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The assumption of a muffin-tin zero equal to the d-state energy, taken from Andersen’s muffin-tin-orbital
theory, is used in transition-metal pseudopotential theory to derive a simple form for the hybridization
matrix element (EIAld > in terms of a parameter r,, given for all 27 transition elements. Using this
form, matrix elements between d states on neighboring atoms are found to be given by
Viim = NaamP°r 3/(md 5) with 1y, = — 45/, M4, = 30/, and n4s = — 15/(Q2m). Thus for any structure and
nearest-neighbor distance d, we need in addition only ¢ K|W|l?> (fitted to d-band energies calculated
earlier) to provide all parameters needed for an elementary band calculation for any transition metal.
Results are displayed for all. By replacing the free-electron band in this description by an sp band and
equating appropriate band energies, we identify expressions for matrix elements coupling d states to s and p
states. The universal form Vy,,, = M, #r 3'2/(md 7’?) is obtained but the coefficients obtained are sensitive
to the matching procedure. Empirical values 0y, = — 3.11, 7,4, = —2.82, and 7,4, = + 1.35 accord well
with the bands given by Mattheiss for five cubic perovskites.

I. INTRODUCTION

In an earlier study' we extended pseudopotential
theory to transition metals by extending the basis
set in which the electronic states were expanded
to include atomic d states as well as orthogonal-
ized plane waves (OPW’s). This led to a modified
pseudopotential W which coupled plane-wave pseu-
dowave functions and to a hybridization term A in
the Hamiltonian which coupled the atomic 4 states
and the plane waves. Both the pseudopotential and
the hybridization were treated as perturbations.
Moriarty?® utilized a Green’s function approach to
improve the accuracy and has applied it to a num-
ber of properties.

Moriarty® subsequently showed that the tight-
binding matrix elements between d states on neigh-
boring atoms in transition metals could be written
in terms of this hybridization, explaining the re-
lation between these interatomic matrix elements
and an intra-atomic resonance width noted earlier
by Pettifor.! The origin of this relation is easily
seen in terms of a perturbation-theoretic expan-
sion in the hybridization, giving an indirect cou-
pling

<d’lHld>=ng IAEIk_zg;)AId}. (1)

T d 3

The form of Moriarty’s results for the interatomic
matrix elements is also easily made understand-
able by writing E ,=#k%%*/2m and E ,=#%k%/2m.
Then writing the sum over the wave number in Eq.
(1) as an integral, one may continue the wave num-
ber into the complex plane, close the contour in
the upper half plane, and pick up a residue from
the poles at k==k,. A phase factor difference in
the matrix elements in Eq. (1), equal to ¢**'3

where d is the internuclear distance, leads to os-
cillatory terms in the interaction proportional to
e**2® a5 obtained by Moriarty.

In an alternative analysis of transition metals,
Andersen® constructed a muffin-tin potential and
noted that since the flat portion of the potential
occupied so little volume in the metal the choice
of the value of the potential in that region was quite
arbitrary; its value had only a small effect on the
resulting energy bands. He therefore took the
simplest choice, a value equal to the energy of the
d states. Using this potential he constructed muf-
fin-tin orbitals, analogous to atomic states, and
obtained matrix elements between them which
varied with separation as ¢ and which had the
simple ratios of 6:—4:1 for Vg, : Vaar: Vaas »° the
matrix elements with quantum numbers m =0, 1,
and 2. These results are in fact obtainable from
Moriarty’s® interatomic matrix elements by letting
k4 approach zero, bringing the poles toward k=0.
Andersen® made the same kind of construction for
s bands and p bands, corresponding to a full lin-
ear-combination-of-atomic-orbitals (LCAO) treat-
ment of the transition-metal bands.

Here we wish to use Andersen’s choice of muffin-
tin zero but return to the pseudopotential formula-
tion so that the bands are treated as composed of
LCAO d bands, hybridized with OPW’s, as in many
earlier interpolations of the bands’ rather than
with s and p states. Andersen’s limit in fact enters
in three different ways: First, it leads to a simple
expression for the hybridization matrix elements
in terms of a d-state radius 7, calculable from the
atomic wave functions alone; second, it leads to
interatomic matrix elements satisfying the rela-
tions given above, and written as simple functions
of 7,; and third, it leads to an effective mass for
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the free electrons, also a simple function of the
single parameter 7, characterizing the atom.

II. FORM OF THE HYBRIDIZATION

If the atomic d states |d) were eigenstates of the
Hamiltonian in the crystal, they would not be cou-
pled to any other states nor to the OPW’s in which
we expand states. These d states are in fact ei-
genstates of the Hamiltonian in the free atom so
that the matrix elements which do couple the d
states to the OPW’s arise from the difference be-
tween the Hamiltonian in the metal and that in the
atom. Writing 8V as the potential in the metal
minus that in the atom, and writing the orthogon-
ality of the OPW to the d states explicitly (|OPW)
= |ky =22 |d')d’ |KY; the orthogonality to other
core states will not enter since we will see that
8V is taken to be zero within the muffin-tin sphere
where the core wave functions are nonzero), we
obtain

(OPW |H |dy=(K |8V |d)—(K|d}d |6V |d). (2)

d states on neighboring atoms, as well as other d
states on the same atom, are taken as orthogonal
to each other. It is convenient to define a hybrid-
ization potential A given by

A=0V —(d|6V|d). 3)

Then the coupling between an OPW and a d state
is simply the matrix element of A between the
corresponding plane pseudo-wave-functionandthe
d state.

We may now make Andersen’s assumption of a
muffin-tin potential in the metal in order to obtain
V. It is equal to the atomic potential within the
muffin-tin sphere radius r,, but equal to ¢, out-
side. We choose 7, such that the muffin-tin po-
tential is continuous, as illustrated in Fig. 1. 7y,
turns out to be somewhat smaller than the atomic
sphere (or Wigner-Seitz sphere) radius so the
view that |d) extends outside the muffin-tin sphere
but does not overlap neighboring spheres or neigh-
boring d states is consistent. Then 6V is readily
seen to be the cross-hatched region shown in Fig.
1. A remarkable feature of this assumption is that
then the potential 6V is determined entirely from
the potential in the atom and is independent of the
density of the metal, the atomic arrangement, or
any screening. This is only an approximation to
the potential, but it is a great simplification and
we will see that it gives good results.

We may now proceed to the evaluation of the hy-
bridization matrix element which enters Eq. (1).
We take spherical coordinates with the z axis
along the internuclear vector d from the atom con-
taining the state ]d) to that containing the state

Eqf
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FIG. 1. The muffin-tin potential in a metal Viyeta is
defined to equal the free-atom potential V,oy, within some
sphere of radius 7, and constant outside. In the Ander-
sen form the constant portion is taken to equal the
atomic d-state energy ¢;, and we choose 7m¢ such that
the potential Ve is continuous, as illustrated here.
This 7y, turns out to be somewhat smaller than the
radius 7, of a sphere with volume equal to the volume
per atom in the metal. The potential in the metal,
minus that in the atom, then, is 6V =¢; =V, 4o, for
727, and zero for <7y, .

|d’y. The angular coordinates measured with re-
spect to this axis are written 6y, ¢, and the state
is written

]d>=R2(T)Yzm(91,¢1)- (4)

R, is the radial d-state wave function and Y is
the spherical harmonic. The plane wave may also
be written in an expansion in spherical harmonics;
let the axis for the corresponding coordinates

6, ¢, lie along the vector K. Then®

. 1/2
Fy=7 PICR 1)1"]',(1w)<2;1’jr 1)

XY(6y, b)e' BT . (5)

We have normalized the plane wave in the volume
Q of the system and T, is the position of the atom
in question. Since A is spherically symmetric
around the nucleus only terms for I =2 will enter
(k|a|d). Furthermore, if we reexpand Eq. (4) in
the coordinate system 6,, ¢,, only the term with
m9= 0 with respect to K will contribute. That term
is

Ry(r)(3m)' 12V 7 (84, DY (68, 02) (6)

where 6,, %, give the orientation of K in the coordi-
nate system 6;,¢,. Thus we may perform the an-
gular integration to obtain

(k|ajdy= :\/% Y7(6x Pr)e [ "y (r) ARy .

)

We shall use this form for the hybridization ma-
trix element in the band calculations.
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If we take the d state to be well localized in com-
parison to the wavelength of the electron states of
interest we may make the small-» expansion
jolkr) ~E/15, (We will discuss the validity of
this at the end of this section.) Furthermore, we
may write the volume of the system in terms of the
atomic-sphere radius 7, and the number N, of
atoms in the system, Q =Nai;-m*g to obtain the con-
venient form:

25,2 3/2 .
<E1Aid>=(ﬁ¥7§—}[ﬁ] Y7 (0 $)e T, (8)

o mj| 7y
with the d-state radius 7, defined by

7’2”:-—;—(%11)”2%”5 ! 7'Ry(r)adr . (9)

(Note that R, has units of »3/2,) Its evaluation is
straightforward and we carried it out for all 3d
and 44 transition metals using Hartree-Fock d
states R,.!° The results are in Table I.

It is interesting that by using the Schrodinger
equation satisfied by R,(7) it is possible to write
8VR,y(7) =[e4 = V(#)]Ro(7) (for » > 7, and zero for
7 < ¥n) in terms of kinetic-energy terms and
therefore to obtain »; directly in terms of the
atomic wave functions without using the potential
itself. We used that method in obtaining the num-
bers in Table I. The results for 7, are also given
in Table I, obtained!! by fitting the bandwidths
given by Andersen and Jepsen12 using the atomic-
sphere approximation.

We take the values fitted to the Andersen-Jepsen
bandwidths to be correct », values. Then it is
gratifying that the variation from element to ele-
ment that we obtain from Eq. (9) is essentially
correct, although our values are systematically
too large. The difficulty appears to arise from
our small-» expansion. We also evaluated Eq. (7)
directly, as a function of 2, without the small core
expansion. At small k2, of course, the expansion
in small k7 is valid but deviations become sizable
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when k becomes as large as the wave number at a
zone face. We will use the more accurate form
Eq. (7) in calculating the energy bands, and in
fact that is necessary to obtain good bands. That
is not a significant computational problem but for
formal purposes the simple ¥° form of Eq. (8) is
preferable and it will be most meaningful if we
use the fitted values of 7, from Table I. We shall
use the simple form Eq. (8) in the following sec-
tion.

In computing the bands of the 54 elements, we
used the same (K |A [d) coupling as for the 4d
series. This is justified since both 7, and the lat-
tice parameters are very close in the two series.
For vV, coupling we used the fitted 7, values from

ddm
Table I in all cases.

III. INTERATOMIC MATRIX ELEMENTS

We may now evaluate the interatomic matrix ele-
ments Eq. (1) using Eq. (8). In pseudopotential
theory Alis regarded as of the same order as the
pseudopotential and since Eq. (1) is formally of
order Az, we may take the energy denominator as
of zero order. With E, measured from the muffin-
tin zero at E;=¢,;, the denominator becomes simply
—ﬁzkz/Zm and the integration and the results are
very simple, the second simplification resulting
from Andersen’s choice of muffin-tin zero. It
might seem more natural to proceed as did Mori-
arty, writing the denominator as 7%%(k2 - k%)/2m.
The message to be taken from Andersen’s choice
is that extra complexity arising from the poles at
k ==k, is not essential to the problem and good
results can still be obtained by letting k, approach
zero.

Taking this form for the denominator, taking
spherical coordinates with axis along the internu-
clear distance, and substituting Eq. (8) into Eq. (1)
gives

TABLE L d-state radii »; and d-band energies E,; for all transition elements.

74 (A) 74 (A) 7q (R)
3d Cale.® Fit® E,(eV) 4d Cale.® Fit® E,(eV) 54 Cale.® Fit® E;(eV)
Sc 1.80 1.24 7.10 Y 2.64 1.58 6.71 Lu 1.58 8.54
Ti 1.64 1.08 7.72 Zr 2.22 1.41 7.15 Hf 1.44 9.02
v 1.42 0.98 8.10 Nb 1.98 1.28 7.36 Ta 1.34 9.58
Cr 1.30 0.90 7.97 Mo 1.80 1.20 7.16 w 1.27 9.53
Mn 1.21 0.86 7.89 Te 1.67 1.11 6.65 Re 1.20 8.98
Fe 1.15 0.80 7.68 Ru 1.58 1.05 5.98 Os 1.13 8.39
Co 1.09 0.76 7.38 Rh 1.49 0.99 5.04 Ir 1.08 7.35
Ni 1.03 0.71 6.90 Fd 1.41 0.94 4.54 Pt 1.04 6.54
Cu 0.98 0.67 5.90 Ag 1.35 0.89 2.46 Au 1.01 5.15

? Calculated from Eq. (9).
b Pitted (Ref. 11) to band widths given by Andersen and Jepsen (Ref. 12).
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, =83 I A ”
(@'|H|d)=—3q z;kze'””z (625 D) *Y 7 (B4, D)

3
=3—:T4zﬁ7:- fdk dd dosin kle™ Py xy
(10)

In the final form we have dropped the subscript
k on the angular variables. The integration over ¢
gives zero unless m’=m, in which case it gives a
factor of 2r. These matrix elements may then be
written Vg, Or (ddm) in the notation of Slater and
Koster.!® For each m we may substitute for the
spherical harmonics and change variables to
x=—cos6 and u =kd (giving a factor 47° in front
of the integral). The integral over %k gives a series
of terms of the form u"e’* — (—u)"e ™** with varying
powers of n. The remaining integrals over » may
be written as a sum of integrals of u"¢** along the
entire real axis and the only contribution comes
from the terms with n=-1. The evaluation of the
numerical coefficient is somewhat tedious, al-

though the form of the result
Vaam=(d' |H |d) =TN4anl’r3/(md®) (11)

follows immediately. The coefficients obtained
are Ngge= — 45/" » Naas= 30/”; and Naas = = 15/277’
having the same ratios as those obtained from
muffin-tin-orbital theory,® or from taking the limit
of Moriarty’s forms.? Values are readily obtained
using the fitted », from Table I.

We may note at this stage that corrections to the
d™® dependence of Eq. (11) would arise in going
beyond the small-» expansion j,(kr) ~k%?/15. The
addition of the next term, proportional to k%*,
would add a term porportional to d™' to Eq. (11);
the next term would add a d-e, etc. We proceed
however, in the band calculation as well as in oth-
er calculations, keeping just the d® term, and
only approximately account for the correction
terms by using the fitted »,.

IV. FREE-ELECTRON BANDS

In the transition-metal pseudopotential theory'
the plane-wave states have energies:

R e
E,=¢4 +—2—rz- +<le|k)

KlaldXdlalk
+2 ?k;/zm (12)

to first order in the pseudopotential. We have
again made Andersen’s choice in writing the zero-
order energies as e, +7#%k*/2m. The final term
vanishes at £ =0 so the minimum of the band is at
the energy ¢; +¢0 |W|O), which we write as an en-
ergy E, below the d-band energy ¢,. The position
of the free-electron minimum relative to the en-

ergy of the d bands is notoriously sensitive to the
details of the potential in the metal, a problem
which we have not addressed, and we shall take
this position, the value of E;, from the tables
given by Andersen and Jepsen'*'?; it is listed for
each transition metal in Table I. The pseudopoten-
tial has a weak energy dependence, directly pro-
portional to the orthogonalization hole,!* but we
take it to vanish, corresponding to a local pseudo-
potential.

The final term in Eq. (12), however, may be
evaluated using Eq. (8). It gives the effect of cou-
pling between the d states and the free-electron
states and will be incorporated explicitly when we
calculate the bands. However, it is interesting to
evaluate it approximately using the perturbation-
theoretical form of Eq. (12) to see how it has the
effect of reducing the effective mass of the free-
electron bands. Taking the axis of the polar co-
ordinates along K only the state with » =0 contri-
butes and with YY(0,¢)=(5/4m)!/? it becomes
5ﬁ2k273/(21r73m), corresponding to an effective
mass of

m*/m =[1+573/(1rrg)]" (13)
and free-electron bands given by
Ey=¢4+(0|W|0) +1°kY/(2m*) . (14)

This form can be useful in simple theories of
transition metals where we do not explicitly in-
clude hybridization between the bands. The cor-
rection Eq. (13) incorporates one of the most im-
portant effects of hybridization. However, in cal-
culating the bands, with explicit hybridization, we
must use m*=m.

V. ENERGY BANDS

We proceed next with the calculation of the bands.
We construct a Bloch sum for each type of d state,

X, m=N"2 2 |d,mY,e’TT. (15)
j

The d™° dependence of the V,,,, is sufficiently strong
that we drop all but nearest-neighbor coupling, ex-
cept for the body-centered-cubic structure where
the second neighbors are only 15% more distant

than the nearest neighbors. For that case we in-
clude both. For wave numbers along a cube edge
(the z direction) in the cubic structures, the sym
metry is sufficiently high that if we use the Kos-
ter-Slater forms! xy, x% —y?, etc., there are no
matrix elements between Bloch sums of different
d states, and we may directly compute the diagonal
elements of the Hamiltonian matrix which become

the band energies. The results are given in Table

II. However, the Bloch sum for the d state of the
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TABLE II. Diagonal Hamiltonian matrix elements for transition-metal bands. The free-
electron band, Eq. (14) with m*=m, is coupled to Eg.2_,2 by the matrix element in Eq. (7). All
other off-diagonal elements (except H,y .= Hy; x2_y2 for hep) vanish. All diagonal elements are

measured from E,;.

bee [001]. (A super (2) refers to second neighbors. a is cube edge.)

Ery=GVao+ 3V aan +%Vags) costy ka) +4vE), +2vY; coska
Eye=Ea=GVaao 8 Vaan +$Vass) cost ka) +2V &y (1 + coska) +2v Y
Ey252= 8V 4r +3V 445) costh ka) +3VZ, +VBs (1 +2 coska)

Eg_,2= 8V g0 +3V 4a5) costy ka) +V (1 +2 cosha) +3VYs

fee [001]

Exy=3Vaao*Vaas +4Vaan +Vaa5) cos(i ka)

Eye=Eg =2V gqn +2V 35 +(3Vago + 2V agr + 3V ag5) COSG ka)

3
Ex2-y2=4Vun * (T Vg0 + 2V aarn +%Vdd6) COS(';' ka)

E32,2=Vago+3Vass T Vago+ 12V gan + 3V ags) costh k)

hep [c axis]

9 3 1 49 1
Exy=Ex2_2=TVao+3Vaur +TVaas *TVauo +’5§Vdd1r +13Vaas) cos(T kc)

7 5 1
Eyz=Ezn=3Viar *3Vyas = (2Viai0 +TVaan 3V aas) cOs(7 k)

Ewd 2= Va0 *5Vaas + & Vaao+ Vaan +3V sa5) costs ke)

Hyy,ox =Hyg x2-y2= i'é_‘/’z—(svddo =4V yan +Vags) Sin('i' kc)

form 3z2 —#? is coupled to the plane wave K for K
along the axis of the spheric coordinate system.
The matrix element of that plane wave with the

m =0 state in Eq. (15) is evaluated using Eq. (8) to
obtain

- 5 1/2h—2k2 v 3/2
ARV 4 T 1

As we indicated earlier, this expression be-
comes inaccurate when k becomes large. We rec-
tified this defect in the calculation of interatomic
matrix elements V44, by using a smaller value of
74. For the band calculation we evaluated Eq. (7)
for ¢k |A|d) giving values which are nearly equal
to the expression Eq. (16) but with our calculated
74, and then drop below this, typically crossing
zero at a wave number near the lattice wave num-
ber.

The energy bands then are given by the d bands
of symmetry xy, x* —=y%, xz, and yz and two bands
obtained from the coupled set by

E(k)=2[E;jni2(k) +E]

+H{2E32 2 ~E* +Hia 2, /P, (17)

The bands in the hexagonal-close-packed struc-
ture are complicated by the fact that there are two
atoms per primitive cell, giving twice the number
of bands. This difficulty is avoided by presenting

the bands in the Jones zone. Bloch sums with
symmetries xy and zx are coupled, requiring so-
lution of a quadratic equation. Bands from yz and
x? —y? are identical; the two doubly degenerate
bands are given in Table II. The m =0 bands and
free-electron bands require the addition of a sec-
ond plane wave. The matrix element between the
two is taken to be zero but this still requires solu
tion of a cubic equation.

This completes an elementary band calculation
for the three simple structures. The correspond-
ing bands are displayed for all the transition met-
als in Fig. 2; manganese was taken in a body-
centered-cubic structure rather than the true man-
ganese structure and technetium was assumed
hexagonal; for simplicity an ideal axial ratio was
assumed for hcp structures.

VI. MATRIX ELEMENTS WITH s AND p STATES

For study of transition metals the mixed basis
of plane waves and d states has been appropriate
but in transition-metal compounds a full atomic-
orbital basis is ordinarily preferable. In the same
sense plane waves are most appropriate for the
treatment of simple metals, but when these sim-
ple-metal atoms are part of a covalent or ionic
structure an LCAO basis may be most convenient.
In the covalent tetrahedral structures either basis
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FIG. 2. The energy bands for all transition metals at the observed volume obtained from the formulas in Table II
using the parameters given in Table I and the hybridization matrix element of Eq. (7).

can give a simple description of the bands. We
recently recognized15 that in fact if we assume that
both the nearest-neighbor LCAO bands and the
free-electron bands give the same band energies
at points of highest symmetry in the Brillouin
zone, we can deduce the corresponding interatomic
matrix elements explicitly. This analysis leads to
interatomic matrix elements among s and p states
of the form V,;. ,=1;;. m#*/md® with coefficients
given for tetrahedral, simple-cubic, and body-
centered-cubic structures in Table III. These ma-
trix elements agree well with values derived earl-
ier by empirical fits to the bands of tetrahedral
semiconductors.!® We may then seek matrix ele-
ments between d, s, and p states by making an
analogous analysis of the transition-metal bands
given here.

A natural way to do this is to relate free-elec-
tron states to s and p states as done in our analy-
sis for semiconductors.!® Then the matrix element
with a d state, which will contain the V4, V0,
and V,4,, may be set equal to the expression for
(K|A|x,) given in Eq. (16). This will be shown to

TABLE III. Theoretical n coefficients for various
structures.

bce
tet. sc (nearest neighbor)
Nsso -1.39 -1.23 -0.93
Neo 1.79 1.90 1.75
Nppo 3.24 3.70 4.63
Nppr -0.93 -1.23 -0.93

give matrix elements of the form
Viam=Manlt/myr/?/a"'* . (18)

To obtain the coefficients we shall equate the
lowest moment of ¥* in an expansion around & =0.
Although Eq. (16) was derived from atomic states
and therefore is independent of the crystal struc-
ture, the values of the numerical coefficients 7 in
Eq. (18) will depend on the structure. We will use
the simple-cubic structure which seems more ap-
propriate for the transition-metal compounds than
the close-packed structures with their high coor-
dination numbers.

Using forms for matrix elements from Slater
and Koster!® and explicit sp matrix elements from
Ref. 15 the actual calculation is straightforward.
With a k vector in the [110] direction the results
are

(s +D)e| & ¥y y =3(1 = 4/7%)' 2V, k?d?
(19)
((s +P)a| 8|32 =78 =[5V 4 = 5(1 = 4/7D) 2V k%2 .

These are equated to the corresponding expansions
from Eq. (16) [»3=(3/4m)d"]:

1 212 3/2
</kl“l"y>=§ﬁ%[%] :

(20)
15 1/2ﬁ2k2 3/2
<k[A13z2 —72)=-§[-3-] ‘——‘[%1] ,

m

to give the desired result Eq. (18). Muffin-tin-
orbital theory® gives V,4,=—3'/?V 4,, and we can
determine the numerical coefficients:
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nsdaz - %(%)1/2= _3'23 ?
Npae==V15/(1 = 4/1%)!/2=~502, (21)
Nur=V5/(1-4/1)"2=2.90.

The form Eq. (18) is independent of the structure
we assumed and of the precise matching procedure
(our use of the lowest moment in k%), but the val-
ues of the coefficients depend sensitively upon
both. For this reason we have confidence in Eq.
(18), but not the values given in Eq. (21). In view
of this uncertainty the best procedure seems to be
to use the general form Eq. (18), and to derive
empirical coefficients from known band structures.
This will both test the form and give values to be
compared with Eq. (21).

VII. BANDS IN TRANSITION-METAL COMPOUNDS

The analysis has given simple forms for all
nearest-neighbor interatomic matrix elements
needed for the construction of bands for any d-
state compound. These could be used in an ele-
mentary LCAO band calculation for a compound of
interest and indeed the bands in transition-metal
compounds are frequently represented in this way.
In particular, Mattheiss! has fit his carefully cal-
culated energy bands for five perovskite com-
pounds (obtained with the more accurate first-
principles augmented-plane-wave (APW) method)
by adjusting LCAO matrix elements. The most
interesting comparison which can be made here
is to equate our general form Eq. (18) for these
matrix elements, using the », from Table I, to his
values and deduce the coefficients 7,,,, from each
compound. If the coefficients prove independent
of material, the form of Eq. (18) is confirmed,
and we obtain empirical values for the coefficients.
The results of this calculation are given in Table
IV. The fact that each of the three coefficients

TABLE IV. Interatomic matrix elements for perov-
skites, obtained by Mattheiss ? (adjusted where available)
and the values of 1;;,, which must be used in Eq. (18) to
predict them. The degree to which each 7,4, is inde-
pendent of material supports the theoretical formula Eq.
(18).

a KNiF3; SrTiO; KMoO; KTaO; ReO;
d () 2.01 1.95 1.96 1.99  1.87
74 (B) 0.71 1.08 1.20 1.34  1.20

Vego (€V) =1.15 =256 —2.99 —3.42 —3.53
Vpdo (€V) =1.05 =—2.25 -2.78 —3.06 —3.54
Vear (€V)  0.51  1.14 1.25 1.39  1.62

Nsdo -2.89 -3.12 -3.15 =-3.23 =-3.15
Npdo -2.64 —2.47 -2.92 -2.90 -3.17
Npan 1.29 138  1.32  1.32 145

2 Reference 17.

obtained varies little from material to material,
while the matrix elements themselves vary con-
siderably indicates that in fact Eq. (18) reproduces
rather well the trends from material to material.

We may take averages of the coefficients to ob-
tain universal empirical values of

Nsgo=—3.11,
Moo= —2.82 , (22)
Nur=11.35.

These empirical coefficients do not agree well
with the values -3.23, -5.02, and 2.90 obtained by
fitting the first moments, nor with values we ob-
tained from other plausible matching procedures.
Note that the ratio of V,,/V .= —2.08 is not too
far from the ratio —-1.73 predicted by Andersen

et al’ The only test of these matrix elements in
other structures to date has been in the pure met-
als, requiring a very large extrapolation in terms
of internuclear distance,“ but comparison with
the known bands indicated that these values [ Egs.
(18) and (22)] are meaningful even there.

In using these matrix elements for other transi-
tion-metal compounds we need also the atomic
term values (the diagonal matrix elements) for the
solids. Our experience with the tetrahedral sol-
ids!'% 1518 hag suggested that the term values for
the free atom are a reasonable choice. If this is
assumed also for d-state compounds (which ap-
pears appropriate at least for elements to the left
of the transition series'’) we would choose Har-
tree-Fock-term values!® for the d states. Then
the corresponding Hartree-Fock values can be
used for the atomic states on the nonmetallic or
nontransition atoms as well.

With such parameters the band calculation for
any transition-metal compound is quite simple,
generally simpler than in the transition metals
themselves since the d bands ordinarily become
separated in energy from the sp bands associated
with the nonmetallic atoms. As with the transition
metals themselves, we cannot expect the calcu-
lated bands to be as accurate as full sophisticated
machine calculations with methods such as the
APW method. On the other hand, they can be per-
formed entirely in terms of the parameters given
here, using only a hand-held calculator, for any
compound for which the crystal structure is known.
Furthermore, the description of the electronic
structure is so simple that a considerable range
of dielectric and bonding properties of the com-
pounds can also be simply and directly calculated.!!
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