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A completely local-density energy-functional pseudopotential study is performed to analyze the static
properties of several simple metals. The great advantages of calculating the electronic structure of solids
with local-density energy-functional approaches, or “Thomas-Fermi” approaches, are that these approaches,
unlike fully quantum-mechanical treatments, possess the attributes of simplicity, flexibility, and physical
immediacy. The local-energy-density functional can yield accurate static properties provided we employ
“hard-core” pseudopotentials which have been derived from atomic charge densities. Moreover, our
approach allows a real-space decomposition of the various energy contributions to cohesion.

I. INTRODUCTION

While the Thomas-Fermi method* and the closely
related energy-density-functional (EDF) method*~*
have had a long and venerable history in the de-
scription of the electronic structure of solids, they
have been supplanted in modern discussions by
fully quantum-mechanical methods. The reasons
for this are clear: EDF methods, while yielding
qualitatively correct and, in some cases, semi-
quantitative descriptions of electronic properties,
are just too crude in comparison with the more
sophisticated quantum-mechanical procedures
available. The major problems associated with
local EDF approaches involve the absence of any
phase correlations. Thomas-Fermi procedures
consider the total electronic energy of a system
to be a functional of the charge density; no wave
functions are involved. Consequently Thomas-
Fermi approaches do not contain quantum interfer-
ence effects nor do they properly treat orbital-hy-
bridization (directional-bonding) effects. More-
over, the shell structure of the “Thomas-Fermi”
atom is absent.® These inherent flaws of EDF ap-
proaches mean that any calculated atomic proper-
ties can vary only monotonically with atomic num-
ber. In addition EDF approaches do not lead to
cohesion in molecules or solids®~® unless gradient
or higher-order corrections are made to the usual
Thomas-Fermi Kinetic energy expression. To
date, the exact nature of the gradient terms has
not been clearly elucidated; this problem remains
an area of continuing examination.®~*? Finally,
EDF approaches are restricted only to considera-
tions of ground-state properties.

The deficiencies of EDF approaches might ap-
pear insurmountable; however, EDF approaches
do possess some redeeming features. For ex-
ample, they are simple and flexible. Moreover,
they have the advantage of physical immediacy,
e.g., no band-structure calculations, no density-of-
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states calculations, etc. are needed to determine
the static properties of a metal. In addition the
EDF approach is easy to interpret and can be used
to relate microscopic quantities to thermochemical
properties. Therefore, if some of the major de-
ficiencies of EDF approaches could be removed
these approaches would prove to be very powerful
techniques in obtaining an understanding of the
electronic properties of solids.

In the present work we hope to illustrate how
some of the deficiencies of EDF approaches can be
eliminated. Specifically, we will demonstrate that
an EDF approach which employs “hard-core”
pseudopotentials!®!* derived from atomic charge
densities is capable of yielding quantitative results
for the static properties of simple metals. As a
case study we will examine several simple metals:
Li, Na, K, Rb, Cs, Mg, Ca, and Al.

The possibility of using a pseudopotential con-
structed within the EDF approach has not been in-
vestigated in past studies, but the coupling of an
EDF approach with pseudopotential formalism has
numerous advantages.'® Our pseudopotential con-
struction is based on the “true” valence charge
density as calculated via a local-density exchange-
correlation formalism. We require that the
pseudopotential reproduce the true density away
from the core region. This requirement means
that our pseudopotential implicitly contains the
shell structure of the atom. Consequently, our
calculated atomic properties within an EDF-
pseudopotential framework need not vary in a
monotonic fashion with atomic number. In addi-
tion we will establish a criterion for obtaining an
accurate local expression for the kinetic energy
within this framework. Second, our procedure has
several practical advantages over the more con-
ventional approaches. For example, our pseudo-
potentials involve no parameters adjusted to ex-
perimental data; thus, they are of a “first-prin-
ciples” nature. The calculations involve computing
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the differences between the electronic energy of
the valence electrons of the atom and the conduc-
tion electrons of the metal. This energy differ-
ence is significant compared to the individual en-
ergies involved, and the high numerical precision
required in other techniques'®-'® is not required
in our approach. As a consequence, calculations
for heavy metals using this method are easily per-
formed. Moreover, the use of pseudopotentials
means that the effective potential is weak; this al-
lows us to employ simple trial functions for the
density and this implies an EDF approach might
be very accurate. Finally, with respect to these
pseudopotential techniques, we note that only the
valence electrons are retained in our method.
This allows us to extract the valence electron con-
tributions to cohesion without having to carry the
essentially passive core states.!®-!8

Our interest in obtaining a workable energy-den-
sity-functional approach and applying the approach
to metals has been stimulated by the recent pro-
gress in developing techniques, both ab initio and
empirical, for predicting and understanding the
properties of intermetallic compounds and alloys.
While it is possible, using currently available
methods, to compute from first principles cohesive
properties of metals and ordered alloys, at pre-
sent such an approach does not appear to be a
feasible mechanism for developing a global pic-
ture. Ab initio calculations®-'® are difficult, em-
ploy extensive computing facilities, and lack the
required flexibility to achieve this goal. The sit-
uation has motivated, over the last few years, the
creation of several empirical or semiempirical
schemes.!®~2¢ While many of these schemes are
quite successful, a major problem with most of
them is that they do not provide us with a definitive
microscopic interpretation of metallic properties.
One long-range goal of the present effort is to de-
velop a scheme which can be closely related to a
microscopic interpretation and yet be amenable
to studying and predicting accurate intermetallic
properties.

II. ENERGY-DENSITY-FUNCTIONAL
PSEUDOPOTENTIAL
In this section we will define an ionic pseudopo-

tential which, when screened in a self-consistent
fashion within the EDF approach, will yield an ac-
curate charge density in a region away from the
core region. Our starting point is to write the to-
tal electronic energy E as a function of the valence
charge density. In atomic units (a.u.) we have

2
E(n)=Cofn5/3dT+le£Y£—)— dr

+J-nV;d-r+§an,,d‘r+E,c(n), (1)

where C, and C, are constants, V} is the ionic
pseudopotential which represents the effective po-
tential of the nucleus plus core electrons, V,is
the electrostatic potential from Poisson’s equa-
tion, and E,(») is an exchange-correlation local-
density expression as in the work of Gunnarsson
et al.>" The first two terms in Eq. (1) are kinetic
energy terms. The choice of coefficients C, and
C, will be discussed in Sec. III.

Once we have written the total electronic ener-
gies down as in Eq. (1), we may take the functional
derivative of E(n) with respect to 6z under the con-
straint that » be normalized. The result is an
equation for #:

vent/? 23 . i
—4C1—;17§— +§'C0n + V; + Vg+Uye+ V=0, (2)

where p,.is the functional derivative?” of E, (n)
and V,is a Lagrangian multiplier to insure charge
conservation (it corresponds to the Fermi level in
Thomas-Fermi theory). The point to note here is
that we may invert Eq. (2) to obtain an equation
for Vi:
2. 1/2
V:=—Vo_ V}{‘ U-xc+4cl.v 111 .

n - %Conz/a . @)

If we are given a valence charge density n, we may
then use Eq. (2) to find the potential which will
reproduce this density.

To define V3 we will consider a pseudocharge
density designed to be a smooth, nodeless function
which agrees exactly with the true atomic valence
charge density away from the core region. This is
illustrated in Figs. 1 and 2. We will consider only
the atomic charge density and assume that the ionic
pseudopotential determined by atomic density con-
sideration is transferable from the atom to the
solid. This assumption is equivalent to the “fro-
zen-core” approximation. This approximation has
recently been discussed by Moriarty,?® and he has
shown it to be valid even with respect to structural
energy differences.

One additional comment should be made with re-
spect to Eq. (3). Namely, how unique is the poten-
tial in Eq. (3)? If we demand that our pseudo-
charge density agree with the true valence density
away from the core region, i.e., beyond the outer-
most node of the valence density, then this part of
the potential is uniquely determined. The core re-
gion is not uniquely fixed by this procedure; how-
ever, if we demand that the total pseudocharge be
normalized, then the amount of charge in this re-
gion is restricted to be small, e.g., less than ~5%
of the total. This means that this region cannot be
of significance with respect to the static proper-
ties of a metal. First the charge in this region is
small, and second any errors in this region will
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FIG. 1. Radial distribution functions for the alkali
metals. The pseudocharge density is of the form given
by Eq. (8). This pseudocharge density is used to define
the energy-density-functional pseudopotential as in Eq.
(3).

be canceled when we take energy differences be-
tween the atom and metal.

III. LOCAL EXPRESSIONS FOR THE KINETIC ENERGY

Local expansions of the kinetic energy have re-
cently been studied by several groups, e.g., Parr
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FIG. 2. Radial distribution functions for Mg, Ca, and
Al. In Al note that we consider the total valence density.
The form of the pseudocharge density is given by Eq.
(8). We use this pseudocharge density to define the en-
ergy-density-functional pseudopotential from Eq. (3).

et al.,*® Alonso and Girifalco,'" Tal and Bader,!?
and Oliver and Perdew.’ Most of these studies
have concentrated on either assessing the accuracy
of local kinetic energy expansions or including non-
local corrections to the kinetic energy expres-
sions. Here we will concentrate on providing a
practical, realistic local expression for the kinetic
energy. We shall invoke one parameter in our dis-
cussion. Our single parameter will be fixed by
theoretical considerations alone and not by experi-
mental data.

In Eq. (1) we had two coefficients C, and C, en-
tering our kinetic energy experession. C,is the
usual Thomas-Fermi coefficient: C,=:(37°)%3
The value to be used for the coefficient C, is not
so clear. The value of C, =3 was originally sug-
gested by Von Weizsacker.?® We note that more
recent derivations®'® using different limiting con-
ditions on the charge fluctuations have produced a
value of C,=2%. For atomic systems, if Hartree-
Fock charge densities are used, the coefficient of
C, =4 seems to reproduce quite accurately the
true Hartree-Fock kinetic energy.®'® Our calcu-
lations, however, indicate that C, =% will not yield
accurate kinetic energies for a pseudocharge den-
sity. There are several reasons for this situation.
First, we have eliminated core states from any
consideration. In atoms the core states dominate
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the kinetic energy, and while the coefficient C,
=& may be appropriate for core state configura-
tions we have no reason to believe it is appropriate
for valence states alone. Second, we do not have
the true all-electron charge density in our calcula-
tion, but rather pseudodensities which possess no
nodal structure and cannot be expected to yield
all-electron values for the kinetic energy. Third,
our pseudopotential already contains “kinetic en-
ergy” contributions from the requirement that the
valence states be orthogonal to core states.™

To fix a realistic coefficient for our kinetic en-
ergy expansion, we proceed as follows, We con-
sider the atomic pseudocharge densities. We note
that our atomic pseudocharge densities are node-
less and, therefore, we may write an equivalent
pseudo-wave function as y,=Vn,. To be formally
correct we consider only the angularly averaged
densities. If we have more than one state present,
we may define = vz} for each ! component of
the density. In this case, the correct quantum-
mechanical kinetic energy is given by

I(l+1
f( ); . @

In this fashion we can calculate what the actual
quantum-mechanical kinetic energy should be for
our pseudocharge densities. We then fix C, so that

Tou=% zf (Vn

v 2
Tou= TEDF=cofn§/3dr+c,f—r—( :) ar, (5)
?

where #n,=3, n} is the total valence pseudocharge
density. By demanding Toy= Tgpe We guarantee
that our atomic calculation within the EDF frame-
work will yield exactly the quantum-mechanical
kinetic energy. We note that our procedure is sim-
ilar to the X, technique of fixing the exchange-cor-
relation coefficient a. Inthe X, procedure devel-
oped by Schwarz,® the parameter a is fixed to re-
produce exactly the Hartree-Fock total energy of
the atom. The parameter o so fixed by the atomic
calculation is then transferred to molecular or
solid state calculations. We shall make a similar
assumption here, i.e., that C, is transferable from
the atom to the metal. This is, perhaps, a strong-
er assumption but, as we shall see, the gradient
term for the metal is quite small compared to the
leading Thomas-Fermi term. As a consequence
any error in the metal because of our choice of

C, should be small. One other advantage in fixing
C, via Eq. (5) is that we may effectively absorb
higher-order terms in a kinetic energy expansion
into our coefficient C,. These higher-order terms
are not important in the metal; so, by fixing the

atom to the “correct” kinetic energy behavior, we
eliminate problems concerned with gradient cor-
rections beyond the leading term.

IV. METHODS OF CALCULATION

Our first task in evaluating the static properties
of metals is to obtain accurate ionic pseudopoten-
tials within the EDF scheme as specified in Eq.

(3). To accomplish this task we need accurate
pseudocharge densities. We obtain these densities
by considering the all-electron solution of Hartree-
Fock equations for the free atom?®® within a local-
density exchange-correlation approximation. We
solve for the atomic eigenvalues and eigenfunc-
tions with a potential of the form:

oot

where the exchange-correlation potentials y,., is
of the following form:27+34

«==[1+0.05451n(1 +11.4/7))]/mar, , (7

with a = (4/97)/3 and 773=1/n,. n, is the total
charge density for the atom. The local-density
approximation to exchange and correlation appears
to yield quite accurate ground-state properties.'®
It does not yield accurate excited or dynamic prop-
erties, but we will not be concerned with such mat-
ters in the present work. One point which we
should mention is that in Eq. (1) we have written
Lxc(n,) instead of a more proper p,(7;) = Ly eow);
i.e., we have neglected valence-core exchange ef-
fects. This approximation appears to be quite
valid and has recently been discussed by Mori-
arty.zs

In choosing a pseudocharge density, our goal is to
reproduce accurately the all-electron charge den-
sity away from the core region. We choose the
following analytic function and fit the parameters
a; to the all-electron density beyond the outermost
node.

d‘r + lydlm,) (6)

n,(r) = [1 - exp(~ayr?)]
X [a,7? exp(~a,7) + a;r *exp(-a,r)]. (8)

Our resulting pseudocharge density and calculated
all-electron charge densities for the valence elec-
trons are illustrated in Figs. 1 and 2. We display
the radial distribution functions which are a
reliable means of assessing the accuracy of any
fit.

The prefactor in Eq. (8) is essential in obtaining
an accurate fit. If we wish to have accurate den-
sities away from the core region and to have
properly normalized densities, then the latter re-
quirement demands that charge be excluded from
the core region. We must include the damping
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FIG. 3. Energy-density-functional ionic pseudopoten-
tials for the alkali metals [Eq. (3)]. Note the strong
(1/7% divergence in the core region. This divergence
appears to be an important aspect of EDF pseudopoten-
tials (see text).

prefactor to accomplish this. In Table I we list
the coefficients g;. While Eq..(8) yields a credible
fit to the all electron densities for the elements
we wish to examine, the coefficients are not
uniquely determined. Therefore, we do not attach
any physical interpreation to the coefficients a;.
With the densities so fixed we need to evaluate
our Kinetic energy expansion parameter C, before
we can construct the ionic pseudopotentials. We
calculate C, via Eq. (5). For Al this requires some
care. We calculate the s- and p-electron kinetic
energies separately via Eq. (4). However, in Eq.
(5) we must employ the total density. We use the
same expressions for the s- and p -charge densities
as for the total density in Al. This is convenient,
but it does result in some loss of accuracy. Un-
fortunately, C, is fairly sensitive to the tails of the
charge-density distributions. Thus we used a very
accurate numerical scheme to perform the integra-

TABLE I. Parameters in a.u. for the atomic pseudo-
charge density as given in Eq. (8). The atomic pseudo-
charge density will accurately reproduce, away from
the core region, the valence charge density as calculated
by Hartree-Fock local-dénsity exchange-correlation
techniques for the all-electron atom. A comparison of
the pseudocharge density and the true charge density is
presented in Figs. 1 and 2.

Metal a ay ap as ay,

Li 0.6065 0.006 74 1.244 0.00617 1.732
Na 0.8988 0.00102 1.720 0.008149 1.521
K 0.1493 0.0000798 0.747 0.00432 1.352

Rb 0.1066 0.0000121 0.547 0.003829 1.304
Cs 0.06435 0.0000009 1.578 0.002739 1.197
Mg 0.07547 0.0790 1.640 1.127 2.806
Ca 0.2399 0.00210 1.260 0.02348 1.601
Al(tot) 1.999 0.000055 6.375 0.2713 2.264
Al(3s) 0.6125 0.00285 1.196 0.03178 2.024
Al(3p) 0.7566 0.00138 1.180 0.3505 2.528

TABLE II. Coefficients for the gradient expansion
term of the kinetic energy as defined by Eq. (5).

Metal Cy Metal Cy
Li 0.067 Cs 0.073
Na 0.068 Mg 0.036
K 0.071 Ca 0.041
Rb 0.072 Al 0.037

tions. We feel that our C, parameters are accu-
rate to within a few percent, and this precision
appears to yield static properties with a similar
accuracy. The C, parameters are presented in
Table II. The reader will note that they all fall
between the two limiting cases of C, =3 for rapidly
varying charge fluctuations and C, =& for slowly
varying charge fluctuations.

From Eq. (3) we may now evaluate the ionic
pseudopotentials; the potentials are displayed in
Figs. 3 and 4. For small v we note that the poten-
tials diverge quite strongly. This divergence is
directly related to the requirement that the charge
density vanish as - 0. While we need not require
the pseudocharge density to vanish identically as
r-0, we are required to normalize the density
and, as indicated earlier, this requirement results
in a minimal amount of charge within the ion core.
Formally, if $,~7™ for small », then our ionic
pseudopotential will diverge as 1/72 for small »
for any m>0.

Recently the 1/7? divergence of hard-core pseu-
dopotentials has been discussed in detail by sev-
eral groups.'®!* In particular, it appears that
ionic radii based on the “classical” turning point'3
of these potentials provide very powerful structu-
ral indices. It is worth speculating that the 1/7?
divergence or hard-core aspect of pseudopoten-
tials may be an essential feature of the potential
for obtaining proper structural energy trends,
lattice constants, phonon spectra, etc. In this re-
spect it appears that the gradient term in the ki-

EDF Pseudopotentials
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FIG. 4. Energy-density-functional ionic pseudopoten-
tials as defined by Eq. (3) for Mg, Ca, and Al.
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netic energy is an important feature of the poten-
tial defined via Eq. (3). Without the gradient term,
we would not obtain a repulsive potential, i.e.,

the 1/72 divergent term, or for that matter, cohe-
sion in solids.

Once the ionic pseudopotential has been esta-
blished from Eq. (3) we may calculate the total
energy of the atom via Eq. (1). Next we solve for
the energy per atom of the metal by employing
spherical boundary conditions as originally sug-
gested by Wigner and Seitz.3®* We replace the Wig-
ner-Seitz polyhedral unit cell by a sphere of equal
volume and we demand that the derivative of the
metallic charge density vanish at the cell bounda-
ry: (dn/dv)Rs=0, where R, is the sphere radius.

To determine the metallic charge density and
the corresponding metallic energy we write a trial
density =, of the form:

n,(7) = ?‘__{ b, sin2<%r> explc,(r—R,)] 9)

and minimize the energy with respect to varying
the parameters (b,,c,). This expression appears
to be very rapidly convergent and has the advan-
tage of automatically having a vanishing slope at
the spherical cell boundary. Tests with varying
N indicate that even with N=2 the energy is con-
verged to within ~0.01 eV. Our isotropic expres-
sion for the metallic density is satisfactory for
close-packed and body-centered-cubic metals but
for open structures it must be refined to include
any angular dependence.

We calculate the metallic energy for several val-
ues of R,. By locating the minimum energy as a
function of R, we determine the equilibrium sphere
size RJ. Also by determining the curvature of

E*(rg,£) - EX(r,, 0)

E,(R,) we can establish the compressibility or
bulk modulus of the solid. Within this framework
we can calculate four quantities: the electronic
energy of the valence electrons of the free atom,
the cohesive energy, equilibrium sphere size or
atomic volume, and the bulk modulus.

Before discussing our results for the simple
metals we have examined, we need to discuss a
correction to the atom energy which is significant
for atoms with open shells, i.e., spin-polarization
effects.'®?” These effects have been demonstrated
by Gunnarsson et al.?” to be essential in obtaining
accurate cohesive energies. Fortunately, the
spin-polarization corrections are easy to perform
for nonmagnetic solids; we need only correct the
atomic energies. For the cohesive energy we
write

Ecohenion = Emem - Eatom" AEsp ’ (10)

where AEyg, is the spin-polarization correction to
the atomic energy, E ., and E,,, are calculated
from Eq. (1). AE,, is calculated as in the work
of Gunnarsson et al.2” with the only difference being
that we employ perturbation theory. The use of
perturbation theory is quite accurate since AE,,
is typically less than 0.1% of the total atomic en-
ergy for the elements considered here.

We write AE  as

AEsp=f [Exc('rs)g)_Exc(,rs!o)]ndT’ (11)

where £ = (ny —n)/n,. Here we approximate ny and
ni by the unpolarized density, e.g., ny —ny =n;,

for Na. For E*(r,,{) ~ E*(r,,0) we have from

Ref. 27:

={@Y* = 1)E; -~ Col(1 +X3) In(1 +1/Xp) + 5 Xp~ X2 = 5]+ C,[(1+ XD In(1 +1/X,) + 51X, - X2~ 5| }f(€), (12)

where f(£) = [(1+£)¥3 - (1 -£)¥2-2]/(2¥3-2), E}
==3/(4mar,), C,=0.0203, C,=0.0333, X .=7,/15.9,
and X, =7,/11.4.

Finally, with respect to Eq. (10), we have neg-
lected the zero-point energy of the lattice vibra-
tions. This energy is negligible in most cases
(and certainly less than the uncertainties existing
in the present calculations).!®

V. RESULTS AND DISCUSSION

In Table III we compile our calculated binding
energies for the valence electrons of the free

atoms. We compare our calculations to experi-
ment and to an all-electron calculation from Mor-
iarty®® for the valence electrons energy. We have
corrected his values to include spin polarization
for the open-shell atoms and indicate the correc-
tions made. The all-electron binding energies for
the valence electrons are accurate to 1.7% while
our EDF pseudopotential achieves an overall accu-
racy of about 2.3%. The pseudopotential results
appear to be slightly less accurate for the poly-
valent metals, especially compared to the all-
electron results.?® However, we do not view this
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as a significant problem as only the energy differ-
ences enter the cohesive energy in Eq. (10). Pro-
vided we make similar errors for both the metal
and the atom, our cohesive-energy accuracy can
be much better than the absolute errors listed in
Table II.

In Tables IV-VI we present the results of our
calculations for the cohesive energy, equilibrium
radius, and bulk modulus for each metal. We com-
pare our results to experiment and to what we be-
lieve are the best abd initio calculations for the sta-
tic properties of these metals. These latter cal-
culations have been performed by Moruzzi et
al.,’” ' and they will serve as our standard of com-
parison. The only input information into the Mo-
ruzzi et al.'® calculation is the atomic number and
the crystal structure of the metal.

With respect to the cohesive energies in Table
IV, our overall accuracy appears to be competitive
with the results of Moruzzi ef al.'® However, there
are some interesting differences. For example,
while the calculations of Moruzzi et al.'® are ex-
ceedingly accurate for the light alkali metals, they
do not appear to be equally accurate for the heavy
alkalis, e.g., Rb or the polyvalent metals. The
reasons for this trend are not transparent, and
they do not appear to be present in our calcula-
tions. On the other hand, our calculations are def-
icient in that we do not properly include /-depen-
dent or nonlocal effects. This deficiency becomes
evident in Li and Ca. For example, Li and Na
have almost identical valence charge densities
away from the ion core (Fig. 1); however, Li has
a cohesive energy which is approximately 40%
larger than Na. We conclude that the significant
differences between Li and Na metals must arise

TABLE III. Valence-electron binding energy for sev-
eral simple metals as calculated from an enery-density-
functional pseudopotential. Also presented are the ex-
perimental values from Ref. 36 and the all electron cal-
culations from Moriarty (Ref. 28). Spin polarization zor-
rections are indicated in parentheses for the open-shell
atoms (see text). All energies are in eV.

EDF
Metal Experiment All-electron pseudopotential

Li 5.39 5.56 5.50 (0.33)
Na 5.14 5.37 5.29 (0.29)
K 4.34 4.50 4.36 (0.22)
Rb 4.18 4.20 4.21 (0.20)
Cs 3.89 3.90 3.82 (0.17)
Mg 22.68 22.82 21.27
Ca 17.98 18.06 17.49
Al 53.25 53.30 54.26 (0.18)
Accuracy 1.7% 2.3%

TABLE IV. Cohensive energies as calculated from an
energy-density-functional pseudopotential (EDFP) for
several simple metals. The experimental cohesive
energies are taken from Lewis et al. (Ref. 37). The
all-electron values are from the calculation of Moruzzi
et al. (Ref. 18). All energies are in eV.

Theory

Metal Experiment all-electron EDFP
Li 1.65 1.65 1.41
Na 1.13 1.12 1.22
K 0.94 0.90 1.07
Rb 0.86 0.64 0.99
Cs 0.83 0.94
Mg 1.53 1.69 1.88
Ca 1.83 2.24 1.72
Al 3.34 3.84 2.98
Accuracy 11.5% 12.2%

from excited-state admixtures into the metallic
density as we pass from the atom to the metal.
We do not include in our work the possibility of
unoccupied states of the atom admixing into our
metallic ground-state properties. In Ca a similar
effect appears possible. In the alkali-earth col-
umn of the Periodic Table we do not observe a
monotonic decrease in binding as we do in the alka-
i metals. Experimentally, Mg has a smaller co-
hesive energy than Ca; we observe in our calcula-
tions the opposite effect. We suspect that what is
missing in our calculation is the absence of any
d-state mixing which probably occurs in the me-
tallic state of Ca. This seems reasonable since
Ca precedes the first transition metal Sc and has
an unoccupied d state which lies quite close to the
ground state of the free atom. Moreover, the im-

TABLE V. Equilibrium sphere radii as calculated from
an energy-density-functional pseudopotential. At these
radii the metallic energy is a minimum. Also tabulated
are results from the all-electron calculation of Moruzzi
et al. (Ref. 18) and experimental values from Wyckoff
(Ref. 38). The radii are in a.u. (1 a.u.=0.529 A)

Theory
Metal Experiment all-electron EDFP
Li 3.25 3.17 3.63
Na 3.93 3.79 3.84
K 4.86 4.65 4.66
Rb 5.20 5.03 4.97
Cs 5.63 5.54
Mg 3.35 3.29 3.54
Ca 4.12 3.91 4.42
Al 2.99 2.97 3.26

Accuracy 3.0% 5.6%
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TABLE VI. Bulk moduli as determined from an ener-
gy-density-functional pseudopotential calculations (Eq.
13). We also present experimental room-temperature
bulk moduli from Gscheidner (Ref. 39). The all-electron
values are from the work of Moruzzi et al. (Ref. 18). The
bulk moduli are in dyn/cm? (x 10'2),

Theory

Metal Experiment all-electron EDFP
Li 0.116 0.15 0.10
Na 0.068 0.09 0.072
K 0.032 0.04 0.047
Rb 0.031 0.03 0.040
Cs 0.020 0.023
Mg 0.354 0.41 0.33
Ca 0.152 0.17 0.13
Al 0.722 0.80 0.65
Accuracy 19.2% 17.6%

portance of d-state admixtures in the heavy alkali
earths has recently been emphasized by Mori-
arty.2®

In Table V we compile our computed equilibrium
sphere radius RJ for each metal and compare our
calculation to experiment and to the work of Mor-
uzzi et al.'® Overall, in both calculations, the
computed Wigner-Seitz sphere size appears to be
relatively more accurate than does the cohesive
energy. This is a strange result as one might ex-
pect the energies to be more accurate than volume
sensitive quantities such as the radii. This may
be an “atomic” problem since the radii depend
solely on the metallic calculation. We speculate
that the problem with the energies versus the
radii may reside in the local-density approxima-
tion for exchange and correlation since the trend
is similar in both calculations. Another interest-
ing trend is that the all-electron calculation under-
estimates the sphere size in every case. This is
not the situation for the present work; here all the
monovalent metals (except Li) have smaller cal-
culated R? than experiment, while all the polyva-
lent metals have larger RJ than experiment. This
suggests that the orbital hybridization effects as-
sociated with band splittings and at Brillouin-zone
faces in Li and the polyvalent elements produce
significant compressive forces which are omitted
from our model. We believe that the present cal-
culations are the first ones to isolate and quantify
this effect of “incipient covalent bonding.” The
effect is large (~10%) and may be important in
explaining, e.g., anomalies in the composition de-
pendence of (c/a) ratios of Mg alloys* and vibra-
tional anomalies in high- T, superconductors,®:#

In Table VI we present our calculated bulk mod-
uli for the simple metals which we have examined.

TABLE VII. Metallic pseudocharge~density parameters
in a.u. [Eq. (9)]. These parameters will minimize the

total energy of Eq. (1) for the equilibrium radius, in Ry,
given in Table V.

Metal by by cy Cy
Li 0.00534  0.002 65 -0.0487 -0.0570
Na 0.004 57  0.00228 -0.0668 -0.0317
K 0.00283  0.00136 -0.0870 —0.0939
Rb 0.00228 0.00111 -0.0857 -0.0867
Cs 0.00163 0.000830 —0.0857 —-0.0690
Mg 0.0102 0.007 94 ~0.0207 -0.0312
Ca 0.00561  0.00371 -0.0594 -0.0399
Al 0.0171 0.0146 0.00447 0.0955

In terms of our spherical geometry the bulk mod-
ulus may be expressed as

1 82E)
= 12)
B=17.81(10 )Ro(ﬁf o (13)
s s

where B is in dyn/cm? and (E,RY) are in atomic
units. We evaluate the required second derivative
by fitting a parabolic curve to the E vs R behavior.
We also list the experimental values for the bulk
moduli in Table VI and the results of the Moruzzi
et al.'® calculation. We do not distinguish between
the room-temperature bulk modulus and the one
appropriate at absolute zero (which should corre-
spond to our calculations). First, our calculated
bulk moduli are accurate to only ~20%, and second,
the measured bulk moduli often have uncertainties
comparable to the differences in the temperature
change. Overall the agreement between our cal-
culated values and experiment is quite good. This
is especially true considering the computational
and experimental difficulties. We note our cal-
culated bulk moduli appear to be slightly superior
to the all-electron calculated values. However,
with the uncertainties involved, we do not view the
small difference in accuracy as significant.

In Table VI we tabulate the charge-density pa-
rameters for the metal which minimizes the en-
ergy in Eq. (1). As with the atomic-density ex-
pression we use, there is some “overcomplete-
ness” in our charge-density expression so we do
not interpret in physical terms the behavior of
the parameters. Rather we shall concentrate on
examining the charge-density and energy-density
trends in Na, Mg, and Al. In Fig. 5, we display
the charge density for both the atom and the metal.
Our results for Na are not surprising; they cor-
respond quite closely to the results observed in
the classic calculation of Wigner and Seitz.®® For
example, the density outside the core region is
fairly constant. This is consistent with the Wig-
ner-Seitz observation that the density is constant
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FIG. 5. Metallic and atomic pseudocharge densities
for Na, Mg, and Al. Wigner-Seitz boundary conditions
are employed for the metallic density. The derivative
of the metallic density must vanish at the spherical
boundary »=R".

over nearly 90% of the cell volume. We do note,
however, that the density does not monotonically
rise to the cell boundary but peaks at » 2.6 a.u.
Again this is consistent with the Wigner-Seitz
calculation. The existence of this peak arises
from the electron-ion interaction and indicates

the reduction in kinetic energy with constant den-
sity is slightly offset by the lowering of the poten-
tial energy through localizing charge near the ion-
electron potential minimum. Mg and Al appear

to mimic Na except that the density is more loca-
lized in both the metal and atom. Moreover, the
relative change from atom to metal in the charge-
density profile is not as dramatic in Al and Mg as
compared to Na. This is to be expected. With
increasing nuclear charge, the electron-ion poten-
tial becomes stronger and the effect of the cellular
boundary conditions of the metal are lessened;
away from the cell boundary, the atomic density
remains relatively intact as we pass from the
atom to the metal.

One advantage of the present analysis over other
techniques is that we are able to examine in a
straightforward fashion the real-space contribu-
tions of the various energy contributions to co-
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FIG. 6. Various energy contributions to the energy-
density functional [Eq. (1)] for Na atom and metal plotted
as a function of distance. R is the metallic spherical
radius. We include the phase factor of 4m#? on the den-
sities so that the area under each curve gives the total
energy contribution.

hesion. We illustrate this for Na, Mg, and Al in
Figs. 6-8. In these figures we have plotted the in-
dividual components of the energy-density function-
al for both the atom and the metal. We have in-
cluded the 4772 volume factor in these plots so that
the net area under each curve gives the total en-
ergy contribution.

The most striking aspect of Figs. 6-8 is the
smallness of the kinetic energy correction term for
the metallic densities. On the scale of the other
energy contributions this term almost vanishes.
Thus, we find that a local-kinetic-energy expres-
sion with only a gradient correction can be quite
accurate for simple metals. While the correction
is small for the metal, it is not small for the
atom. In fact, for the Na atom the gradient term
is comparable to the Thomas-Fermi term. This
reinforces our arguments for fixing C, to atomic
properties, where the gradient term is crucial in
obtaining an accurate kinetic energy rather than by
fixing C, to metallic properties where the gradient
term is small.
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FIG. 7. Various energy contributions to the energy-
density functional [Eq. (1)] for the Mg atom and metal.
Note that the gradient-kinetic-energy term is so small
for the metal it has been rescaled by a factor of 10 (see
text).

Our calculated trends in the various energy com-
ponents of the total energy appear compatible with
the usual explanations of cohesion in metals. For
example, in a “renormalized-atom” picture® the
valence orbitals of the atom are terminated at the
Wigner-Seitz radius and are renormalized. The
renormalization increases the kinetic energy, but
by “virial-theorem” arguments the potential ener-
gy is decreased by more than the kinetic energy
increase. The resulting change lowers the energy
of the renormalized atom and results in the me-
tallic state being more stable than the atomic
state. For the case at hand we might not expect
a virial theorem argument to be valid. For ex-
ample, our local-kinetic-energy operator may not
reproduce the trends expected for a quantum-me-
chanical kinetic energy operator. Nevertheless,
our results do appear to agree with the renorma-
lized atom arguments. Namely, our potential-en-
ergy components decrease in energy in passing
from the atom to the metal more than the kinetic
energy increases.

Besides trends in the total kinetic energy and
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FIG. 8. Various energy contributions to the energy-
density functional [Eq. (1)] for the Al atom and metal.
The gradient-kinetic-energy term has been rescaled by
a factor of 10.

total potential energy, we note that the observed
decrease of the gradient-kinetic-energy term in
passing from the atom to the metal correlates
quite well with the observed cohesive energy. This
finding is in accord with the pioneering cohesion
work of Wigner and Seitz.®® Wigner and Seitz
emphasize the role of phase matching of the wave
functions at the cell boundary of a metal and the
reduction of the curvature of the metallic wave
functions as contrasted to the atomic case. Here
we note the reduction of charge-density fluctuations
as reflected by the gradient-kinetic-energy term
(Figs. 6-8) appears to play a significant role in
determining the cohesive energies. If the gradient
term were removed from consideration, then we
would find no cohesion: the sum of the homogen-
ous kinetic energy and potential energy is almost
identical for the atom and metal. This is not sur-
prising in view of previous discussions concerning
the Fermi-Thomas approach with no inhomogeneity
corrections.*®

If the main source of cohesion in simple metals
arises from a lowering of the total energy brought
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about by new boundary conditions on the charge
density, then the chief source of cohesion should
be localized in real space at or near the metallic
cell boundary. Recent work by Miedema and col-
laborators®® on intermetallic alloys seems to sug-
gest that cohesion arises in real space from
changes in the elemental charge-density profile
near the cell boundary.

With our formalism it is easy for us to examine
the localization of cohesive energy contributions
in real space. In order to demonstrate any locali-
zation graphically, we perform our spacial inte-
grations about the cellular boundary; i.e., we
choose to write:

RO
E° = f *E,R°-7r)dr,, (14)

0
Eo= [ (B, R-7)+E,R2+7))dr,, (15)
(1]
and

5= [ B,

0o

=[BRS -r) - E®2-7,)

-E,RJ+7)]ar,, (16)

where E, is the metallic energy density, E, is the
atomic energy density, and E_ is the cohesive en-
ergy density. In Fig. 9 we display E_, E, and E_
vs 7,. Since we have included the 4772 volume
factor, the area under the curves give us the me-
tallic energy (E°), the atomic energy (E), and the
cohesive energy (E9), respectively. If all the co-
hesive energy origininated at the cell boundary,
then we would have a strongly peaked structure
for E (r ) with the maximum contributionoccurring
at the cell boundary (r,=0). In fact, we see all
the negative cohesive energy contributions are
strongly localized within approximately 1 a.u. of
the cell boundary. We note there is some positive
cohesive-energy contribution in Al. This contri-
bution peaks at about 1.5 a.u. from the cell boun-
dary, and it arises from a “rigid” shift in the
charge density of the atom in passing to the metal.
(See Fig. 5.) We emphasize that this is not a neg-
ative contribution to the cohesive energy and that
the binding contributions are strongly localized at
the cell boundary.

VI. CONCLUSIONS

Since we listed in our introductory comments
some of the deficiencies of Thomas-Fermi ap-
proaches, it would seem appropriate in summary
to emphasize the positive aspects of our study.
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FIG. 9. Real-space energy-density contributions to the
cohesive energy of Na, Mg, and Al. 7,=0 corresponds
to the cell boundary. The atomic, metallic, and differ-
ence curves correspond to the definitions in Eqs. (15)
and (16). The area under each curve gives the atomic
E?, metallic E}, and cohesive energies EJ, respectively.
Note the strong localization of the cohesive-energy con-
tributions at the cell boundary. (Also see text.)

By combining a local-density expression for the
kinetic energy and a hard-core pseudopotential for
the electron-ion interaction energy we were able
to examine several simple metals in an accurate,
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yet convenient, fashion. We did not need to cal-
culate any band-structure properties nor individu-
ally match wave-function phases. By considering
only charge densities, we were able to account
quantitatively for all the static properties of the
metals. We stress this aspect because phase
matching has been emphasized so often in discus-
sions of metallic cohesion in metals.*® Our stud-
ies indicate this is not a correct viewpoint, at
least for simple metals.

The only real deficiency of the present study is
its neglect of nonlocal effects both in the pseudo-
potential (which should be I dependent) and the
kinetic energy (orbital hybridization). Nonlocal
effects would certinaly be important in any study
of transition metals or noble metals. In fact, as
we have discovered in our study of Li and Ca,
nonlocal effects may be important in what are
nominally simple metals. (Some preliminary cal-
culations we have performed on Ga indicate the
neglect of nonlocal effects may introduce an error
nearly twice as large as that found for Al.) We
feel from the present studies that it should be pos-
sible to modify the pseudopotential to include non-
local or /-dependent effects, and we hope to ad-

dress this question in a subsequent paper.

Finally, while we have been able to analyze in
some detail several simple metals in a unique
fashion, we feel the study of metals per se is not
the strength of this method. First, studies for
most elemental metals already exist in the litera-
ture in the form of all electron calculations, e.g.,
Moruzzi et al.'® Second, our calculations contain
one nonderivable parameter for the gradient ex-
pansion term of the kinetic energy. The existence
of this parameter certainly restricts our method
as an ab initio means of studying metallic proper-
ties. On the positive side, our method may prove
to be a very powerful technique for studying alloy
formation. In particular, our approach clearly
resembles the intermetallic alloy model of Miede-
ma and collaborators.!® However, unlike Miede-
ma’s semiempirical scheme, our approach has a
definitive microscopic interpretation which we
have shown here parallels quite closely the results
of the best ab initio elemental studies.
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