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The spin-density-functional theory is used to investigate the phase transitions of electrons in a lattice of
fixed point charges (a model first studied by Mott). We find a first-order metal-insulator transition at
r, = 2.84 and a second-order magnetic transition at r, = 2.74. Results are presented for the magnetization
and the spin susceptibility. Extrapolating our results for the case of donor impurities in silicon (neglecting
disorder), we estimate that the first-order metal-insulator transition would not be observable above T, =~ 50

mK.

1. INTRODUCTION

The metal-insulator transition is a subtle and
interesting subject. Different qualitative pheno-
mena can cause electrons to localize. For ex-
ample, Anderson' has shown that noninteracting
electrons will become localized in an environ-
ment which is in a certain sense sufficiently ran-
dom. On the other hand, in a perfectly ordered
solid, electrons should localize when their inter-
action energy becomes sufficiently larger than
their kinetic energy. There are several pheno-
mena which are thought to be associated with the
metal -insulator transition including distortion of
the lattice leading to a crystallographic change
of phase.? Further, the ground state of the solid
often becomes magnetically ordered either near
or at the metal-insulator transition.?

A general solution embracing all of these fea-
tures is beyond grasp at the present time. How-
ever, there is a simplified problem suggested
by Mott® some time ago as an approach to the
metal-insulator transition. Consider an array of
hydrogen atoms at zero temperature fixed rigidly
on a lattice. What is the electronic ground state
of the system as a function of the separation of
the atoms? Some features of Mott’s problem are
fairly clear. At very high density the system will
be a paramagnetic metal, while at low densities
it will be an insulator and probably antiferromag-
netic. Between these two limits there must be a
transition from metallic to insulating behavior,
and also from paramagnetic to antiferromagnetic
behavior. The statement of the problem rules out
both the effects of randomness and crystallo-
graphic phase changes.

Beyond these rather general features, the na-
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ture of the electronic ground state has not been
satisfactorily elucidated. In particular the num-
ber of phase transitions and their nature has not
been determined, although Mott has argued on
quite general grounds that the metal-insulator
transition must be first order Further, Mott has
suggested that the transition from metallic to in-
sulating and from paramagnetic to spin-ordered
behavior might occur at the same density (i.e.,
there would be only a single transition).? On the
other hand, it has been known for some time that
the most widely studied model of Mott’s problem
(the Hubbard model*) may exhibit two separate
phase transitions in contradiction to Mott’s sug-
gestion.® However, the results of the Hubbard
approach cannot be considered conclusive for the
Mott problem, primarily because the Hubbard
Hamiltonian treats the long-range electrostatic
interaction as a short-range phenomenon. A pro-
per treatment of the electrostatic force might well
change the order and number of the phase changes.
We note that the fixed nuclear background of
Mott’s original problem reduces the problem to
that of determining the ground -state properties of
a collection of electrons moving in a fixed external
potential; that is, the entire problem is deter-
mined by the properties of the inhomogeneous in-
teracting electron gas. Such problems are very
difficult and not yet subject to exact solutions.
However, the spin-density-functional formalism®:’
provides a practical method for approximately
determining the ground state of many such sys-
tems. Basically, density-functional theory®?® is
a Hartree-type method which also includes the
effects of exchange and correlation in the self-
consistent field. Good results are generally ob-
tained both for the properties of isolated atoms
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(including hydrogen) and for the properties of

bulk metals.!®!! Further density-functional theory
has been used to study the Wigner transition in the
low-density electron gas with reasonable results.'?
The method yields reliable answers not only for
the ground-state energy but also for the ground-
state spin densities.

Ghazali and Leroux-Hugon'?® have recently used
the density-functional theory to make an estimate
of the critical density of the metal-insulator trans-
ition for the Mott problem. They used a rather
restricted approach which implicitly assumed
that there was only a single transition in agree-
ment with Mott’s speculation. Further, their ap-
proach did not allow them to determine the order
of the transition. In this paper we report a similar
but more general calculation which does allow us
to examine in detail the number and order of the
phase transitions. We find in this work that there
is a first-order metal-insulator phase transition
whose critical density satisfies a,n,’®=0.22, where
a, is the Bohr radius. Our microscopic calcula-
tion confirms and illustrates Mott’s qualitative
arguments for the first-order nature of the trans-
ition. However, in agreement with the calculations
based on the Hubbard Hamiltonian we find a se-
parate second-order phase transition associated
with the onset of spin ordering. It has a critical
density about 10% greater than the metal-insula-
tor transition. Our picture is this, as we go from
high-density solid to the low-density solid: first,
we have a paramagnetic metal, then a spin-or-
dered metal, and finally a spin-ordered insulator.

The work to be reported has three major res-
trictions which will be discussed in more detail
in Sec. V. The first restriction derives from the
fact that the true magnetically ordered ground
state near the metal-insulator transition is un-
known but probably antiferromagnetic. For ease
of computation we have assumed here that the
spin-ordered state has ferromagnetic symmetry.
The second restriction is the use of the local ap-
proximation for exchange and correlation energy.
Finally, we have ignored structural differences
between different possible lattices and have used
a Wigner-Seitz sphere in our calculations.

The structure of the paper is as follows. First
we discuss some general features of the transi-
tion. Then we discuss the applications of the den-
sity -functional formalism to the Mott problem.
The fourth section gives our results. The final
section contains a discussion of our results and
a summary.

II. GENERAL FEATURES OF THE TRANSITIONS

We are primarily concerned with two features
in this system: the conductivity ¢ and the mag-

netization M. We determine these quantities by
minimizing an energy functional, E[r!,n'], which
is discussed in Sec. III. Minimizing E is equiva-
lent to solving a fully self-consistent spin-depen-
dent band-structure problem. As first pointed
out by Slater,'* the Coulomb repulsion that pre-
vents two electrons from occupying the same site
can be thought of in terms of nondegenerate spin-
up and spin-down bands.

The band-structure approach gives a straight-
forward signal for the conductivity. The system
is insulating when the lower band is completely
filled and the upper band is completely empty. It
is conducting when the two bands are each par-
tially filled. Besides the metal-insulator transi-
tion, we find a second transition where a magne-
tic moment begins to form in the metallic phase.
Here the order parameter is the magnetic moment
in the unit cell, which is given directly in a spin
band-structure calculation.

III. CALCULATIONAL PROCEDURE

The total ground-state energy of a collection of
N electrons can be written as a unique functional
of the spin density.®” Further, for the true
ground-state spin density, the energy is a mini-
mum. We write the energy as a functional of the
spin-up and the spin-down densities nt(r) and
nt (7).

Elnt,nt |=Tln' | +T[n ]+ L [RRC)
2 | T -7l

+fV.,t(r)p(r)dar+E,c[n’,n*]. (1)

Here p(7) is the total electronic density, and T
is the kinetic energy for a band of noninteracting
electrons with density n' or n*. The third term
on the right is the electrostatic energy, while
the fourth term yields the potential energy of the
electrons moving in the field of the protons. The
final term E,_ is a functional of the densities n'
and »' which represents the exchange and cor-
relation energy. In solving a problem this is the
only term which must be approximated since an
exact expression is unknown. We use the local
approximation, i.e.,

Eo= [@r e ' (P),nt (). @

Here €, is the exchange and correlation energy
per unit volume for a uniform electron gas with
spin densities n' and n'. We use the formulas
of Gunnarson and Lundqvist’ for the function e,..
The next step in solving our problem is to mini-
mize the energy which leads to a spin-generalized
version of the self-consistent equations given by
Kohn and Sham®’ (we use atomic units throughout).

1Vl (F) + Ve D} (F) =€ ot (), (3)

d3d3r’
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d
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Equivalent equations for the spin-down band are
found by substituting + for 4 in all the equations
above. R, denotes the lattice positions of the pro-
tons. Here ¢!, y! are the eigenvalues and eigen-
vectors for the spin-up band; similar quantities
¢!, ¥ are defined for the spin-down band. The
symbol Kk denotes the wave vector. The Fermi
energies are given by e,:F and e,:F. These quantities
are related by

1
N=g(k}” +£}). (6)

Finally, the total energy may be evaluated using
Eq. (1) and noting that

]
T! =§: ¢! -fn*(F)V,’,,(?)dsr. )

To solve Egs. (3)—(5) one chooses an arbitrary
trial potential v,,,. One then obtains via Egs. (3)
and (4) an estimate for the spin densities. These
densities yield a new estimate for the effective
potential via Eq. (5). This process is iterated to
self-consistency.

Since the potential is periodic we need to solve
only for ¥, over the unit cell. Hence as we noted
before the entire procedure is simply the deter-
mination of a self-consistent band structure. In
order to reduce the numerical computation we
follow a method suggested by Tong'® and use a
spherical approximation, replacing the true Wig-
ner-Seitz cell by a Wigner-Seitz sphere about
each proton. It is this approximation which re-
stricts us to only paramagnetic and ferromagnetic
ground states, since there is no simple spherical
approximation for a unit cell containing more
than one proton (e.g., the antiferromagnetic case).

In solving for the wave functions, we now apply
periodic boundary conditions on the sphere. That
is, we require

Up(T) =9, ( - T) exp(2ikr cosb), |F| =7, (8)
and
awgir)= - exp(2ikr  cosb) a_lp’;%’ﬂ, [F| =r,.  (9)

Here 7, is the radius of the Wigner -Seitz sphere,
k is the magnitude of the wave vector assumed

in the z direction, while 6 is the angle between

k and . The restriction |¥| =7, ensures that both
~T and T lie on the surface of the Wigner -Seitz
sphere.

The wave functions ,(T) are constructed in the
following way. First, we solve the radial Schri-
dinger equation, using an effective potential which
reflects the spherical symmetry of the unit cell
at an energy E. We denote the solution of the
radial wave equation as ¢,(T, E). Assuming that
sz(F) can be expanded in terms of spherical har-
monics,

Pe(F) = }; n,¢,P, (cos8)¢ (¥, E). (10)

Here n, =1 if  is even, and 1, =¢ if [ is odd. The
expansion coefficients are real. If we substitute
this expansion into the boundary condition and
average v over the surface of the sphere, we ob-
tain a secular equation (see Brooks!®). For a
given value of 2 the secular equation has solutions
only for a discrete set of E (the energy bands).!> !¢
Our procedure is thus to determine the E vs &
relation for the lowest spin-up and spin-down
band. We then choose the relative occupation of
the two bands and calculate the density and the
kinetic energy T, from the wave functions.'* Equa-
tion (1) leads to the total energy as a function of

n' and nt. By studying this function one deter -
mines the location and nature of the phase tran-
sition and the magnetic susceptibility of the sys-
tem.

IV. RESULTS

Our results can be qualitatively summarized as
follows: At high densities there is a paramagnetic
metal with the spin-up and the spin-down bands
degenerate and equally occupied. As the density
is decreased there is a second-order phase tran-
sition in which a magnetic moment forms spon-
taneously on each proton; i.e., one spin band lies
lower in energy than the other and is occupied by
more electrons. Finally, at even lower densities
the system undergoes a first-order phase tran-
sition to a state in which the upper spin band is
completely empty and the lower band is full, which
we take to be equivalent to an insulating state.

To explicate the origin of these results, we show
in Fig. 1 a plot of the total ground-state energy
per unit cell at 7 = 2.84(4mr3=1/n) as a function
of the magnetic moment M. We fix the occupation
of two spin bands (to constrain the net magnetiza-
tion of the cell) and find the self-consistent solu-
tion subject to that constraint. The actual ground-
state energy and magnetization for this value of
v, are then obtained from the absolute minimum
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FIG. 1. The total energy at the first-order metal-
insulator transition as a function of the magnetic mo-
ment in the unit cell at ; =2.84. The inset shows an
enlargement of the double-well structure. The arrow
indicates that value of M for which the bottom of the
upper spin band crosses the top of the lower spin band.

energy in Fig. 1. We have chosen to present a
plot for an 7, in the vicinity of the metal-insulator
transition; in this density regime there are two
approximately degenerate minima of the energy
curve. For a slightly higher density (smaller 7)
the minimum centered at M =0.82 will be the pre-
ferred state, while at slightly lower density the
completely spin-aligned solution will be the ground
state. Hence, as 7, is varied through 2.84 there
is a sharp transition in which M changes discon-
tinuously from 0.82 to 1; that is, the ground state
changes from that of a spin-polarized metal to an
insulator.

The double-well structure in Fig. 1 is the signa-
ture of the first-order phase transition, and it
arises in the following way. Still considering the
case of v, =2.84 we show the band occupation in
Fig. 2(a). The upper band lies a small but fi-
nite energy AE above the lower band if M =1, i.e.,
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FIG. 2. The spin-split bands at the first-order phase
transition. (a) shows the bands and the existence of an
energy gap when the electrons are completely spin
aligned (M=1). (b) shows the overlapping bands which
occur at the second energy minimum (see Fig. 1) for
M=0.82.

for complete spin polarization of the system. Con-
sider taking a few electrons out of the lower band
and putting them in the upper band. We must pay
energy AE per electron as we transfer electrons,
and this accounts for the increase in energy shown
in Fig. 1 as we move away from the completely
spin-aligned solution (M =1). However, there is
a second effect which causes this increase in en-
ergy to stop and leads to the formation of the se-
cond minimum at M =0.82. This effect results
from the fact that the electrons and holes created
by the transfer interact and reduce the energy

gap between the two bands. In fact, this effect

is sufficiently large so that, when we put enough
electrons in the upper band, the bottom of the
upper band crosses the Fermi surface of the lower
band and energy is gained by transferring elec-
trons to the upper band. This transfer continues
until balanced by the loss of exchange and cor-
relation energy. The result is the minimum at

M =0.82. In Fig. 2(b) we show the band occupation
at this minimum. The qualitative behavior of our
model is described by Mott’s original arguments
for the first-order nature of the metal-insulator
transition (basically his arguments concern the
reduction of the band gap due to electron-hole
interaction). We note that owing to the small size
of the energy barrier separating the insulating
state from the metallic state, the critical tem-
perature for the first-order transition will be
quite low, about 20 K.

The formation of the spin moment results in a
second-order phase transition at 7,, =2.74. In this
regime there is no double-well structure and the
energy minimum moves continuously out from
M =0. The behavior of the magnetization is shown
in Fig. 3. As expected from mean-field theory,

M grows as the square root of the difference be-
tween the density and the critical density: M =2.57
(v, —74) "% This behavior is obeyed to within a
few percent up to the occurrence of the first-order
transition. Similarly the differential magnetic
susceptibility has a mean-field form: x =4.59/

(7, = 7,) for 7, less than the critical value for 7,
=2.74.

Several approximations were made in this study.
We are attempting to investigate the nature of the
phase transitions in a mean-field theory (since
we require each cell to be equivalent and do not
allow for fluctuations). As always fluctuations
could change the picture drastically near the cri-
tical density. We have also disregarded effects
of disorder and of lattice distortions, both of which
could be important for transitions in real ma-
terials. Additionally we have required that the
magnetic state have ferromagnetic symmetry. The
true nature of the magnetic ground state in the
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FIG. 3. The magnetic moment in the unit cell as a
function of 7, . The behavior between r, =2.74 and 2.84
is square-root-like. Atr, =2.84 there is a discontinu-
ous change to the fully spin-aligned state.

neighborhood of the transitions is unknown. At
much lower densities where tight binding is ap-
propriate, the antiferromagnetic ground state is
preferred. It is quite possible that the transition
from a paramagnetic to an antiferromagnetic me-
tal is preferred to the situation studied in this
paper. In this case, rather than an energy split-
ting between the spin-up and spin-down bands, the
onset of antiferromagnetic order is accompanied
by a reduction in the size of the magnetic Bril-
louin zone. There would again be partially over-
lapping upper and lower bands, but the detailed
picture would be somewhat different from that of
the ferromagnetic case. We are currently ex-
tending our calculations to allow for these more
complicated magnetic ground states. Preliminary
studies suggest that the band-crossing effects
which are the heart of the metal-insulator tran-
sition become much more complicated, and, as a
consequence, the specific crystal geometry may
become important in determining the nature of the
transitions.

A final limiting feature of the calculation is the
local-density approximation for the exchange and
correlation. The structure of the transitions we
studied depends on small differences in energy.

A complete theory of the exchange-correlation
energy might provide systematic changes in our
results. Within the local approximation our re-
sults are insensitive to the particular choice of
energy functional. For example, if we use the
exchange-correlation energy of von Barth and
Hedin® we find that the transitions are shifted to
larger 7, by less than 3%. All other features of
the calculation remain essentially the same.

The insensitivity of the results to the choice of
exchange-correlation energy functional is easily
understood, and gives hope that the results of a

more complete exchange-correlation energy func-
tional will not change our conclusions. Basically
the transitions depend on a trade-off of the in-
teraction (exchange-correlation) energy with the
kinetic energy. Over the range of the transitions
the interaction energy is relatively constant, while
the kinetic energy is changing rapidly. Hence the
location of the transitions depends on getting the
size of the interaction term correct and treating
the kinetic energy as accurately as possible.

The calculation has an interesting qualitative
feature which should be remarked upon. Consider
avery low-density system; the bands are com-
pletely split and all the electrons occupy the lower
spin-up band. An electron in the lower (ground-
state) band sees the potential due to a static array
of protons (electron-electron effects are very
small at low density). On the other hand, con-
sider an excited electron in the upper band. It
should see essentially the potential of neutral H,
since this state corresponds to two electrons on
the same site. Qualitatively this effect occurs to
some degree at all densities lower than the mag-
netic transition including situations where the
two bands overlap. This effect is crucial in any
proper understanding of the metal-insulator tran-
sition. It is represented phenomenologically in the
Hubbard model by the quantity U which is just the
extra energy required to occupy one of the sites
with two electrons.

The self-consistent band-structure approach
does mimic this effect qualitatively in terms of
the total energy. The electrons in the lower band
have a strong exchange term in the local spin-
density approximation, while the electrons in the
upper band have very little exchange. In the low-
density limit the statistical approximation to the
exchange is a self-interaction correction which
cancels the self-electrostatic energy almost com-
pletely in a global sense. It is just these features
that lead to the splitting of the spin bands in our
model.

V. DISCUSSION AND SUMMARY

We now compare our results with experiments.
Edwards and Sienko'” have reviewed studies of
impurity atoms embedded in various host materials
such as P in Si and Na in Ar. These experiments
have the common property of a single loosely
bound electron about the impurity. For this whole
class of experiments there is a metal-insulator
transition for nY/%a% =0.26 +0.05. Here a* is a
Bohr radius chosen appropriately to represent the
localization of the electron about a single isolated
impurity in the matrix; in Si, for example, a¥*is
the effective-mass radius corrected for central-
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cell effects. This empirical relation for the cri-
tical density holds for systems with ratios of den-
sity up to 101°, Our determination of 7%, =0.22
is in agreement with the empirical relation,
whereas the estimate of the critical density by
Ghazali and Leroux-Hugon'! mentioned above gives
a critical density of a factor of 2 smaller than the
experimental one. We attribute the difference to
the several approximations in their calculation
which we did not make.

For the particular case of the transitions of
donors or acceptors in semiconductors a further
comment is in order. For definiteness consider
donors in silicon where the energy scale is set
by the donor Ry, ~30 meV. The critical tempera-
ture for the first-order metal-insulator transition
scales to approximately 40 mK. We expect that
the maximum transition temperature for the se-

cond-order transition may be similarly small.

In consequence one must work at much lower tem-
peratures than is usual to observe these tran-
sitions, if, in fact, they are not washed out by
other effects such as disorder.

In summary, we have examined the metal-in-
sulator transition using a parameter-free model
for the interactions. We find that there are two
separate transitions for the Mott problem. The
metal-insulator transition is of first order, while
the formation of magnetic moments at the proton
sites is of second order.
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