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1

The critical surface of the quenched bond-mixed square-lattice spin-
2

first-neighbor-

interaction ferromagnetic Ising model (with exchange interactions J1 and J2) has been investi-

gated. Through renormalization group and heuristical procedures, a very accurate ferror inferi-

or to 3 x10 in the variables t; =—tanh(J;/k~T)1 approximate numerical proposal for all points

of this surface is presented. This proposal simultaneously satisfies all the available exact results
1

concerning the surface, namely p, = —,t, = J2 —I, both limiting slopes in these points, and
1

t2 = (1 —t])/(1 + t] ) for p =
2

. Furthermore an analytic approximation [name)y,
1

(1 —p) ln(1+t1) +p ln(1+ t2) =
2

ln2] is also proposed. In what concerns the available exact

results, it only fails in reproducing one of the two limiting slopes, where there is an error of 1%

in the derivative: These facts result in an estimated error less than 10 (in the t variables) for

any point in the surface.

I. INTRODUCTION

P(t) = (1 —p) 6(t —t1) +ph(t —t2), (2)

where r;=tanh(J;/kaT) for i =1,2, and t; ~0 (i.e.,
J; «0) by hypothesis (since we are dealing with the

During the last few years, considerable attention
has been focused on various interesting experimental
and theoretical aspects offered by disordered mag-
netic systems. In particular, quite an amount of
theoretical work has been devoted to quenched bond-
and site-diluted and bond- and site-mixed ferromag-
netic Heisenberg and Ising models. ' " Because of its

relative simplicity, the quenched bond-disordered
square-lattice spin- —first-neighbor-interaction fer-

2

romagnetic Ising model has deserved special atten-
tion, mainly in what concerns its phase diagram.
Consequently a certain amount of exact results'
are now available, as well as several approximate
treatments.

In order to be more specific, let us introduce some
notation. The Hamiltonian of our system will be
given by

X=—$ Jstr;trj (o.;, o.~=+I) (I)
&Ii )

where (ij) runs over all the first-neighboring cou-
ples of sites of a (cyclic) square lattice, and J„" is a

random variable which takes the value J1 with proba-
bility 1 —p and the value J2 with probability p, the
distribution being independent for each bond. For
future convenience we shall use the variable"" ""
t —= tanh(JJ/ktt T) (hereafter referred to as the ther

mal transmittivity of the bond). Hence the J;,. proba-
bility distribution may be characterized by

ferromagnetic case). In this way, Eqs. (1) and (2)
completely define the quenched isotropic homogene-
ous bond-mixed Ising model whose equilibrium
statistics (at temperature T) we want to study. After
remarking that the transformation
(I p, tt, t2) (—p, t2, rt) alters nothing but our arbi-
trary conventions, let us stress that this model con-
tains some interesting particular cases: (a) The pure
Ising model corresponds to p =1 (Vtt), or
p =0(Vt2), or t1 = (2(Vp); (b) the bond-
percolation limit corresponds' "' to t1 =0 and
i2=1, or tt =1 and t2=0; (c) the bond-diluted Ising
model corresponds to tt =0 or r2 =0; (d) the equal-
concentration mixed Ising model corresponds to p = —,.

The present model is generally expected to have
(though there is no rigorous proof), in the (p, rt, t2)
space [or equivalently in the (p, T, u) space, where
a = Jt/J2], a critical surface which separates the
paramagnetic and ferromagnetic regions (which are
connected through a second-order phase transition).
The accurate quantitative determination of this sur-
face constitutes the central aim of the present paper.
Some essential exact values are already known,
namely, Refs. 14—16, 18—20, respectively,

i, —= r2(p=1) = J2 —1

1

p, =p(it=0, f2=1) = —,

'
i -O. i -i.p-i =-(6~2-g) =--o 4g51~0,12~t,p 1

at2
t 0, t 1,p p

= —4 ln2:——2.773
gp '1 '2 P Pc

1 —t1i2(p= —)=, t/tt E[0, 1]1+t '
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To the best of our knowledge no other indepen-
dent quantitative exact results (concerning the critical
surface) are available.

In the present paper we develop three different ap-
proximative calculations of the critical surface:
through a renormalization group (the t-variable re-
normalization group or t RG-hereafter) in Sec. II,
through heuristic arguments in Sec. III, and through
another renormalization group (the s-variable renor-
malization group or s-RG hereafter, where the s vari-
able will be introduced later) in Sec. IV. All three
are remarkably close among them, and satisfy (either
exactly or quite closely) the above exact results.
Furthermore everything leads to the conclusion that
the whole unknown exact surface runs between the
heuristic and the s-RG ones. Through a convenient
interpolation, we take advantage of this fact and cal-
culate (still in Sec. IV) a fourth critical surface which
has no pretension of analytical exactitude, but which ex
ectly reproduces all the above results, and whose ac-

curacy we strongly suspect (although we cannot prove
it) to be greater than 3 x 10 in the t» variable for
any given (p, t]) pair.

II. I RENORMALIZATION GROUP

The present treatment is a natural generalization of
one (namely, RG2) of the six renormalization-group
treatments (denoted by RGI to RG6) developed by
two of us (C.T. and S.V.F.L.) in Ref. 27; also, it

closely follows the lines of Ref. 24. It improves both,
as we will see later. It consists in constructing a
real-space renormalization group (RG) which renor-
malizes the probability distribution given by Eq. (2)
into

P'(t) =(1—p')5(t —t]') +p'8(t —t&)

through use of a self-dual H-shaped clus-
ter»4»'" »9»' (very suitable for the square lattice),
whose probability distribution is given by

]

2fi +2fi 4 2t[ +2ti t2Ptt(t) =(I —p)'8 t — +p(1 —p)'5 t
1+2ti3 + ti4 1+2ti t2+ti
] ] ]

t] t» + t] + t] f» + t] 2 t] t» +2 t f t»+4p(1 —p) 5 t — »» +2p»(1 —p)»5 t—
1 + t] t» + t] + t] t» I + t] t» + t]' t» + t]'

] ]

t] +t]t»+t]t» +t]'t»» t]' +t» +2t] t»+4p2(1 —p)35 t- +2p»(1 —p)8 t
I +t]tJ +t]'t»+t(t» I +2t]'t2+t]'t»

'1

2t]t»+t]t» +t]'
» t» +2t]t»+t(t»

I +2t]t» +t]'t» I +2t] t»+t(t»
1 t

3/ i2 ti + ~2 +2~i~2 3/ w2 ~2 + ~it2 + ~i~2 + ~i ~2+2p i 1 —pj 5 t —
2 2 2 +4p (1 —pj 5 t-

I +2t]t» +t]t» 1+t]t] +t]tt +t]t»

2 '(1 )' 2tit2+2tit2 4, , t2 + t2 + tit2+ tit2+2p (1 —p) 5 t —
&» +4p (1 —p)8 t—

I + t» + t] t2 + t] t» I + t» + t]t» + t]t»
t

2t2 +2tit2, 2t2 +2t2
1+t2 +2t t' 1+2(2 +t2

]

(4)

%e now require that the equations

(sa)

(5b)

(5c)

(p', t]', t» ) = R (p, t], t») (6)

be satisfied [( ) denotes the standard mean
value; for example, (t"),-(1—p') (t]')"+p'
(t2 )"]. In this way we obtain p', ti', and t2 as func-
tions of p, ti, and t2, or, in brief,

The solutions of the equation (p, t], t») = R (p, t], t»)
give us the. fixed points. Through recurrent applica-
tion of transformation (6), we get flow lines in the
(p, t], t») space (see Fig. 1). Their structure enables
us to numerically establish the approximate critical
surface we are looking for. Furthermore, the lineari-
zation of Eq. (6) in the neighborhood of every in-
teresting fixed point normally leads to a nonvanishing
Jacobian matrix whose largest eigenvalue allows for
calculation of the approximate critical exponent v (as-
sociated to the correlation length g), and whose
eigenvectors reveal the slopes of the approximate
critical surface.
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FIG. 1. (-RG, s-RG and heuristic critical surfaces (they
are indistinguishable within the present scale); the flow lines

correspond to both t-RG and s-RG; the line ABA lies in the
1

plane p = 2, the line CBC c responds to r, = r2= J2 —1;

the surface is invariant under the transformation (p, t1, t2)—( 1 —p, t2, t1).

The particular RG we are dealing with provides two
interesting physically distinct fixed points (besides the
trivial ones t1 =t2=0 and t1 =t2=1, marked Din
Fig. 1). The first of those points is the percolation
fixed point (p =

2 tt =0, t2=1), or equivalently

(p = —,, t~ =1, tt =0), which is a source (marked A

in Fig. 1). The other one is the Ising fixed point

(p = —, , t~ = t2 = J2 —1), marked 8 in Fig. 1, but

which physically is the same as the points C and C'.
as well as the line segments joining them. This is a
saddle point, stable within the critical surface, and
unstable out of it. In other words, this situation
clearly defines a critical surface, namely, the set of all
the points whose flow lines lead to the Ising fixed
point 8. It is worth remarking that the flowing sense
of the flow lines seems to suggest that the critical ex-
ponents of the two-dimensional mixed Ising model
are those of the pure Ising model for the whole criti-
cal surface, with the unique exception of the pure
percolation points. However, this is a controversial
point because the two-dimensional pure-Ising model
is a marginal one in what concerns the Harris cri-
terion, ' as its specific-heat critical exponent e, van-
ishes. The main results of the present critical surface
are given in Table I, and we notice that they agree
fairly well with the known exact ones. In Table II we
present a few points of the three-dimensional curve
obtained by intersecting the critical surface with the
cylindrical surface a =0.2 = Jt/J2 = arg tanh /tlarg
tanh /2 (see also Fig. 2).

Let us now compare the present results with those
obtained in Refs. 24 and 27. All three treatments
lead to the exact results p, = —, and t, = J2 —1, but

I

the present one leads to better agreement with exact
values for the diluted model (more precisely for
(c}r2/Bp)lr-i, &,-o, , and (I}t2/Bp) ( ... o,, ~ as

well as for the equal concentration mixed model
(where comparison is possible only with Ref. 24).
The reason for the better performance of the present
RG is that all three parameters (p, t~, t2) are allowed
to renormalize, whereas only two are allowed to do so
in RG2 of Ref. 27 (where rt' = t& =0) and in Ref. 24,
(where argtanhtt'/argtanh/2 = argtanht t/argtanht2 = rr ).

TABLE I. Main results associated with the present three approximate, as well as to the exact
critical surfaces [the heuristic and s-RG surfaces preserve the exact relation t2 = (1 —t1)/(1+ t, )

1
for p = 2].

at2

t 0
pc

Bt2

gp p 1/2
f1 0

f2

p 1/2
tl f 0

1

t-RG

Heuristic

s-RG

Exact

0.485 28

(in2)/ J2
=0.490

0.485 281 4

642 —8

=0.485 281 4

1

2

1

2

1

2

1c
2

2.811

41n2

2.781

4 ln24

= 2.773

2.020

20

'Reference 14.
Reference 16.

'Reference 15.

Reference 18.
'References 19 and 20.
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TABLE II. Comparison of the present three approximate critical lines associated with
a —= J&/J2 =0.2 (see also Fig. 2).

t2 ka T,/J2 =
1/arg tanht2

t)=
tanh (uarg tanh t2)

P
(t-RG) ( heuristic)

P
(s-RG)

0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.976

2.269
2.063
1.820
1.617
1.443
1.290
1.153
1.028
0.910
0.796
0.679
0.546
0.454

0.08791
0.09664
0.10942
0.12305
0.13775
0.15383
0.17174
0.19217
0.21625
0.24608
0.28622
0.35080

1

0.91013
0.80412
0.71482
0.63745
0.56852
0.50523
0.44499
0.38491
0.32072
0.24378
0.12563

0

1

0.91053
0.80475
0.71546
0.63798
0.56890
0.50541
0.44497
0.38468
0.32029
0.24316
0.12496

0

1

0.91014
0.80417
0.71491
0.63758
0.56867
0.50539
0.44516
0.38508
0.32090
0.24394
0.12570

0

Furthermore, universality is automatically preserved
if ail three parameters renormalize, whereas tt (oru)
dependence of v (or any other exponent) is to be ex-
pected in the other cases.

The approximate critical exponents obtained within
the present RG are v, =1.149 [to be compared with

the exact value 1], vv =1.423 [to be compared with

ksTc"

Jp

2.27

the possibly exact value In31(2 In —) =—1.355l, "and

finally @=1 (which is the exact value). A crossover
exponent @ equal to unity comes from the fact that
the Jacobian matrix of R in the percolation point has
its three eigenvalues degenerate. The values we have
obtained for v~, v„and $ have already appeared in
previous works, ' ""' ' as they essentially depend
on the cluster chosen to perform decimation and not
on the degree of freedom allowed for renormalization
in the parameter space,

III. HEURISTIC APPROACH

Let us now present a heuristic reasoning which led
nevertheless to a quite accurate approximation for
the critical surface we are looking for. It is well
known ' that the critical temperature of the pure rec-
tangular Ising model is given by

sinh(2 Jtlks T, ) sinh(212lks T, ) =1 (7)

0.5 I p

If we define" the dual thermal transmittivity tD of a
given one t by

tD 1 —t
j. +t

then Eq. (7) may be rewritten as

t~=t2 (or t~ =t2)

FIG. 2. The critical temperature as a function of J2-bond
concentration for different values of a =—J~/J2 (the t-RG,
heuristic and s-RG curves are indistinguishable within the
present scale). The ferromagnetic (paramagnetic) phase is

stable on the low (high) temperature and high (low) concen-
tration side of the corresponding critical line.

On the other hand the natural definition" for the
dual occupancy probability p~ of a given one p is

po ] p

Hence the well-known" critical line p~+ p2=1 for
anisotropic bond percolation in square lattice may be
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rewritten as

pi =H (orpi = p2) (10)

To develop the reasoning further, we define a new
variable s by

which puts it onto the same grounds as the above
thermal critical phenomenon, as described by Eq,
(7'). Finally let us recall that the critical line of the
equal concentration mixed model is also given' by
Eq. (7'), and that the self-duality of the isotropic
square lattice imposes tc=t, and p, -p, , which im-

mediately lead [through Eqs. (8) and (9)] to the
well-known critical values t, =J2 —I and p, = 2.

After these preliminary considerations, let us now
proceed to rewrite Eq. (7') in the more symmetric
form

(I +i, ) (1+it) -2
hence

ln(1+ i)
ln2

(13)

whence we are led to put [according to Eq. (8)] as
dual variable s

sD(i) =s(rD) = I —s(i) (14)

Now this is a very interesting property: If we consid-
er the s-probability distribution

P (s) = (1 —p) 5(s —si) +p5(s —s2)

corresponding to Eq. (2), and its dual probability dis

tri buti on

PD(s) = (I —p) 5(s —sP) +p5(s —s|')
ln(1+ii) +In(1+t2) =In2 (p = T~)

Furthermore t, = v2 —I, which leads to

ln(1+ ti) = ( 2 )ln2 (p =0)
and

(7 rt)
Eq. (14) implies that (s)~+ (s) p -1 (see also Ref.
27). In view of all this, Eq. (11) may be written in a
natural way as

(s)p= ($)po= 1

ln(1+i2) = —, In2 (p =I)
A natural extension of these last two expressions and
(7"), applicable to p 6[0, 1], is given by

(I —p) ln(1 + ti) +p In(1 + r&) = —, In2

Let us now test this expression in a particular case
completefy unrelated to the cases used to build Eq.
(11), namely, the diluted model (that is, ri =0). We
have

p ln(1+ i2) = —, In2

hence

(Br2/Bp). . ., i= —4ln2

(which is the exact result) and

(Br2/Bp), i .. . = —(In2)/42

(less than 1% error —see Table I). This perfor-
mance (which certainly surprised us) is superior to
that obtained by an excellent approximate algorithm
proposed by Oguchi and Ueno [Eq. (3.5) of Ref. 20],
which may be rewritten as

the first of these equalities being justified by the fact
that the square lattice is self-dual. Incidentally, we
notice that Eq. (12) may also be written as

(r) p (i) pD

which is justified on similar grounds, and of which
Eq. (9) of Ref. 27 is but a particular case (more pre-
cisely the RG3 approximation presented in Ref. 27
corresponds to the diluted-model limit of Oguchi and
Ueno's approximation).

Let us finally remark that Eq. (11")has the same

0.5

1 —t( 1 —t2(I —p) ii +pr2 = (1 —p) +p1+ti 1+ t2
(12)

which also exactly reproduces the pure and equal
concentration models, but leads, in the diluted limit, to

~t2 8 (3.8% error)
Qp C'2

(3.0% error)

I p

FIG. 3. Relative position (out of scale) of the (supposed)
exact critical frontier (broken line) and the heuristic (line 1)
and s-RG (line 2) frontiers, in the plane t& 0 (diluted
model).
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form as the square-lattice critical line of a certain
generalized bond-percolation problem ' where the
aleatory variable (named fidelity and noted a has a

probabilistic nature; in particular the dual transforma-
tion is ao=1 —a, in clear analogy with both Eqs. (9)
and (14). We have not succeeded in understanding
the physical concepts underlying Eq. (11) and its
peculiar properties. Nevertheless, there is no doubt
that the numerical results describe very closely the
exact surface (see Figs. 1 and 2 and Tables I and II).
In Fig. 3 we have represented (out of scale) the rela-
tive position of the present approximation with

respect to the possibly exact result, for the case
t1 =0.

IV. s RENORMALIZATION GROUP
AND COMPARISON

We took advantage of the encouraging properties
associated to the s variable (and, in particular, the
fact that it leads to the exact critical line for p = —,,

1

which the t-RG did not), and constructed another
RG (noted s-RG) to approximate the critical surface.
Equations (5) will be replaced by

(s( t) ) p' (s(t) ) pii

([s(t)]') p, ——([s(t)]')p„,
([s(t)] ),= ([s(1)]')p„

(15a)

(1Sb)

(15c)

where P' and PH are still those, respectively, given by

Eqs. (3) and (4). If we take into account the one-
to-one analytic relation between s and t, it is clear
that, if the distributions had enough parameters to al-

low the imposition of infinitely many equations (in-
stead of only three), the t-RG and the s-RG would

have led to one and the same transformation. But as
only a finite number of relations are demanded, then
there is certainly no reason for t-RG and s-RG to be
the same, and indeed they are not. In fact, although
s-RG leads to a structure of fixed points and flow
lines much the same as that of t RG (see Fig. -1), the
present surface is closer to the supposed exact result
(see Table I).

It has already been remarked that, if a point
(p, ti, t2) belongs to the exact critical surface, the
complementary point (1 p, tt, ti) also b—elongs to it.
This is an immediate consequence of the definitions.
Now it is also to be expected that the point (p, ti, tti )
[see Eq. (8)] will also be on the exact surface, since
the lattice is self-dual. In particular, this is the case
for p = —,whence Eq. (7'). In this way, only one re-

gion of the (p, ti) plane is relevant in the determina-
tion of t2 for the critical surface; for instance, the re-
gion (ti ~ K2 —I, p ~ —,). The other regions can be

immediately analyzed, once we have the results for

the first one; it suffices to apply the transformations

(p, ti, t2) -(p, tP, tg)

(1 —p, t2, ti)

—(1 p, t2o,—tot)

For this reason the comparison will be made only for
the region (ti ~ J2 —1, p ~ —,).

Our three approximate critical surfaces and the ex-
act one share the pure percolation points (A, in Fig.
1), and the pure Ising lines (lines C'C and CB in Fig.
1). The s-RG and heuristical approximations satisfy
the transformation (p, ti, t2) (p, ti, ti ), and in par-
ticular the equal concentration mixed line (AB in Fig.
1), but the t-RG does not. The exact surface shares,
with the heuristic one, the slopes near the pure per-
colation points, and (within an error inferior to 10 ')
with the s-RG one, the slopes in the pure Ising points
(C' in Fig. 1). See in Fig. 3 (out of scale) how the
heuristic, the s-RG and the supposed exact surfaces
cut the plane ti =0.

In the region considered, we may order the critical
surfaces in a simple manner: Starting in Fig. 1 from
the plane t2=1 and going towards the plane t2=0,
we first cross the heuristic critical surfce, then the
supposed exact one, then comes the s-RG and finally
the t-RG ones.

Let us now discuss a point which no doubt
deserves analysis: We have assumed all the time that
the ~hole unknown exact critical surface is being
bounded (by above or below) by our successive ap-
proximations, and more precisely that it lies between
the heuristic and the s-RG ones. What are the facts
on which we have built our conviction, in spite of the
absence of a rigorous proof? To answer this question
let us first introduce the definitions

Bt2
1 ~ p~l, ti ~0, t2 t

gp
' '

C

and

Bt2
2 n p~p, t1~0, t2~1

gp C'

A greek-letter superscript indicates the various ap-
proaches we have been considering: RG1 to RG6 of
Ref. 27, the present t-RG, heuristical and s-RG ap-
proximations, Oguchi and Ueno's approximation [see
Eq. (12)], and finally the exact solution. Our reasons
are as follows: (a) Whenever ri & ri (r2 & ri) we
have r2 ~ ri ( r t

~ rf); this fact allows us to order
alt the approaches (the exact as well as the approxi-
mate ones); (b) whenever the limiting slopes ri and
rq suggested that a given critical line (or surface)
was, let us say, below another one [in the region
(t ~ J2 —1, p ~ —, ) ], this was indeed verified {in
all the approximative approaches) for the whole line
(or surface) in that region; (c) last but not least,
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TABLE III: Typical values of the critical surface t2(p, t~) Itop number: t2(s-RG); bottom number: t2, where t2 is our best
proposal ].

0.1 0.2 0.3 0.4 J2 —1 05 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

1

1

0.7811
0.7817
0.6397
0.6403
0.5414
0.5417
0.4693
0.4694

0.8182 0.6667 0.5385 0.4286
0.8182 0.6667 0.5385 0.4286
0.6717 0.5777 0.4959 0.4238
0.6720 0.5778 0.4959 0.423&

0.5745 0.5172 0.4662 0.4203
0.5748 0.5173 0.4662 0.4203
0.5055 0.4734 0.4443 0.4178
0.5057 0.4734 0.4443 0.4178
0.4541 0.4402 0.4275 0.4158
0.4541 0.4402 0.4275 0.4158
J2 —1 J2 —1 J2 —1 J2 —1

J2 —1 J2 —1 J2 —1 Z2 —1

0.3333 0.2500 0.1765
0.3333 0.2500 0.1765
0.3598 0.3026 0.2511
0.3598 0.3025 0.2509
0.3790 0.3414 0.3071
0.3790 0.3414 0.3070
0.3935 0.3713 0.3508
0.3935 0.3713 0.3507
0.4050 0.3950 0.3857
0.4050 0.3950 0.3856
J2 —1 J2 —1 J2 —1

J2 —1 J2 —1 J2 —1

0.1111 0.0505 0
0.1111 0.0505 0
0.2044 0.1619 0.1229
0.2042 0.1616 0.1225
0.2757 0.2461 0.2197
0.2755 0.2463 0.2193
0.3317 0.3141 0.2975
0.3316 0.3139 0.2972
0.3770 0.3688 0.3612
0.3769 0.3688 0.3611
J2 —1 J2 —1 j2 —1

J2 —1 r2 142—1—

Thorpe and McGurn'6 also state (certainly for quite
independent reasons), without general proof, that, in

this kind of problem, the limiting slopes so strongly
tie the critical line (or surface) that nothing happens
but a smooth variation linking the extremities.

For these reasons, we can state, with a certain de-
gree of confidence, that the exact surface lies
between our heuristic and s-RG critical surfaces.
Furthermore, let us recall that the heuristic one ap-

proaches very closely the exact surface in the neigh-

borhood of p =
2

(as suggested by the derivatives),

and that the same thing happens with the s-RG one
in the neighborhood of p =1. So, we adopt, as a fi-

nal numerical proposal, with no pretension of analytic

exactitude, the following linear interpolation for all

values of p and t~ for which there is a phase transi-
tion:

t2 = 2 [ ( I —p ) t2 (heuristic) + (p —
&

) t2(s —RG) ]

(16)

of renormalization-group techniques provides a
powerful tool for constructing numerical approxima-
tions of critical quantities, and its performance may
compete with the best standard approximation pro-
cedures (low- and high-temperature series, Monte
Carlo methods, etc.). Let us, however, recall that, in

what concerns the critical exponents vp and v„ the
precision obtained in the present work was very poor
(6% error in vv and 15'/0 error in v, ); to improve in
this sense we must consider larger cells (see for in-

stance Ref. 30).
Our best proposal [t2(p, tt)] simultaneously satisfies

all the available exact results [namely, p, = —, ,
" t,= J2

-I," (at, /ap)(. . .,
0= —4 ln2, " (Bt2/Bp)[„. .. o

=8 —642, ' and'9 0 t~=(1 —t2)/(I+t2) for p = —l.
However, if a very high accuracy is not required, the
simple analytic relation [Eq. (11)]

(I —p) ln(1+ tt) +p ln(1+ t2) = —, ln2

Typical numerical results for this last proposal are
presented in Table III (below those associated to s-

RG). We estimate the error of t2 to be inferior to
3 X 10 for all pairs (p, t~).

V. CONCLUSION

We have developed a numerical proposal for the ex-
act critical surface of the isotropic homogeneous
quenched bond-mixed square-lattice spin-

2
first-

neighbor-interaction ferromagnetic Ising model. The
high accuracy that has been obtained (see typical
values in Table III), with an estimated error less than
3 x 10 ' in the t variable, confirms that adequate use

provides an excellent approximation to the critical
surface we are interested in, as it satisfies all the
above quoted exact results with the unique exception
of (f)t2/f)p) ~, where it has an error inferior to

p 1t) 0

1%: these facts result in an error for t2 (or t~ ) inferi-
or to 10 ' for any point in the surface.

As a last comment let us say that the present
results exhibit the importance, within the renormali-
zation-group framework, of allowing the parameters
of the problem to have the maximum possible free-
dom for renormalization, in order to avoid undesir-
able artificial effects either on the critical lines or sur-
faces, or on the critical exponents (apparent loss of
universality).
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