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In this paper the recent Green's-function theory of Ramkrishnan and Tanaka for studying fer-

roelectric phase, transitions in potassium dihydrogen phosphate (KDP)-type crystals using

pseudo-spin-lattice coupled mode {PLCM) model has been extended to include the effect of
phonon anharmonicity and to compare the calculated results with the recent experimental data.

The renormalized proton-phonon energy spectrum, Curie-Weiss constant {C),Curie tempera-

ture {T~), and the logarithmic behavior of specific heat {C„)calculated from the internal ener-

gy have been studied with this extended PLCM model. Our theory in particular is able to ex-

plain, along with other physical properties, the large shift of the Curie temperature in all the

KDP-type crystals on deuteration compared to the small change of the Curie-Weiss constant.

The latter has not been possible using the cluster satistical treatment taking into account the ex-

cited Slater-Takagi {ST)energy levels. It is also observed that, except for the specific heat, the

calculated quantities {such as electrical susceptibility and Curie-Weiss constant) depend on the

tunneling energy explicitly. A very good agreement between our theoretical results and those of
recent experimental data indicates the suitability of the Green-function technique and the

Tyablikov-type decoupling scheme for studying phase transitions in the KDP family. We have

also shown that our present theory leads to a pseudo-Jahn-Teller-like mechanism in the KDP

system and shows close resemblance between the topologies of the order disorder and displacive

type of phase transition. It therefore indicates the possibility of a unified theory of phase transi-

tion in ferroelectric crystals. Finally the Blinc-de Gennes parameters calculated for different

KDP salts have also been compared with the experimental results available.

I ~ INTRODUCTION

After the pioneering work of Slater' and Takagi'
(hereafter referred to as ST ), many attempts have
been made to study the phase transitions in (potassi-
um dihydrogen phosphate) KDP (KHqPO4)-type
crystals using a modified ST model such as the
transverse Ising model' (or pseudospin model) with

defining Hamiltonian

Hp = —2 0 x S~—
—, x 1J5;*Sf

where 0 is the tunneling frequency, S (n =x,y, z) is

the o, th component of the pseudo-spin variable S,
and i and j run over proton configurations. J&

represent the exchange interactions between the
pseudospins. Except for the Raman spectroscopic
data, the model (I) has been found to explain much
of the ferroelectric behavior of KDP and its iso-

morphs, particularly the isotope effect, which was not
possible with the original (nontunneling) ST model.
Though the ST model has another drawback in that it

does not take into account the shifts of the ions K+,
0', and P'+ from their equilibrium positions" at the
transition point, the model (1) and any other suitable
microscopic model must contain the ST energy
parameters (U= Jiq= J34 —2co+2», H = Hp+HpI (2)

~= Jq4= Jp3= Ji4= Ji3=2~—e, and coi =4' =2m). 3, 5

The separations between the two highest excited lev-
els and the lower levels are so large5 that we may
put ~~ =~and co )& ~=k~T~ln2, but since the
lowest of these levels in most of the KDP series has
an energy lower than or of the order of AT~, they
must play an important role in any physical descrip-
tion of the KDP dynamics. It has also been observed
that for the more realistic model of Silsbee et al.
(SUS) including the ST short-range four-particle in-

teraction forces, long-range two-body forces, and tun-
neling term, the static properties of such a system in-

vestigated with the help of a cluster expansion gives
qualitative agreement' between the calculated and
the experimental dielectric properties. Vaks et al. 9

(VZS) used the model of Blinc and Svetina'(BS) and
explained most of the physical properties of the KDP
system but failed to explain the differences between
the Curie and the Curie-Weiss temperatures.

Further extension of the pseudospin model (1) was
made by Kobayashi, ' who allowed for only one pro-
ton per unit cell [thereby interpreting i and jof Eq.
(I) as Bravais-lattice sites] but considered the interac-
tion of the proton mode with the optic vibrations of
the K—PO4 system, writing
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where

H t = —$ (P-, P=, + 2-, Q-Q ~) + $ V, —, s;*Q-,
q iq

[In Eqs. (2) and (3a), shown below, i and j run
over the Bravais-lattice sites. ] Q-, and P-, are,
respectively, the normal coordinates and the conju-
gate momenta, cv'-, is the bare harmonic frequency,
and V, —, represents the linear pseudospin phonon-
coupling constant. This model (2) explains very well
the Raman spectroscopic data, " "along with other
characteristic features of ferroelectric phase transi-
tions in the KDP family but neglects some details of
intracell proton dynamics. With this model one can
not explain simultaneously the large shifts of the Cu-
rie temperatures ( Tc) corresponding to the small
shifts of the Curie-Weiss constants (C) on deutera-
tion of the KDP samples. The model used by VZS
and others" also suffers from this drawback. It
might be concluded from their' ' "calculated
results that the isotope effect on Tq is contributed
mainly from the decrease in proton-tunneling energy,
while the isotope effect on C results from the
proton-lattice coupling term. Using a Kobayashi-type
model, Houston and Bolton'6 (HB) showed that the
Curie constant and specific heat should contain the
tunneling factor. But the Green-function theory of
Pak" showed, on the other hand, that the electrical
susceptibility (X) and specific heat (C„) do not con-
tain the tunneling frequency explicitly. Pak's theory,
using Kobayashi's model, is also unable to explain
the above-mentioned large shift of Tc compared to C
on deuteration.

In the present paper we have taken into account
the higher-order anharmonic phonon-interaction
terms in addition to Kobayashi's model (2) which
have not been considered either by BS or VZS in
their calculations. With this extended model we have
succeeded in finding the exact isotope dependences
of C, C„, and X. From our more elaborate calcula-
tions we may also conclude that the approximation
made by Pak' to calculate X and C are not appropri-
ate for the KDP-type crystals. Though our method
of using Green's functions is parallel to that of Pak,
the expressions for all the Green functions (as well
as the energy spectrum) obtained by us, are not the
same as those derived by Pak since our expressions
are modified by the contribution from the anharmon-
ic interaction term. However, the relative success of
the two approaches (one using the cluster-statistical
treatment by SUS, BS, and VZS and the other ap-
proach considering the higher-order interaction terms
treated in this paper) indicates the validity of both
approaches. But we should emphasize the basic
difference between the cluster theories (which ac-
count for fundamental intracell proton correlations,
but neglect all dispersion phenomena) and lowest-
order Kobayashi theories like the present one, which

neglect intracell proton correlations to some extent
but do include wave-vector dispersion.

Finally, for the sake of completeness, we should
mention the recent Green's-function theory of Ram-
krishnan and Tanaka" (RT). They showed the su-
periority of the Green-function method for the KDP
system over the usual mean-field and linearized
Bloch equations-of-motion methods. RT did not
consider the anharmonic term in their Hamiltonian
and also did not calculate the model parameters from
exact fitting of the various experimental results.

In Sec. II the Green-function method has been dis-
cussed and the thermal averages of the pseudospin
operators are calculated with pure tunneling model

H~ in Eq. (3a) for comparison with the results of oth-
er authors. In Sec. III expressions for correlation
functions, internal energy, electrical susceptibility,
Curie constant, and specific heat have been derived
with the use of the total Hamiltonian (3a). In Sec IV
we present some of the theoretical results calculated
for different members of the KDP family. Blinc-de
Gennes (BG) parameters which are very important
for the interpretations of the various physical proper-
ties, and the anharmonicity parameters have also
been calculated for all the KDP salts and compared
with the recent experimental results available. Final-
ly, Sec. V ends with a conclusion.

II. GREEN'S-FUNCTION METHOD
AND THE SOLUTION

The total Hamiltonian in the pseudo-spin-lattice
coupled mode model containing quartic anharmonic
term as discussed in Sec. I can be written' '

where

ep+HpI+H (3a)

ftli. 02~03~04

~ (tti, qr, q3. tt4) Q, , Q, Q, Q, (3b)

G~& "(t —t') = ((st (t) is/(t')))

and the Fourier transform of Eq. (4) has the form

(4)

E ( (S~[SJ)) = (2rr)-' ([S,',S,"])+( ([S,',a] IS,")),
(5)

where m, n =x,y, or z. For different values of m and
n, we get, using Eqs. (I) and (5), nine coupled equa-
tions of motion which can be written

GM=N (6a)

represents the fourth-order anharmonicity constant.
Following the procedure of Silverman, ' the third-
order anharmonicity is considered from the renormal-
ization of A. The Green functions for our calcula-
tions can be represented in the form (in units of
tr=I)
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l 00
G=m'0 1 0

,0 0

E —ia
Em'= ia

, 0 ib

where G is a (9 x 9) matrix given by

0
—ib

E,
(6b)

In the above calculations we used the Tyablikov
decoupling' scheme to linearize the complex Green's
functions as

((s;s;Is,*))= (s;) ((s;Is,*) )

M and N are the column matrices of the form and so on. The energy spectrum is obtained from
the solution of

G (E)
G~(E}
G (E)
G~(E)

Q = (2~}-' G~(E}
G~(E)
G (E)
G~(E}
G (E)

0
—(S')
(S')
(S*)

N= 0
—S")
—SQ
(S")

0

lm'l =o,
which gives

Ei =0

and

E = + (a'+ b'}' '

(s}

Jo = —, xi).
J

(S') =- (S') = (S')

a = Jo (s*), b =20 The correlation functions like (SJ"SP), which are re-
lated to the Green functions ((S; lsi")), can be
otained from the spectral theorem using

(Ss) I

+ ( ") +i (( ")) —
)

.E( )ldE
0+ expPE —1

(10)

We now assume the physical condition that the corre-
lation functions are finite and use the identity

(S S) + (S SQ+ &S'S'& =S'=S(S+I) (11)

and then we get the relation

pseudospin tunneling model can show microscopic
behavior of mode softening' if we use the following
decoupling:

((» I c)) = (~) ((a I c)) + (a) ( (~ l c)) &i4&

(S") (S') S(S + I )
h

/3F
b a F 2

(12)
and define the spin-wave transformation

S; (q) = XSI expiq R,
I

(Is}

where F2 = ( a'+ b'}, P = I /ks T ( T is the absolute
temperature and ks is the Boltzmann's constant).
From Eq. (12) we get the expressions for the thermal
averages (S"& and (S'). We define the thermal aver-

ages as
o„= (S")/S(S+I) (13a)

~here R; denotes the Bravais-lattice site of the i th
bond. Since this point has also been discussed by
(RT), "we shall focus our attention on the dynamic
properties of the KDP system with the total Hamil-
tonian (3).

~, = (Sq/S(S+I) . (13b) III. DYNAMIC PROPERTIES

The factor S(S+I) appears for the use of quantum
condition that the eigenvalue of St is S(S+1}in Eq.
(11). If we use the classical rule that St =1, our ex-
pressions for (S") and (S') become identical to those
obtained from mean-field approximation and those
obtained by other authors. ' It is evident from the
above calculations that E2 3 do not show any soften-
ing. However, it can be easily shown that the pure

To study the dynamic properties, we require the
Green functions like

GP(r —r') = ((Q&(r}IQ —,(r'}))

The required equations of motion using the decou-

pling procedure shown in Eq. (14) can be written in

the matrix form

iJo (S')
0
0

0

iJO (S')—

2i0
0

0

iJ (S") —2i 0-
iV , (S~)—-

i V (S")-
0

i (cu2~ +A )

o' ((s,"Ig,))'
o ((sfl Q-.))
o «s*lg,»-

« g, l g-.»
«~~lg-q))

0

i/2rr—
(16a)
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where

J&= g J&expi q (R, —R, ); V&= g V-,
ij q

A (q, T)=, XAq q «(q, —q, q', —q') [2n&(T) +1]
Q)g

(16b)

(16c)

n (-T) is the phonon number operator. The secular determinant 5 giving the spin-phonon spectrum has the
form

a=~[~' —~j(q)1[~' —~2i(q)) . (16d)

where

«if,( q ) = '(J. ' +—ru, +A ( q, T) + [[L-', —««'q —A ( q, T) ['+160 Vir (S))
' ')

J. ' = 4 n'+ Js (S') ' —2 IIJ (S") .

(17a)

(17b)

This expression (17a), identical to that derived by Kobayashi'«and Pak, " is found to be modified by the anhar-
monicity parameter. Equation (17a) gives the transition temperature Tc when «i2 0 (as shown in Sec. III B).

Again using the spectral theorem (10) the different correlation functions can be represented as

J«(S") (S*) V, I P„, I P~,
(Q gSir) = —oth ——oth

2 ( «iJ «i)) «ii 2 «li 2

(Q —,S"-, ) =o
~

(18a)

(18b)

(Q ~Sir) =
—2 fI Vq (S") I Prui 1 P«i2—coth ——coth
2(«ij —«i)) «ii 2 «i2 2

«iq+A ( q, T) r«j L
q Pcui «i) Lg Pco2

2(«« —««22) 0)] 2 OJ2

(18c)

2Q Vq (S") 1 P«i, 1 P««2+ —coth ——coth
2(«ij «i)) Cdi 2 «ii 2

1 o)J L
q P~] cc)2 L

q P~2
2 2 2

oth — oth(Q qQ-„)-2(
( ))

t

1

2 Q (S") i «iq —A (q, T) p«ii «i2 —
ruq

—A (q, T) pi«2
oth — ' '

oth
2 ( «i2i —cu)) 2 602 2

(Q —,P-, ) =-,'

These correlation functions have been used to calculate the internal energy and hence the specific heat.

(18d)

(18e)

(18f)

(18g)

A. Electrical susceptibility and internal energy

Using the Kubo formula, the expression for the dynamic susceptibility is

1 L&
—QJ ] pCd ] Lq OJ2 P2 ( L 2 ~2)

X-= ~) coth
~ 2, , ~2coth +

2k' ~ (~) —~2) (~ —w)) (0~ —o2)(~ -~2) 2 (o) —cui) (c —co2)

Equation (19) reduces to the form derived by Silverman2' and also by Pak' when ««i 2 (( 1 and the anharmonicity
parameter A (q, T) =0. From Eq. (19) we find that the anharmonic contribution is directly involved in the ex-
pressions for the static and the dynamic susceptibilities. The expression for the static susceptibility can be ob-
tained from Eq. (19), putting q =0. The internal energy calculated from the correlation functions (18) has the
mathematical form
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U-, = (H( q ))

(S")Jq q f —
yq P~, ~) —

yq P~,
coth —— coth

2(Ojt —Ql)) Ql] 2 QPt 2
(20)

where

2(uqt+3A (q, T)

20 J-, (S")
(21)

20J~(S") 20 J-, (S") J-,

The first part of Eq. (20) shows no singularity. The
anomalous contribution to the specific heat comes
from the second part of Eq. (20) which is more com-
plicated than that derived by Pak" due to the pres-
ence of the contribution from the anharmonic term
of the Hamiltonian (3a). Equation (20) reduces to
that derived by Pak if one neglects the higher-order
anharmonic term from Eq. (3a). Again neglecting
the contribution of &ot in the parentheses of Eq. (20)
and putting A =0 we can obtain the expression
derived by HB. 'p Equations (19) and (20) represent
the most exact expressions for dynamic susceptibility
and internal energy where contributions of co~ and co~

along with that of the higher-order anharmonic in-
teraction have been taken into consideration. From
Eq. (20) it is evident that for small rp~ and ~q the
internal energy is independent of the tunneling term
0 which was also shown by HB.

Equation (23) can also be calculated from Eq. (13b),
in which case (S) 0 as T Tp. From Eqs.
(22b) —(22e) it is evident that the effect of the anhar-

monicity parameter is to decrease the effective ex-
change coupling J '

while the effect of the proton-
lattice coupling is to increase its value. The latter
finding is in agreement with those of Peercy and
Samara' ' and Blinc and Zeks. " The ratio of Jp and
G' is also found to be greater than unity and lies
between 1 and 3, which is in agreement with the
results obtained from Raman studies' " in case of
KHqPO4 and RbHqPO4.

C. Curie-gneiss constant

To calculate the static susceptibility and hence the
Curie-Weiss constant, we use the formula

B. Curie temperature

=are tanh q
0
B C

where

(22a)

The Curie temperature Tq is calculated from Eq.
(17a) using the lattice instability condition; i.e. ,

0 as T Tq. This condition gives

np, Ggg( )
&0 q ~P

which gives

2 Vp tanh 0/k Ts
uo

' 40 Jptanh 0/ksT

(24a)

(24b)

71 =40/Jq"~

Jqw = Jo + Vo /(ru/+A (q=0, T=Tc)1, (22c)

= Jo+G
G'= Vo I (~o'+A (v=0, T=Tc))1,

(22d)

(22e)

G
'

reduces to G' of Kobayashi' and Peercy and
Samara" in the absence of the anharmonicity
parameter A (0, T~) and then the right-hand side of
Eq. (22a) becomes temperature independent as in the
case of Tp (the transition temperature derived from
MFA) given by

= arc tanh (40 l Jo ) (23)
B 0

BA 80 Vp (1 —tanh' 0 / ks Tc)X= +
dT r-rc ksTc(40 —Jotanh 0/ksTc)

x (T Tc)- (2Sa)

= C/( T Tc), — {25b)

where C is the Curie-Weiss constant, expressed by

where n is the number of pseudospin variables, vp is
the volume of the unit cell, and p, is the effective di-

pole moment. Expanding 1/X around Tc, we get the
Curie-Weiss behavior
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the relation
1

g k g (P T )
Up

. (25c)
8VO 0 (I —tanh 0/ks Tc)+

ks T)(40 Jo'tailh 0/ks Tc)2

In Eq. (25c) we have put A (0, T) = ks TAO The.
static dielectric constant can be calculated using the
usual relation viz.

The first term of Eq. (28) is identical to the expres-
sion derived by Pak and HB. For the sake of simpli-
city, we retain in Eq. (27a) only the first term to
show the logarithmic dependence of C„around T~.
Further, assuming B to be constant around T~, and
following the procedure of HB, it can be easily shown
that

= (B +3) ( Tc/ Vo) ' ln
~
T Tc ~

—. (29)
dT

Thus we may write
6 = I +4mX (26) C„=a '

ln ( T Tc)— (30)

D. Specific heat

Assuming cubi and ~2 are small around Tq, we have
from Eq. (20) the expression for the internal energy

~here

J;(B+3) I k T(B+2)
2 g I —Jg/ksT 2 ~ 1 —J~~/ksT

BVq /[(uq~+A (q, T)]
2 ~ 1 J~/kaT—(27a)

B = A ( q, T) /[ co'-, +2 ( q, T) )

J~ =J-+ V- /[cui~+A ( q, T) lt

(27b)

(27c)

The specific heat C„can be calculated by differentiat-
ing Uwith respect to T. It is interesting to note that,
in the absence of A(q, T), Eq. (27a) reduces to a
simple form

2 1 Jq /ksT ~ I Jx, /ksT

It is observed from Eqs. (24a) and (25c) that both
the susceptibility and the Curie constant depend on
the tunneling frequency explicitly. Our result contra-
dicts with that of Pak, "who, however, did not con-
sider the anharmonic term and also did not calculate
the susceptibility from the Green function GP(c0).
The expression for C consists of two parts, as shown
in Eq. (25c). The first part arises from the anhar-
monic contribution and the second part comes from
the proton-lattice interaction part and depends on the
tunneling frequency. This result definitely indicates
the importance of tunneling frequency and also the
anharmonic interaction term in the Hamiltonian (3a).
In case of the deuterated system when the tunneling
is very small, contribution to the Curie-Weiss con-
stant comes mainly from the anharmonic part. But in
the pure system the effect of tunneling is found to be
more important. If we neglect the anharmonic con-
tribution from Eq. (25c), we cannot fit the expression
for the transition temperature, susceptibility, and
Curie-%eiss constant with a single set of BG parame-
ters (see Sec. IV for details).

Equation (30) is of the same form first derived by
Grindlay for KDP crystal. It is also observed from
Eq. (29) that C„, unlike C, X, and Tc, does not
depend on the tunneling frequency explicitly, as was
pointed out by HB. Thus it might be concluded that
the KDP-type hydrogen-bonded ferroelectric crystals
undergoing order —disorder-like transitions should
have limiting behavior shown by Eq. (29) and there-
by indicating long-range electrostatic dipolar interac-
tions. It is interesting to note that RPA-like decou-
pling of the complex Green's functions can exhibit
this logarithmic character in the specific heat. It
should also be mentioned at this point that our
results calculated from the Tyablikov2'-type-
decoupling approximation can be used everywhere
except in the millidegree range around Tg. It has al-
ready been pointed out"' that for KDP-type crystals
where the critical region is supposed to be very nar-
row, relatively rough approximations like MFA and
RPA can be used. Tyablikov-type decoupling used in
this paper has also been found ' to explain very well
the dynamics of transverse susceptibility in KDP-type
hydrogen-bonded ferroelectric crystals.

IV. RESULTS AND DISCUSSION

To calculate the anharmonicity parameter (kaAp )
which is involved in the expressions for X, Tq, C, and
also in C„ for different KDP-type crystals, we used
the experimental data of the pseudo-spin parameters
obtained by Peercy and Samara (PS) '4 "and Fairall
and Reese (FR)." Unfortunately, except for
KH2PO4 and RbH2PO4, experimental values of
0, Vog, Jpq, and Joq (where A = H or D; H denotes
undeuterated and D denotes deuterated) are not
available. The calculated values of 0 and Jp ob-
tained from the best fitting of T~, C, and spontane-
ous polarization (P,) are found to be very close to
those of PS as shown in Tables I and II, respectively,
for the H and D systems. In the case of mixed
KDP-DKDP system, we have shown' earlier that the
Raman spectroscopic data of PS agree very well with
our theoretically calculated values. The fitting was
done by varying the ratios Ji'r / Jn and 0ii/ 0o such
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that the relation

PJD / POH = ( JOD / JOH) 1 ~ (31)

is satisfied. From our fitting we find 0 (for
DKDP) =0.5 cm ' instead of zero as calculated by
others. " Again, since the second part of Eq. (25c) is

very small for the deuterated system we may neglect
this part and calculate Ap comparing the experimental
values of Co ( for the deuterated system) using the
experimental values of LM, and vp from the results of
Cook" and VZS. The calculated values of Ap are
shown in Table I. The experimental data of PS for.
KDP and RDP (RbH2PO4) showed that
Jo / Jo =0.75. Assuming same value of this ratio for
other members of KDP family for which experimen-
tal data are not available, we again calculate Ap,
knowing Vo (the MFA value of FR), and these values
are also shown in Table I for comparison with the
values of Ap calculated by earlier method. These two

sets of parameters are found to be of the same order

F = —A, , + —8)cr, + —C)cr, (32)

(o, is the order parameter which is the spontane-
ous polarization in this case ). Using the pseudospin
model we have sho~n earlier" that the expressions

of magnitude, indicating the validity of the mean-
field data. Putting Jo / Jo =0.75 (as discussed
above) and using the first set of values of Ap, we cal-
culate Vo from Eq. (25c), knowing the experimental
data (from the table given by VZS) for comparison
with the mean-field data of FR and are shown in
Table I. Very good agreement between the two sets
of data of Vp again indicates the validity of the rela-
tion (31). Another test of the validity of the calculat-
ed BG parameters obtained, for example, for KDP
crystal comes from the agreement between the calcu-
lated and experimentally observed' "values of the
Landau parameters A ~ and 8~ related to the free
energy (F) as

TABLE I. Pseudo-spin model (BG) parameters for undeuterated KDP system. '

Crystals KH2PO4 RbH2PO4 KH2AsO~ RbH2As04 CsH&As04

JpH cm

Jp'„cm-'

440.90
4so.oob

334.80
344 00

483.60
473.OOb

362.70
357.00b

281.80

211.35

321.50

241.12

415.10

311.33

+8 cm 82.00
86.00b

78.40
7S.4O'

28.80
16 10'

30.80
22.70'

28.50
2O.20'

T,g K 122.89
122.70f
122.90~

i2i.7O'

146.09
144.oo'
i46.sof
i47. iO'

96.35
96.15"
96.30"
9S.SO'

109.91
110.90
109.10f

145.53
144.SO'

143.30f
14S.SO'

254.87
2S4.77f

238.73

238.90
23S.73'
286.48~

302.39f

183.22

iS3.12"
214.SSf

247.00
246.69
205.31~

222.81"

254.80
2S4.77'
268.97f

~oaks T 0.299
0.160'

0.252
0 135c

0.314
0 205c

0.178
0.185'

0.132
0.154'

Apkg x 10
(erg/K)

9.763d

13.160'
10.133d

13.020'
9.528d

15 490e
9.844d

9.948'
9.391
8.908'

'Parameters outside the brackets correspond to our calculated values.
Values taken from Refs. 14, 15, and 28.

'Values taken from the table of Ref. 32.
Calculated values neglecting the second part of Eq. (25c).

'Calculated from Eq. (25c) using the values of Vplkg T,z from Ref. 32.
Values taken from Ref. 9.
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for A t and Bt can be written

At = (T Tc) sech =Hot(T Tc) (33)
Jpcp 2 20

kg Tc kg Tc

TABLE III. Comparison of the calculated and other ex-
perirnental values of the Landau parameters in KH2P04.

I r

B~ =
2 tanh ~'+

3
tanhe'—

80 80 80
where

(34)
Ap& x 10

(esu)
8[ x 10

(esu)

(5.33)

(2.951)'

(4.30 +0.2) b

(2.35 +0 4)b

(4.00 20.2)b

(1.48 %0.2)b

and

Jo~o 2 2Q
k T

sech
k T

PJp — 4QNp,
2Np, Jp

Jpn
Cp=

Np,

Using the required values of the BG parameters
(viz. , Jo and 0) for KDP from Table I, we have cal-
culated the values of Apt and Bt which are shown in
Table III along with other experimental values" for
comparison. We have not, however, shown in Table
III the value Ct, since Ct comes out to be one order
of magnitude smaller than the experimentally ob-
served value. " This might be due to some error
in the expression for C~ arising from the approxima-
tion made to calculate Ct and/or due to the inade-
quacy of the pure pseudospin model used to calculate
the energy spectrum. The values of Ap~ and B~,
however, agree very well with those of experimental
results ' ' shown in Table III.

Thus it is evident that using the Green-function
method and taking into account higher-order anhar-
monic term in the pseudospin-lattice-coupled Hamil-
tonian, a single set of pseudo-spin-model parameters
(BG), being different for different salts, can be used
to explain all the behaviors of ferroelectric phase
transitions in KDP-type crystals. Further, the large
shift of the Curie point and the correspondingly small
change of the Curie-Weiss constant due to deutera-

'Present theory.
Reference 39; our calculated data are also very close to the

experimental data of Okada and Sugie (Ref. 37).

tion which was not explained by other theoretical
work on these salts can also be simultaneously ex-
plained with the above-mentioned single set of
parameters given in Tables I and II, respectively, for
H and D systems. This is not at all possible if we
neglect the anharmonic term from the pseudo-spin-
lattice-coupled Harniltonian similar to the earlier cal-
culations with Kobayashi model. Experimental deter-
mination of the anharmonicity parameter is therefore
highly important for the actual comparison of the ex-
perimental and the theoretical values of C, E, C„
and the other parameters of phase transitions in KDP
system. Another interesting point which we note
from our calculations is that, if we calculate the fre-
quency ooo from Eq. (22a) using the parameters from
Tables I and II, we get a negative value of coo. This
means that the initial phonon frequencies are irna-

ginary, and this mode cannot be stabilized by zero-
point anharmonicities alone. It is the thermal fluc-
tuations which then renormalize cop and make it real
at finite temperatures. This case is similar to BaTi03
undergoing a displacive type of phase transition and
may be explained" considering a pseudo-Jahn-Teller
(PJT) mechanism. Bersuker ' already proposed a
PJT effect in hydrogen-bonded KDP-type crystals.
This indicates a close similarity between the topolo-
gies of order-disorder and displacive types of phase
transitions.

TABLE II. Pseudospin model (BG) parameters for deu-

terated KDP-type crystals. '

Crystals lo crn Jpo cm Bo crn ' T,o K CD K

KD2P04 626.00
RbD2P04 644.60
KD2As04 400.10
RbD2As04 460.60
CsD2As04 600.10

472.63
486.68
302, 10
347.76
453.01

0.486
0.652
0.450
0.459
0.585

229.89 373.70
249.87 335.11
163.45 357.88
176.56 318.47
223.10 303.50

'Experimental values of Jpo and Jpo are available only for
KD2P04 and RbD2P04 (Refs. 15 and 28), and they are
found to be very close to our calculated values shown in this
table. The values of T,o and Co shown in this table are
also very close to those shown in Ref. 9 by VZS.

V. CONCLUSION

This paper extends the coupled proton-lattice mode
model of Kobayashi type to include the effects of
higher-order anharmonic terms on the physical prop-
erties of KDP-type crystals. These calculations
represent the first attempt to include directly the
anharmonicity in the PLCM Hamiltonian for studying
the static and the dynamic properties of KDP system.
Using the simple decoupling procedure of Tyabli-
kov, it has been shown that the Green-function
theory can successfully explain the most salient
features of ferroelectric transitions in KDP series
along with logarithmic dependence of specific heat,
exact isotope dependence of the Curie-Weiss con-
stant, electrical susceptibility, etc. Our results also
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leads to pseudo-Jahn-Teller-like mechanism even in

KDP-type crystals. It is also justified from other
theoretical work that the PJT Hamiltonian takes the
form4' of a pseudo-spin model, viz. ,

Hjy = —S"—2 VpgpS'

This finding also supports the results and conclusions
of earlier workers4' 44 that the order-disorder and the

displacive type of ferroelectric phase transitions might

be described with a single model4 and that there is

no basic difference between these two types of transi-

tions. This finally leads to the possibility of a unified

theory of ferroelectric phase transitions. "
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