is shown on the left and right. Excitation of
a low-frequency, doorway, mode of vibration (typically
a nonstretching mode) occurs via an incoherent multi-
phonon mechanism. Upon achieving the level E~ the ex-
citation is transferred to the high-lying levels of a
stretching mode (or comibnation of such modes) via an-
harmonic coupling. Further excitation in the dense vi-
brational manifold corresponding to the bond-rupture
coordinate can occur via direct incoherent multiphonon
excitations induced by thermal coupling to the substrate.
The predissociation level is denoted by &z,&. Having
achieved this level the reaction proceeds through coup-
ling to possible final-state channels such as dissociation,
desorption, or migration.

phonon mechanism similar to that used in the
present investigation and subsequently couple via
anharmonicity to the high-lying, densely spaced
levels of the bond-stretching modes. Qnce these
high-lying levels have been populated, the excita-
tion may propagate further via direct coupling to
the substrate, eventually leading to fragmentation
(see Fig. 8). In other words the nonstretching
modes may serve as doorway states towards bond
rupture via intramolecular energy redistribu-
tion. '5 Quantitative studies of this model of
admolecule desorption and dissociation are in
progress.
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