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X-ray scattering study of one-dimensional lattice dynamics in Hg3 sksF&
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The diffuse scattering of x rays by the linear chains of Hg atoms in the quasi-one-dimensional compound
Hg, ~AsF~ was studied at temperatures from 100 to 350 K, and wave vectors from 7 to 20 A '. The results
are consistent with thermal diffuse scattering from a disordered one-dimensional "liquid" and, at high
temperatures, agree quantitatively with the model of classical, independent, harmonic chains proposed by
Emery and Axe. Deviations are observed in the temperature region from 130 to 200 K where the
correlation length is about 25% longer than predicted.

I. INTRODUCTION

While thermal or quantum fluctuations are
known to destroy long-range order in a strictly
one-dimensional system, these fluctuations are
easily suppressed in a quasi-one-dimensional
system by weak transverse interactions, thus re-
storing long-range order. The quasi-one-dimen-
sional metal Hg, ,AsF, is the only known compound
in which interchain interactions are sufficiently
weak that the reduced dimensionality actually pre-
vents long-range order in the crystal lattice.
Thus, this remarkable compound makes possible,
for the first time, the experimental study of one-
dimensional lattice dynamics.

Several scattering studies of Hg, ,AsF, have
been reported. The original structural investiga-
tion by x rays' and later by neutrons' identified
diffuse sheets of scattering intensity as Bragg
scattering from independent, one-dimensional Hg
chains. Subsequent neutron studies' ' revealed a
one-dimensional phonon dispersion for longitudinal
vibrations of the Hg chains, short-range order
developing between chains below 180 K, and a
phase ordering phase transition at 120 K establish-
ing long-range order among the chains. A micro-
scopic model of the lattice dynamics of weakly
coupled chains has been developed by Emery and
Axe' to account for the absence of order at high
temperatures and the onset of short- and long-
range order at low temperatures. In addition, the
theory predicted a finite width for the scattering
sheets. Due to the 1D lattice dynamics, the sheets
do not arise from elastic Bragg scattering from
independent, ordered 1D chains, but rather result
from inelastic thermal diffuse scattering from a
disordered 1D )iquid". The finite sheet width
was subsequently observed by neutron scattering, '
with the measured widths about 20 jo less than those
predicted.

In the present study, the static structure factor
S(q}=J du S(q, m) was measured at various tem-

peratures, primarily in the disordered phase, by
EDXD (energy dispersive x-ray diffractometry). 8'
Compared to neutron scattering, x-ray scattering
has the advantage of directly measuring S(q) rather
than S(q, ~). Compared to conventional angular-
scanning x-ray diffractometry, EDXD has the ad-
vantages of sampling a larger region of reciprocal
space, and of scanning all parts of that region si-
multaneously.

This paper is divided as follows: Section II con-
tains the derivation of S(q), the experimental de-
tails are described in Sec. III, the data analysis
is given in Sec. IV, and the principal results are
presented and discussed in Sec. V. A summary
and conclusion are given in Sec. VI.

II. S(q) OF INDEPENDENT CHAINS

The structure factor is defined as follows:

S(q}=—Q e '«*i "m'1

where x, is the position of the lth atom in a chain
of N atoms, and the brackets denote a thermal
average. The special case of a nearest-neighbor
harmonic potential, treated classically, has been
considered previously. ' Since anharmonicity could
be important at high temperatures, we will gener-
alize the classical calculation of S(q) to the case
of an arbitrary nearest-neighbor symmetric po-
tential. The restriction to a symmetric potential,
V(r}= V(-x), is justified since experiments have
shown' that there is no thermal expansion in the
Hg chains. Furthermore, we generalize the clas-
sical calculation to include the contribution from
next-nearest-neighbor coupling. Finally, since
the experiments described in this paper cover the
temperature range well below the 1D Debye tem-
perature, we include a quantum-mechanical der-
ivation of S(q) in the special case of a harmonic
potential. In each case, we derive in addition
((u, —u )') (where u, is the displacement of the lth
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atom from its equilibrium position) since this
quantity is a natural measure of the disorder in
the chain.

The Hamiltonian for a 1D lattice of N atoms with
mass M interacting through first (V,)- and second
(V2)-nearest-neighbor potentials is

S [q)

l5-

IO-

Ti 300K

H=Q ' + V,(x...—x, —d)+ V2(x,„—x, -2d), (2)

where x, and p, are the position and momentum of
the ith atom, and d is the equilibrium separation
between atoms. For Hg, 6AsF„M = 200.6 amu
and d=2.66 L.

To illustrate the effects of anharmonicity, let
V, be symmetric, but otherwise arbitrary, and

V, = O. As shown in Appendix A,

FIG. 1. Theoretical S(q) vs n at 300 K. Solid curve
assumes harmonic potential 2M' (x/d), dotted curve
assumes anharmonic potential 2Mc2[(x/d) +10 (x/d)4].

quantity. Because the phonon dispersion relation
is modified,

S(q) = 1+Z'-2Z cosqd

((u, —u )'&=-
~

I —m~ d'Z/dq'I. ...
where

(4)

(u(q) = (2c/d)(sin'-, 'qd+ —,
' u sin'qd )' '

the velocity of sound is increased to (1+u)' 'c.
As shown in Appendix 8, for o. «1:

((u, —u ) )=a'[(I —4u)~l —m ~+2u] (I &m) (9)

J dx exp[iqx —PV, (x)]

J dx exp[- P V,(x)]

Note that Z is real since V, is symmetric. Equa-
tions (3) and (4) each imply that there is no long-
range order in the chain, since S(~)=1 and

Iim„„((u,~ —u, )') =~. In the special case of the
harmonic potential V,(x) =-,'Mc'(x/d}', where c is
the velocity of sound along the chain (for Hg, ,AsF,
at room temperature, neutron measurements' give
a=3.6x10' cm/sec}, Eqs. (3), (4), and (5) reduce
to

sinh[-,'(1 - 4a )]a'q'
cosh[~(1 —4u)]a'q' —cosqd

+(1 -&e o }

S(q)=e '""
(10)

Comparison of Eqs. (8) and (10) shows that the
primary effect of the next-nearest-neighbor inter-
action is to multiply the structure factor by a
slowly varying function.

Finally, we consider the quantum limit in the
case of nearest-neighbor harmonic interaction
[V,(x)= ~Mc'(x/d}' and V,(x)=0]. As shown in
Appendix C, at T=O,

Z(q) e-(ll2)s c

((u, —u )'}=
( I —m ( a',

(6} 2

((u, —u }2&—=
2

'~in~I-m~

swhys'q
cosh'&2q'- cos qd

S(q) —I+ 2 gn "' "'"s "' " cosnqd (12)

where (a/d)'= ksT/Mc', in-agreement with the re-
sults of Emergy and Axe. ' For Hg~ OAsF, at room
temperature, (a/d)'-10 ', implying a correlation
length" of about 10' lattice constants [see Eq. (I)).
Figure 1 compares S(q) at room temperature for
the harmonic potential [using Eq. (8)] and for the
anharmonic potential V,(x) = —,

' Mc' [(x/d)'+ 10'(x/d)']
[using Eqs. (3) and (5)]. As expected, the in-
creased stiffness of the anharmonic potential leads
to narrower structure in S(q).

The effect of next-nearest-neighbor coupling is
demonstrated by considering the extended har-
monic potential with V,(x}= & Me (x/d)' and V,(x)
=u/2Me'(x/d)' where u is assumed to be a small

where e=-21c/ksd-=215 K is the effective Debye
temperature of the chains. These equations show
that, as a result of zero-point motion, there is
no long-range order even at T =0. From Eq. (12),
S(2vn/d) = ~, when n ~ [(I/s)Mc'/kse]'" = 21.
However, although S(q) diverges on the low-order
sheets at T= 0, the divergence is not a 5 function
with infinitesimal width, as would be the case if
there were lang-range order. While the zero-
temperature limit is of interest, our experimental
study is confined to T/e& I ~ As shown in Appen-
dix C, in this regime inclusion of the leading quan-
tum corrections gives

((u, —u )')-=a'[~I —m ~+,(e /)'T] (I xm) (13)
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e» sinh —,'g q
2 2 2

Sq =exp-- — o q l 2 248 T coshzo q —cosqd

+ (1 —exp[- -'(e/T)'ff2q']}.

Since qd~ 16ff in this study, Eq. (14) shows that
corrections due to quantum effects are expected
to be less than 10$.

The structure factor in Eqs. (2), (10}, and (14)
is of the general form

(14)

S(q) =A(q), + B(q),
1 —Z2

(15)

where A(q), Z(q), and B(q) all vary slowly over
a given sheet. Thus, they may be replaced by
their values at the center of that sheet, giving
the expression

1 —Z2
" 1+Z'„- 2Z„cosqd (16)

III. EXPERIMENTAL DETAILS

The energy dispersive x-ray diffractometer con-
sisted of a Cu x-ray tube, operating at 50 kV and
14 mA; an intrinsic Ge detector, with a resolution
of 150 eV at 5.9 keV and 475 eV at 122 keV; and
a multichannel pulse-height analyzer (1024 chan-
nels) operating with a resolution of 50 eV/channel.
The tube and detector were mounted on a vertical
semicircular arc, which defined the scattering
plane. At the center of the arc, the sample was
mounted on a temperature-controlled stage inside
a vacuum chamber with Be windows. Slits limited
the divergence of the. incident and scattered beams
to about 0.2' in the scattering plane, and 0.8' per-
pendicular to the plane.

The sample was cut to expose a bc surface (the
chain directions are a and b}, and mounted in the
reflection geometry, with the incident and scat-
tered beams forming angles of 8=—27' with the bc
surface. By slightly tilting the sample until the
(2k, 0, 0) Bragg peaks appeared, the scattering
vector was aligned precisely along a*. Finally,
to avoid interference between the Bragg peaks
and the sheets, the sample was rotated slightly to
bring the scattering vector into the a*c*plane,
2.2' away from a*.

The temperature-controlled stage was heated
by an electric heater, and cooled by a copper coil
through which cold N, gas flowed. The tempera-
ture was monitored by a thermocouple, and was
stable to ~1 K.

for
~
qd-2nff

~

& ff where A„=A(2ffn—/d), &„=-Z(2ffn/d),
and B„=B(2ffn/d). Consequently, in the data anal-
ysis (Sec. V) we use this general form for S(q).

IV. DATA ANALYSIS

The experimental scattering intensity, I,„~f(E),
is related to S(q) as follows:

I,„„(E)=R(E)*I'.„„(E),
I '.,f f (E ) = C(E )[S(q)f'„,(q) + Ic(q}], (18)

C(E)=[P(E)/if(E)][k, {E)+k„(E)cos'&], (19)

where q= (4ff/hc)E sin0, It is the diffractometer
resolution profile, the operation ~ is a convolu-
tion, I.',~t is the experimental scattering intensity
without resolution broadening, f„,is the atomic
scattering factor of Hg, I~ is the Compton scatter-
ing intensity of the sample, C is the correction
factor appropriate to the reflection geometry, P
is the incident beam intensity, k, and k, are the
incident beam polarizations perpendicular and
parallel to the scattering plane, and p. is the lin-
ear absorption coefficient of the sample. In the
data analysis, we first determine C(E} and sub-
sequently correct for resolution broadening.

The correction factor C was determined experi-
mentally by measuring I,„~, of liquid Hg and solving
Eq. (18) for C, using tabulated values of f„„and
using the approximations S„,(q) -=1 (which is valid
for liquid Hg in the range q~ 7 ~ ' used in this
study) and Ic(q)=[80-fa,(q)]'." While p, , and
hence C, are not the same for Hg and Hg, ,AsF„
CH.3 6A. F =-ACHS, since absorption by Hg3 6ASF8
is predominantly due to Hg (A is a constant de-
termined by the relative densities of Hg and

Hg, ,AsF, .) After I.„„was reduced to the form

I„,{q}= C'"",
}
—-S(q)+ I,(q)/f'„, (q), (20)

the nth sheet of I„d, defined as the region
~
qd

—2nff~-ff, was fit by the method of nonlinear
least squares to the function

1-Z2
If jf(q) =A„

1 +Z, 2Z "{
@ }d

+ B„q+C„(21)

yielding values of the five parameters Z„, Q„, A„,
B„, and C„, and their standard deviations. Since
each sheet contained 105 data points, the least-
squares fit had 100 degrees of freedom. Note
that the only difference between Eqs. (16) and (21)
is the inclusion of the parameters Q„and C„. The
parameter Q„corrects for any electronically in-
troduced zero offset in the energy scale of the
multichannel analyzer. Within experimental er-
ror, we find Q„„—Q„=2ff/d where d is the exper-
imentally determined equilibrium distance. The
parameter C„allows the background" under a
sheet to be a linear function of q, in order to ade-
quately represent the slowly varying function
Ic/f ffg ~
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After making the nonlinear least-squares fits to
Eq. (21), the quantities Z„were corrected for
gesolution broadening, which is determined by the
detector characteristics and the geometrical op-
tics. The detector resolution profile is a Gaus-
sian with a FWHM (full width at half maximum) of

5E,=(a+ bE)' &, where a and 5 are constants
which were determined from measured widths at
5.9 and 122 keV. The optical resolution profile
is assumed to be also Gaussian, with a FWHM of
Mo= cE, where c is a constant. Thus, the full
resolution profile is Gaussian, with a FTHM of
5E =(5E~+ 5E',)' '. By measuring 5E of four
Bragg peaks, ranging from the third to the sixth
sheet, the relation GEO ——cE was verified and a
value and standard deviation of c was determined.
This value agreed closely with that calculated
from the geometrical optics. The parameter Z„
was corrected for resolution broadening by the
following three steps: (1}The sheet was trans-
formed into an equivalent Gaussian, with a FWHM
of W(Z„), where W(Z)d-=2arccos[2Z/(Z2+1)], (2)
the resolution broadening was removed, leaving a
Gaussian with a FWHM of [W(Z„)' —5E']'~, and
(3) the Gaussian was transformed back to an equiv-
alent sheet, with a corrected Z„given by
W '[W(Z„)' —5E')'~], where W ' is the functional
inverse of S'. The basis for equivalence between
a sheet with the parameter Z„and a Gaussian with
a FWHM of W(Z„) is the following observation:
The first term in Eq. (21) has a mmdmum at q
=Q„with minima at q = Q„a II/tf, and assumes a
value halfway between its maximum and minima
at q = Q„+ IW(Z„), so it resembles a Gaussian with
a FWHM of W(Z„). Any errors introduced by as-
suming Gaussian line shapes in making the reso-
lution corrections are expected to be small.

V. RESULTS AND DISCUSSION

Data mere collected on the third through the
eighth sheets, at temperatures ranging from 106

Te300 K

N 3

M

FIG. 3. I~{q) {data points) vs n at 300 K. The solid
curve is Iffg{q).

to 353 K. Typical counting rates and total counts
at the center of a sheet were O.l counts/channel/
sec and 5000 counts/channel, where 1 channel
—=0.025 A '. Figure 2 shows the raw data I«~t
at 300 K and the corresponding reduced data I„~.
The resemblance between I,~(q) and S(q} (see Fig.
1}is clear. Figure 3 shows the fitted data I«,
superimposed on I~ from Pig. 2. There are
small discontinuities between the sheets because
each sheet was fitted independently of the others.
Finally, Fig. 4 illustrates the temperature varia-
tion of some fitted sheets.

The results are presented, and simultaneously
compared to the independent, harmonic chain
model, in Figs. 5 and 6 and Table I. The com-
parison is facilitated by presenting the results in
terms of the quantity u„(T}:

u„(T) -=-2 lnZ„(T) .
WII

(22)

For the harmonic potential, u„(T)= 1 independent
of n and T [see Eq. (6}]. Figure 5 is a graph of
Tu„(T}vs n for two temperatures, and Fig. 6 is a
graph of ng„(T) vs T for two sheets. The distance
between the error bars in these figures is two

exp'( ) )

I d(q)

T*300 K

Ih, j L

I I I I I I

3 4 5 6 7 8

T0300 K

C

.C
v

I I I

3 4 5 6 7 8

M

0 I I I I I I

3 4 5 6 7 8

7 I34K

I I I I I I

3 4 5 6 7 8
fl

FIG. 2. I~(q) and I~{q)vs n at 300 K.
FIG. 4. Iz&t (q) vs n at 353 K (upper curve) and 134 K

{lovrer curve), vrith same units on both curves.
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FIG. 5. Tg„(T) vs g at 353 K (upper data points) and
134 K gower data points). Distance between error bars
is two standard deviations. Solid lines represent near-
est-neighbor harmonic theory.

standard deviations. Table I gives, for all n and

T, u„(T), the standard deviation of u„(T), and the
number of standard deviations by which u„(T) dif-
fers from l. In Figs. 7 and 8, the x-ray results
are compared to those obtained from neutron scat-
tering. ' A direct comparison of -(1/d) lnZ„with
the parameter I'„ in the neutron study is appro-
priate because, for a nearest-neighbor harmonic
potential,

- (1/d) lnZ„=, n' =- T„.2' k~7

Unlike Z„, which depends only on the shape of

FIG. 6. ng„(T) vs T for g = 8 (upper data points) and
n = 3 gower data points). Distance between error bars
is two standard deviations. Solid lines represent near-
est-neighbor harmonic theory.

I„d, A„depends on the magnitude of I„d, which
is determined by the relative number of scattering
Hg atoms in the Hg, ,AsF, sample and in the liq-
uid-Hg sample used to determine C(E) Alth. ough
this makes accurate absolute measurements of A„
difficult, it does not affect the relative values of
A„ for different g or T. The A„were found to be
temperature independent. For example, A, =0,96
+0.03 from 106 to 353 K. According to Eq. (10),
if there were a significant next:-nearest-neighbor
interaction, A„would be temperature dependent;
the absence of such dependence implies that o.

& 0.02. While A„was independent of temperature,
it did depend significantly on n, especially for
small n. For example, typical values were A3

TABLE I. Experimental values of u„(T) tsee Eq. {22)]fore = 3 through 8 at various temp-
eratures. The lower number in each entry is the number of standard deviations of the ex-
perimental value from ~„(T)= 1.

299

256

205

170

106

1.11+ 0.06
1.8

1.06 + 0.05
1.2

0.93+0.07
-1.0

0.90 + 0.10
-1.0

0.88 + 0.12
-1.0

0.83+ 0.18
-0.9

0.95+ 0.03
107

1.02 + 0.03
0.7

1.09+0.05
1.8

0.93+ 0.07
-1.0

0.74+ 0.18
-1.4

0.92+ 0.03
2 07

0.96+ 0.03
-1.3

0.91+ 0.03
-3.0

0.81+0.04
-4.8

0.86+0,04
-3.5

0.85+ 0.05
-3.0

b

0.95+ 0.04
1Q3

0.95+ 0.04
-1.3

0.84+ 0.03
-5.3

0.77+ 0.04
-5.8

0.77+ 0.04
-5.8

0.79+ 0.04
-5.3

0.99+0.08
M.1

0.95+ 0.07
-0.7

0.84+ 0.05
342

0.91+ 0.05
-1.8

0.76+ 0.06
-4.0

0.75+ 0.04
-6.3

0.76+ 0.04
-6.0

0.93+0.07
-1.0

0.82 + 0.11
-1.6

1.02 + 0.10
0.2

1.01 + 0.09
0.1

0.76 + 0.06
40

0.79 + 0.05
-4.2

0.73 + 0.05
-5.4

0.94 + 0.09
-0.7

Sheet much narrower than resolution.
Sheet obscured by overlapping (2h+ 1, 0, 1) Bragg peak.
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n

FIG. 7. -{1/d)lnZ„, I„vs n2 at 300 K. Solid circles
are x-ray data, open circles are neutron data. Solid
line represents nearest-neighbor harmonic theory.

=0.5, A, =0.9, and A, =1.0. This behavior is
attributed to absorption of x rays by a thin oxide
layer on the surface of the highly reactive sample,
which was observed visually after the experiment.
The relatively strong energy dependence of A„ for
low energies (small n) is expected for an absorp-
tion effect.

The experimental results (see Table 1 and Figs.
5-8) may be summarized as follows: (1) The
independent, harmonic-chain model is generally
satisfactory, except when 134 ~ T ~ 205 K and si-
multaneously 6 ~ n ~ 8, in which case u„(T) con-
sistently deviates from unity by more than three
standard deviations and (2) when significant devia-
tions occur, u„(T) is about 25$ less than 1, indi-
cating longer correlations in the chain than pre-
dicted by the independent, harmonic-chain model.

Before discussing these deviations from the
theory of the harmonic chain, it is appropriate to
examine some nonstatistical sources of error.
The replacement of A(E) by A„ in the data analysis
is justified only if A(E) does not vary strongly over

the width of a sheet. As indicated above, A(E)
varied quite slowly for n & 5; furthermore, the ef-
fect of the more rapid variation for n & 5 is par-
tially compensated by the narrower sheet widths
for small. n. A second source of error is resolu-
tion broadening. The intrinsic width W(Z„) of

many sheets is comparable to the resolution width
5E. For example, at 134 K, the ratio W(Z„)/5E
was 0.5 for n= 3 and 1.5 for n=8. (The ratio is
smaller for small n because, roughly speaking,
W(Z„) ~n' while 5E ~E.) The uncertainty in the
resolution correction is reflected by the relatively
large standard deviation of u„(T) for small n and

low T. Finally, a third source of error is over-
lap between the sheets and the (2h+ 1,0, 1) Bragg
peaks which occurred between the third and sixth
sheets, where the scattering vector crossed the
line (],0, 1). (Note that the (2h, 0, 1) reflections
are forbidden by symmetry )Th.e intensity of the
peaks was less than that of the sheets, and the
width was naturally narrower. When a peak oc-
curred near the minimum between two sheets,
the neighborhood of the peak was excluded from
the fitting region; when it occurred near the cen-
ter of a sheet, the sheet was not fitted. In sum-
mary, the error bars indicated in Figs. 5-8 arid

Table I provide a valid estimate of the uncertainty
in the data points. Thus the deviations for 6 & g
~ 8 and 134 ~ T ~ 205 K appear to be significant.

While the origin of these deviations from the
independent, harmonic- chain model is not under-
stood, examination of related structural data on

Hg, ,AsF, suggests that perhaps it is coupling be-
tween parallel chains. In this same temperature
region, such coupling produces short-range order
between parallel chains. '4 Although this order
has only been observed as an intensity modulation
in the first sheet along the line (3-5,q, 0) it is
plausible that the effects of the coupling might ap-

008—

I.2
I I I

006-
I.O—

0.9—

~ 004 0.8—

002(
0.7—

IOO 200 300
I

400
I I I I I I I I I

0.2 0.4 0.6 0.8 I.O I.2 I.4 1.6 I.8 2.0

T (K)

FIG. 8. -(1/d)lnZ„, I'„vs T for n=3. Solid circles
are x-ray data, open circles are neutron data. Solid
line represents nearest-neighbor harmonic theory.

IO 0 T (K)

FIG. 9. N„(T) vs 10 N T for data above 250 K. Dis-
tance between error bars is two standard deviations.
Solid line is the weighted average.
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pear elsewhere in reciprocal space. Figure 9
plots the data from Table I in the restricted tem-
perature range T & 256 K as u„(T) vs n'T. Recall
that for the classical harmonic chain, u„(T)=1.
The results in the high-temperature regime,
where structural data, indicate independent chains
without significant interchain phase order, are in
excellent agreement with the classical harmonic
chain. The weighted average value, (u„(T))=0.94
+0.01, suggests a velocity of sound about 3%

greater than the value obtained from the inelasti. c
neutron scattering experiments.

VI. SUMMARY

The one-dimensional lattice dynamics of the in-
commensurate linear Hg chains in Hg, ~AsF, has
been established through a detailed study of the
thermal diffuse scattering. As a result of the
weak interchain coupling, the Hg chains act as
independent 1D chains and therefore do not exhibit

long-range order, resulting in the finite width of
the 1D scattering sheets. The experimental re-
sults are consistent with thermal diffuse scatter-
ing from a disordered 1D"liquid" and, at high tem-
peratures, agree quantitatively with the model of
classical, independent, harmonic chains proposed
by Emery and Axe. Deviations are observed in
the temperature region 130 to 200 K where the
correlation length is about 25% longer than pre-
dicted.
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APPENDIX A

Below, ((u, —u }'& and S(q) are calculated in the classical limit for a nearest-neighbor, symmetric po-
tential. These quantities may be conveniently obtained from the following thermal average:

(exp[i(q, , +'''+q„)])= fqu, uu„exp[i(q, , +'' +q„)]e p[-p[V(u, -u)+ ' +V( —«,)]}

-1
x du, du„exp -P V, u, -u, +'''+ V, u„-u„,

exP & g + '-+IN 71+ Q2+ '''+Br X2+'' +&3'N

-1
«exp[-p[vty, )+ +v, (y„)]}(fqy, "qy„exp[ p[v(y)+ -+v(y ,)]}

where y, =-u, —u, , and up-=0.

&expb(q u + '+ qNuN)l&=Z(qi+ ' "+qN}Z(q. + + qN}" 'Z(«) ~

Since Z(q)=Z (q)=Z(-q) and Z(0)=1, setting q, =-q =q and q,.=0 (i qqlym) gives

(cia(qq(-(q )) Zl(-ml
y

where Z —= Z(q). Thus,
2 2

&{u, —u )') =—,(e'""l-"m'& ~,= — Z ' m

d2Z
((u, —u„)'& = —

~
f —m

~

q P

1
N N N N

S(q) —= lim —gp(e(q(pq *m))= lim —gee(q (' m Z' ' m

n-~ + l=l nt=l 'o + 1=1 nt=l

1 1S(q}= ge'""Z'" = „, +
n=-~

() 1 —Z'
1+Z —2Z cosqd

'

(Al )

(A2)

(AS)

(A4)
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APPENDIX B

Below, ((u, —u }2) and S(q) are calculated in the classical limit for a harmonic, next-nearest-neighbor
potential. As before, these quantities may be conveniently obtained from the following thermal average:

(exp(i(q, , +'''+i" e= f d, du e p('(q, , + +q (I

"exp(-&[Vi(ui —ua)+ ' ' '+ Vi(ui( —uN i)+-V2("2 uo)+ ' ' '+ V2(uii u(((-2)])
~]

du, du„exp-P V, u, —u +'''+ V, u„—u„,

dy, ' ' ' dye exp i q, + '+ q„y&+ q2+ ' ' '+ q& y, + ' "+ q&y&

x exp(-P[V, (y, )+ ' ' '+ V,(y„)+ V2(y, + y, }+' ' '+ V,(y„,+ y„)])
-1

du, . du„exp -P V,(y, +. + V, y„,+y~

-1
dy, .dy„expiq. y exp —1 20' y. A y dy, dy„exp —1 20' . A. y

where

qz+' ' '+ q~

q2+ ' ' '+ q~

yN

and A is the NxN tridiagonal matrix

1+2@ n

1+2+
1+ 2A

Since A may be diagonalized by a unitary transformation, it follows that

(exp[i(q, u, + + q„u„)])=exp(--,'o'q A ' q),
where

1- 2n

(B1}

-o. 1 —2u -0.
A-'= 1 —2n

since u «1. Setting q, =-q =q and q,. =0 (i el, m) gives for f wm

(exp[iq(u, —u )])= exp(- ~ u'q'[(1 —2u) I
f —m

)
—2u(

(
l —m [

—1)]).
Thus,

((,— )')=[(1—4 ) ~f —m)+ 2u]a'

(B2)

(as)
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2 2 sinhd(1 —4o)a'q'S(q)=e" . , +(1 e
- ).cosh —,'(1 —4u)o'q' —cosqd

(B4)

APPENDIX C

Below, ((u, —u )') and S(q) are calculated quantum mechanically for a harmonic, nearest-neighbor po-
tential. The quantity ((u, —u )') is given by the following integral:

((u —u )')= h 1
2M' [cu(p) (u(q))' ' (eilPd ecmdd)(eildd eimdd)((g + g0 )(g + g& ))

(cl)

ked' ' 1—
dq . , coth —sin ~q,Mc' 4~, sin-2'q 2T 2 (C2)

where a, and a, are phonon creation and destruction
operators,

2c
(u(q) -=—sin~ —,qd

~d

1
dn (di 1

~

I

so that

S(q) = 1+2g cosnqd exp[--,'((u„„—u, )')q')
n=l

= 1+ 2 gn ' di& iid cosnqd. (C4)
n=l

Since cothx=l/x+ —,'x for x&1, when e/2T &1
evaluation of the integral gives

For T=0, evaluation of the integral gives ((u, —u )') = g'[
~
f - m ~+,-', (e/T)']

for l cm and

(cs)

ked
Mc' 2n.

n=0

(C2)

s(q) = p[-,-',(e/T)' 'q']
coshdo q —cosqd

+ [1—exp[-, (e/T)'g'q']). (C6)
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