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1

Proton spin-lattice relaxation rates in the one-dimensional (1D) spin- —Heisenberg antit'er-
2

romagnet n-his (N-methylsalicylaldiminato) copper (II), ~-CuNSal, have been measured in ap-

plied fields up to 125 kOe in the temperature range I —4 K. The strong coupling ot' protons

close to the antilerromagnetic (AF) chain serves as a convenient probe to study the dynamics ot'

the AF chain through the field-induced antif'erromagnetic to f'erromagnetic (F) phase transition.

The magnetization of the AF chain, as measured by the proton field shit't, is in close agreement

with calculations by Bonner and Fisher and yields an exchange interaction J/I =3.04+0.04 K.
The proton relaxation rate has isotropic (hyperf'ine coupled) and anisotropic (dipolar) com-

ponents. e identify the isotropic relaxation rate with a creation or destruction of'one-spin ex-

citations (magnons) and the anisotropic rate with two-magnon processes. The measured one-

magnon relaxation rate sho~s an enhancement near the critical field for the AF —F transition

and a strong decrease ot' more than f'our decades as the critical field is exceeded. A no-

adjustable-parameter calculation based on the fermion model quantitatively agrees with the mea-

sured one-magnon relaxation rate, both above and below the critical t'ield 8, . The enhanced re-

laxation at H, is correctly predicted as a consequence ot' the divergence ot the 1D density ot'

magnon states, where a gap in the spin-wave spectrum exists. Above H, a f'inite magnon lit'c-

time must be included in order to produce a nonzero one-magnon relaxation rate. This is also

calculated with no adjustable parameters, The two-magnon relaxation rate also shows a de-

crease as the critical field is exceeded and the calculated relaxation rate agrees well with experi-

ment at low temperatures, provided, however, that one uses a boson rather than termion picture.

I. INTRODUCTION

The transition-metal-ion salt Oc-his (N-methyl-
salicylaldiminato) copper (II), o.-CuNSal, is among
the best realizations of the one-dimensional (1D)
Heisenberg antiferromagnet (AF), whose Hamiltoni-
an in a magnetic field is

:lC = 2J $ S„S„+t —g, p a Ho $ S„'

%'e present here proton NMR results on crystalline
a-CuNSal at low temperature (1 ( T & 4 K) and

high applied field (Hp (125 kOe). Although the
first term in Eq. (1) describes antiferrornagnetic cou-
pling, a sufficiently large Ha ) H, =4J/g, taa can lead

to ferromagnetic order. Our principal results are the
thorough experimental examination of paramagnetic
shifts AH and of' longitudinal relaxation times Tt as

Hp passes through the region of H, . The theoretical
analysis of AH and Tt in this novel low-temperature,
high-field regime is developed in terms of the fer-
mion representation for spin flips in the 1DAF.

t
Much of the analytical work on the spin-

2
1DAF

has been based on the fermion model, ' which is ex-
act2 for the anisotropic XY model. It may, therefore,

be a convenient starting point for the Heisenberg
model, Eq. (1), which has not yet been solved exact-
ly for finite-temperature properties. Numerical ana-
lyses of finite rings of N spins together with extrapo-
lation to the N ~ limit have provided useful infor-
mation about static thermodynamic properties. "
Such coarse-grained calculations are generally ill suit-
ed for describing the low-frequency dynamics probed
by NMR.

Our results show that excellent agreement with

proton relaxation rates is possible at low temperatures
both above and below the critical field H, for fer-
romagnetic order. This is particularly significant be-
cause the NMR relaxation rate Tt ' above H„where
the excitation spectrum has a gap, depends not only
on the magnon energies, but also on their lifetimes.
Although many of the qualitative features of the Tt '

data can be understood without explicit recourse to
the fermion picture, it seems to provide the simplest
model for quantitative agreement. A no-adjustable-
parameter fit is made possible by a detailed analysis
of the angular and field dependence of the proton.
NMR. Not only are the coupling constants deter-
mined, but from the angular dependence of Tt ' we
can determine separately the one-magnon and two-
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FIG. I. (a) One molecule of CuNSal. (b) Simplified di-

agram of position of H5 as discussed in the text. Dotted
lines show positions of H5 on adjacent molecules down the

stack.

II. EXPERIMENTAL

The e-CuNSal sample used was a single-crystal
needle of 3-mm length and 0.3-rnm sides. The
methyl protons in Fig. 1 were about 95% deuterated.
The crystal was mounted in a single-layer NMR coil
of 2-mm length and 0.5-mm internal diameter. The
coil winding was enamel-insulated 75-p, m copper

magnon contributions of Tt '. We also compare
results obtained in the fermion representation with a

boson model. Although the fermion picture is far
superior for the dominant (except at very high fields)
one-magnon rate, a boson description actually works
better for the two-magnon process, which is relatively
insensitive to the magnon lifetimes.

The properties of crystalline 0.-CuNSal make it a

nearly ideal system for a study of this nature. One
molecule of o.-CuNSal is shown in Fig. 1(a). Each

copper (II) has a spin S = —, , and the complexes form
1

stacks along the c axis. '
The isotropic exchange interaction is found to be

J/k =3.2 +0.2 K from static-susceptibility' and from
magnetic-specific-heat measurements. The ESR' of
O.-CuNSal also points to 1D behavior and is well

described by3.'. The observed three-dimensional or-
dering in zero field at 0.044 K shows that interac-
tions between CuNSal complexes in different stacks
are small.

Electron spin delocalization over a CuNSal
molecule leads to hyperfine in addition to dipolar
coupling to the proton H5, shown in Fig. (1a). Thus,
Hq is a good probe of the spin dynamics of the AF
chain. Experimental details are described in Sec. II.
The angular, field, and temperature dependence of
the paramagnetic shifts b H and the relaxation rate of
the H5 proton are described in Sec. III. T& relaxation
in one dimension is discussed in Sec. IV and Sec. V
deals with calculation of the magnon relaxation rate.

wire. The needle axis (c axis) was parallel to the rf
field for all experiments. Since the crystal extended
out of the coil, its orientation relative to the coil and
the a, b axes was identified by x-ray diffraction on
the mounted crystal. The sample was held in posi-
tion with a small amount of Apiezon N-grease.

The NMR coil was mounted on a rotation ap-

paratus capable of 150' rotations in the ab plane and
90 rotations in any plane containing the c (needle)
axis. As a result, we could obtain only partial rota-
tions in any plane containing the c axis. All measure-
ments were performed in a liquid-He bath, with tem-
perature determined by measuring the vapor pres-
sure. The static magnetic field Ho was provided by a

Nb3Sn superconducting solenoid. The available tem-
perature range was 1.08 ~ T ~4.02 K, and the
highest Ho was 125 kOe.

Proton spin-lattice relaxation rates ( Tt ') were ob-
tained from a phase-coherent spectrometer' whose
available frequencies were 2 to 700 MHz. All T~

1
measurements used a —,m saturating pulse followed

by a —m —m pulse pair. The echo amplitude was
I

monitored by a boxcar integrator. " Recovery of the
nuclear magnetization was exponential over at least
1- decades.

2

The error in temperature measurements was & 2%.
The error in Ho was & 10 Oe, as determined from
the unshifted protons in the NMR coil wire insula-
tion and in the N-grease. The magnetic field orienta-
tion was accurate to & 0.5'. Demagnetization fields
are estimated to be negligibly small due to the dilute
nature of the spin system. The maximum demagnet-
ization field would be 2aM =17 Oe if the sample
werc a long needle. Although most of our data were
taken on a single sample, we have made rneasure-
ments on several other samples and have observed
identical spectra and relaxation rates.

III. RESULTS

A. High-field spectrum

The 'H absorption spectrum versus Ho is shown in

Fig. 2 for several orientations of Ho in the ab plane
(Fig. 1) at the resonance frequency of 450 MHz
(105.7 kOe) and 1.08 K. The electron spins are 96%
saturated, as shown below. We first note that Ho II a
or b in Fig. 2 leads to five resolved proton lines cor-
responding to the five inequivalent protons of a
CuNSal complex in Fig. 1(a). The two complexes in

the unit cell, sho~n schematically in Fig. 1(b), are
magnetically equivalent for Ho ll a or b. At other
orientations, the complexes are magnetically ine-
quivalent, and each resonance splits into two lines.
The coalescence points agree within experimental er-
ror with the crystalline a and b axes as found by x-
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FIG. 2. Proton absorption spectrum vs applied magnetic

field. For the field along the crystallographic a or b axes,
the spectrum collapses to five lines, corresponding to the

five magnetically inequivalent protons in the unit cell. The
unshif'ted proton line is from the coil wire enamel and .'V-

grease.

l 2 3 4 5
REDUCED FIELD, Z = gppaal4y'J

FIG. 3. Magnetization vs reduced t'ield at two tempera-
tures. The solid curves are the one-adjustable-parameter f'it

of Bonner-Fisher c calculations for the magnetization. Note
that the magnetization is saturated for: ) 5 tt the lowest
temperature.

ray diffraction on the mounted sample.
A weak triplet spectrum corresponding to incom-

plete deuteration of the methyl protons has been
deleted from Fig. 2. The unshifted 'H resonance
whose position does not depend on the orientation of
Hp and whose TI is very long ( —60 sec), is identi-
fied as protons in the N-grease and in the enamel coil
wire insulation. This signal provides a convenient
reference for measuring the splittings AH of the oth-
er regions.

The final point about Fig. 2 is that the field split-

tings for protons HI, H2, H3, and H4 (Fig. 1) are
small and essentially dipolar in origin, but the split-
tings for H5 are large and involve both hyperfine and
dipolar contributions. Further evidence for spin delo-
calization to H5 is provided by natural abundance "C
NMR of Cq and CD3, which are adjacent to N in Fig.
1. Both C7 and CD3 have large saturated hyperfine
shifts of 21'70 and 2356 Oe, respectively, consistent
with spin delocalization over part of' the complex.

B. Magnetization

added is thus the isotropic exchange J. The solid
curves in Fig. 3 are based on the Bonner-Fisher' and
Bonner" numerical results for finite chains, which
are then extrapolated to infinite chains. The best fit
at T' =1.08 K (kT/J =0.36) yields J/k =3.04+0.04
K. The same value for J fits the T =4.02 K data in

Fig. 3. This value of J is close to the 3.2+0.2 K
results' based on the static susceptibility and on the
magnetic specific heat. Such close agreement
between theory and experiment for static properties
has been observed in other 1D systems and affords
further experimental verification that a-CuNSal is a

nearly ideal 1DAF.
The paramagnetic shifts 4H for the H5 protons

depend on the orientation of Hp. The isotropic (or
largely hyperfine) and anisotropic (or largely dipolar)
contributions in the ab plane were found to have the
constant ratio of 2.74 over the entire Hp range in Fig.
3. Since each contribution is proportional to (S, ),
the constant ratio supports our interpretation that H-
vs-z curves in fact measure the magnetization of the
spin chain.

Paramagnetic shifts are proportional to (S,), the
average magnetization of the electron spins in the ap-

plied field Hp. The shifts AH, in units of g, p, q, for
the H5 protons are shown in Fig. 3 at the lowest
(1.08 K) and highest (4.02 K) temperatures versus
the reduced magnetic field z =g, tzaHp/J At 1.08K.
the system has clearly been driven completely to
ferromagnetic order, or ~(S, )~ = z, for z & 5.2. This

is consistent with the theoretical T =0 result for the
Heisenberg antiferromagnet that the critical field oc-
curs at z =4. The only adjustable parameter for
analyzing the magnetization by Eq. (1) with a field

C. Angular dependence of LLH

Although the paramagnetic shifts AH5 for the H5
and Hq protons can be analyzed for the complete
low-temperature crystal structure, it is more instruc-
tive to adopt the idealized geometry in Fig. 1. First,
we neglect the 4' tilt of the complexes relative to the
i (needle) axis and thus ensure that all local magnetic
interactions have one principal axis along i and the
other two in the ab plane. This is an adequate ap-
proxirnation for all AH and TI data reported here.
The other approximation is to treat the H~-N-Cu-N-
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where a&, a2 are the principal hyperfine strengths in

the ab plane, and d is the dipolar interaction, which
we simplify as

pcU p~ PN
I Bge

I C ~1N ~2N,
(3)

The distances ic„, I.t~, and 1.
2N between H5 and the

copper and two nitrogen atoms, respectively, are
known from the structure. Equation (3) is then
summed over all CuNSal complexes taking the prop-
er angular dependences,

The angular dependence of AH(@ —&0) at 1.08 K
and 450 MHz is shown in Fig. 4, together with a

least-squares fit based on Eq. (2) and 96% magnetiza-
tion. Note that there are only three independent
variables since the angular dependence of the aniso-
tropic hyperfine shift and the dipolar interaction is

the same. We assume al.=aq and the fit yields
$0=73', in agreement with the structural determina-
tion of the average Cu-N-H5 angle to the a axis,
ai =5.44x10 4crn ' (1915 Oe) and d =466 0e. We

I I I I I I I I I I I I I

2000

1900

1800

H5 path in Fig. 1 as a straight line. This ensures that
the Cu-H and N-H dipolar or hyperfine interactions
share common principal axes in the ab plane, at
@0=73' for Hq and at @0=—73' for Hq. The un-

paired electron density is approximated as usual" by

pc„-0.8 and pN -0.1 and all the fractional spins are
collinear. The hyperfine and dipolar contributions to
AH for the Hq protons involve the S, l, terms (with z

along Hp). Since g, =2.047 is isotropic in the ab
plane, we find

AH($ tjhp) = (S ) (a(cos (f Qp)+a)sin (@ @p)

+ d [ I —3 cos'(P —P, ) 1), (2)

D. T& relaxation

The angular dependence of Tl ' in the ab plane for
the Hq protons is shown in Fig. 5 for several values
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can completely account for d by taking pc„=0.77 and

p~ =0.115, using Eq. (3), and summing over all
0

CuNSal complexes within a sphere of radius 200 A.
Moores and Belford" studied the ESR of isolated

CuNSal complexes in a diamagnetic host with the
same structure. They report Hq hyperfine constants
of A~ =at —2d =5.5 &10 cm ' and A2=a2+d =
4.3 &&10 cm ', with +0.2 X10 -cm ' uncertainties.
The magnitudes are in good agreement with our
results on the crystalline solid. Since we can com-
pletely account for the anisotropy in the field shift by
the dipolar interaction with a reasonable choice of
pc„, the assumption a~ = a2 is justified. However, we
cannot rule out some small anisotropy in the hyper-
fine interaction of the order 10%, but this small an-
isotropy will not affect our calculation of the relaxa-
tion rates as shown below. We will therefore adopt
our best values of al =a2=5.44 X10 "cm ' and d
=466 Oe in analyzing Tt data with Ho in the ab plane,
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FIG. 4. Proton H5 field splitting vs direction of applied

field in the ab plane. The solid line is a least-squares fit to
Eq. (2), as discussed in the text.
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FIG. 5. Spin-lattice relaxation rate of H5 vs angle in the
ab plane at several values of applied field. Solid curves are
guides to the eye.
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of z ggizaHo/ J at 1.08 K. The relaxation rate is

greatly reduced for the H )H, (z ) z, =4) curves.
At the highest field, with z -5.43 and vNMtt =520
MHz, Tt ' goes as sin 2($ —Pp), as indicated by the
solid line in Fig, 5. The minima correspond within

experimental error to $p =73', the mean Cu-N-H5
direction. The Hs pattern is out of phase, with mini-

ma at $p = 73 ', but is otherwise similar.
The S,(I++ I ) dipolar coupling between the H5

protons and the electronic moment on a CuNSal
complex goes as sin2($ $p) which would produce

Tt ' a sin'2($ —Pp) when Ho is in the ab plane,
whereas an isotropic a I S hyperfine interaction gives
no angular variation. The z =5.43 data in Fig. 5 thus
represent almost pure dipolar coupling due to the

S,(I++ I ) term. As shown in Sec. IV this indicates
that two-magnon (S,) terms dominate the high-field
relaxation,

At lower Hp, other mechanisms must be included.
Although all z & 4 curves in Fig. 5 have the same
qualitative angular behavior, the minima in Tt ' at

$ =73' clearly increase as z is lowered, and an accu-
rate fit to sin'2($ —do) cannot be obtained. For
z & 4, furthermore, even the qualitative features
change. At z =3.4, for example, Fig. 5 shows that

the minimum at @-73 ' has disappeared and that the
anisotropy is only about 10%. An isotropic Tt '

results if the isotropic hyperfine interaction dom-
inates the relaxation. As discussed in Sec. IV this is
expected for z & 4 where there is no gap in the exci-
tation spectrum and one-magnon (S+, S ) terms are
the most important.

The field dependence of Tt ' at $ =73', where the
S,(I++I ) two-magnon term is absent, is shown in

Fig. 6 for several temperatures. For z & 2.5, Tt ' is

essentially independent of temperature for
0.35 «kT/J «1.3 and only the kT/J =0.35 results
are shown. At the lowest temperature (1.08 K), Tt '

has a maximum at z =4 and then decreases by more
than four orders of magnitude for z & 4. The T~

'

peak around z =4 broadens with increasing T and
moves to lower field. The decrease in Tt ' for z & 4
becomes less pronounced at higher T.

IV. T] RELAXATION IN ONE DIMENSION

A. Electron-proton coupling

The paramagnetic shifts 4, H discussed in Sec. II D
indicate that the H5 protons are predominantly cou-
pled to the unpaired electron on the same CuNSal
complex, and that the hyperfine coupling exceeds the
dipolar interaction. The hyperfine components at
and a2 in the ab plane are isotropic. The component
a3 along the chain is less accurately known and may

be somewhat ( —30%) smaller. However, since the

H5 hyperfine tensor is expected to be approximately
collinear with the Cu-N-H5 direction (Fig. 1) of the
idealized geometry, we will assume that a3 is also
equal to at =a2, so that the hyperfine coupling be-
comes isotropic a I S with a =5.44 x 10 cm ' de-
duced from the paramagnetic shifts. The dipolar con-
tributions to b, H are almost an order of magnitude
smaller.

For simplicity, we focus on one of the H~ protons,
denoted as I, at the r~ =1 CuNSal complex in the in-

finite cyclic chain. The on-site electron-proton cou-
pling is written conventionally as

(4)

X
K 2-
Cg

Hc

where 3.'t and 3C2 represent coupling of I- to St—and

St, respectively, which we later identify as one- and
two-magnon terms, and Ao( 0) (S,) describes the
paramagnetic shifts for fpgHp && a. For a~ = a2 = a
in Eq. (2), the angular dependence of Ap in the ab
plane is simply

0 I 2 5 4 S 6
REDUCED MAGNETIC FIELP, Z (~gepIHO/J)

FIG. 6. One-magnon relaxation rate of' H~ vs reduced

field at several temperatures. Dotted line shows critical field

at zero temperature.

Ao(Q) =a+g„p„d[1—3cos ($ —po)], (5)

with a = 5.44 & 10 cm ' (1915 Oe) and d =466 Oe
obtained from the hH fit.

The two-magnon term 3C2 is purely dipolar as long
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as the hyperfine interaction is isotropic

m, = A, (n)S„(I++I-),
with

Az( f) ) =
4 g„p„d sin2(th —

thtt)

(6)

approximation (RPA) fermion calculation that are
needed to compute the spectral densities for NMR
relaxation. Fermion creation and annihilation opera-
tors a„and a„are associated with S„+ and S„accord-
ing to

in the ab plane. The one-magnon term X~ involves
all S]+ and S[ terms,

X, =A, (n)(S+I +S;-I+)+a,(n)(S,+I++S;I ). -

(7)

The angular dependence of the coefficients At(Q)
and B~( 0) in the ab plane is

S+ ( 1} liat

S„=(—1) "a„

where the phase factors

n-1
o.„=X a,'a,

(1 la)

(1 ib)

{12)

A](0) =
2

a +
4 g„p,„d[3cos'(@—@p) —1I

B&(0) = ——g„p,„d sin ($ —$p)
(g)

Here h+ = h„+ih~, angle brackets indicate a thermal
average, "Re" stands for real part, and time depen-
dence h+(t) arises from damping and precession of
the electronic spin in the exchange Hamiltonian [Eq.
(1)]. The quantity 2(h+) (h ) appears in Eq. (9) to
guarantee that the time correlation functions decay to
zero as h ~. It is assumed that the time depen-
dence of (h+(t) h+(0) ) is at a rate much more rapid
than the NMR frequency co„so that exp (+i eo„t) fac-
tors may be replaced by unity. This is reasonable
since, even at the highest Hp, the nuclear energy Aced~~ 25 mK is negligible compared with the magnon
bandwidth 4J = 12 K. Comparison with Eqs. (6) and
(7) shows that

h+=2[Az(Q)S[+At(Q)St+-+Bt(Q)St —] . (10)

From Eqs. (9) and (10) we see that T&
' is deter-

mined by the near-zero-frequency spectral density of
the longitudinal and transverse (St—) electron-spin
operators. This spectral density is evaluated within
the context of the fermion model as outlined below.

Similar results can be found for Hq protons by chang-
ing $p to —$p.

For a general electron-nuclear coupling of the form
h I, where h is an effective field linear in the
electron-spin operators, the longitudinal NMR relaxa-
tion rate is given by"

T] ' = —t Re Ck h+(h) h (0

+(h (t)h+(0)) —2(h+) (h )]

The vacuum state ~0) has all spins with S„,= —
—,

and is the exact ground state for Hp & H . The total
z component S„which is conserved since [X,S, ] =
[X,Sz] =0, then measures the number of fermions,
or spin deviations above ~0). For Htt=0, the exact
ground state of K is a singlet. There are —,N fer-1

mions and S, =0. However, the total spin S must
usually be approximated in the fermion picture, and
this is one of its defects.

The S„'S„'+~ part of X leads to interactions between
fermions, thereby precluding an exact analysis. The
Hamiltonian Eq. (1) now reads'6

—=
z

tV(1 —z) + $(z —2+2cosk)ak ak
3C 1 f
J 2

k

+—~ cosqak+, a a,ak
N k-q k

qkk

(14)

where z =getzallo/J is the reduced field, the fermions
ak, ak are Fourier transforms of a„,a„, and the wave
vector k is in the first Brillouin zone, —m ( k ( m.

Various molecular field (RPA) solutions'6 "of Eq.
(6) are generally close to numerical results for static
properties.

The excitations (magnons) induced by ak form a
10 band of N states, as shown in Fig. 7, with RPA
energies'

ensure that ferrnion operators on different sites an-

ticommute, even though the spin operators for dif-
ferent sites commute. The transformation holds for

1
any S = —spin system, although the phase factors a.„
only simplify in one dimension. The z component of
spin is then related to the number operator by

S„,= ——+a„a„t

B. Fermion representation
k—= z —4s +2p cos kJ

There have been several treatments' ' of the
spin- —, Heisenberg chain by the fermion model ~ We

summarize here those features of the random-phase-

where
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GF =0
1

FIG. 7. Excitation spectrum for magnons at Hp =0 and

Hp = If&. States are occupied up to the Fermi level ~i.-.

and p is a bandwidth parameter

p =1 ——g n cos k
2 {17)

»k = [exp(PKI, ) +1]

(P =1/I T)

{18)

We have s = —, and p =1 for: ~4 and T =0 K,t

while z =0 leads to .s =0 and p =1+2/sr,
As shown in Fig. 7, the Fermi energy at zero tem-

perature is always at ~I; =0. The Hp=0 band is half

filled, with —,X spin deviations, while the band is
1

empty for Hp ) H, and there is an energy gap of
J(z —4) even for the zone-edge magnons at k =+sr.
The normalized density of states p(e), with a Ek/J,

is found from Eq. (15) to be

p(~) = [4p' —(~ —= +4s)'3 '",
mJ

(19)

Equations (16) and (17) are solved self-consistently
with the occupation number»k given by Fermi statis-

tics as

focus on» =1 for discussing the dynamics of a single
electron spin on the ring. There the phase factors are
unity, giving a one-to-one correspondence between
transverse-spin and fermion operators. It is then evi-
dent that the perturbation Xt of Eq. (7} involves
one-magnon relaxation and X2 of Eq. (6) is a two-

magnon term. Note also that within the f'ermion pic-
ture there are»o higher-order magnon terms, as op-
posed to the Holstein-Primakoff transformation'
where transverse-spin operators contain all odd-order
magnon terms.

Detailed calculations of the one- and two-magnon
rates are presented in Sec. IVC, but some qualitative
remarks may be made here. Nuclear relaxation via
two magnons (coupling to St ) involves the annihila-
tion of a spin deviation of k' and its recreation with

wave vector k. The difference in magnon energy is

the nuclear energy t~„, which is generally negligible
in comparison to the electronic bandwidth of —4J.
The temperature dependence of S„' or two-magnon
processes is thus controlled by the Fermi-Dirac prob-
ability of having an occupied and empty fermion level
at almost the same energy. The one-magnon (cou-
pling to S~-) processes, by contrast, involve a single

excitation whose energy must be essentially zero in

order to induce a spin flip at hcu„. At low tempera-
ture, one-magnon processes are proportional to the
density of states at zero energy for Hp & H, {z & 4).
They probe the magnon lifetimes I &

' for Hp & H„
since they can only occur tor z ) z, by virtue of the
lifetime broadening of the magnon energies. The dif-
ferent temperature dependence of' one- and two-

magnon Tt ' relaxation is clearly shown by the H&

protons of o.-CuNSal.
The advantages of' single-crystal studies are now

apparent. The angular dependence of the paramag-
netic shifts b, H of the Hq and Hq protons in Sec. IV
directly yields the coupling constants for the
electron-proton interaction. The angular dependence
of Tt ' then immediately identifies S„or two-

magnon, processes for .& 4. There are consequently
»o adjustable parameters left in analyzing the field
and temperature dependence of the nuclear relaxa-
tion Tt, and one can compare theory with experiment
for the one- and two-magnon rates separately.

for z —4s —2p & e & z —4s +2p and zero otherwise.
All negative e& are occupied at 0 K, and these spin

reversals for z & 4 determine the magnetization.
One can show that the transformation in Eq. (11)

is valid for a cyclic ring' where all spins must have
equivalent properties. One is therefore at liberty to

C. One-magnon relaxation rate

The one-magnon relaxation rate is given by the
transverse operators of h+ in Eqs. (9} and {10)
which are then converted to fermion operators. The
result is

()', '), =)(' ')( '(A,'(())+B,'(()))Rez f ch ( (0 (0)+ (r) (0)) (20)

Axial symmetry of the electronic Hamiitonian has been noted so that terms (S(—(r)S) (0) ) are identically zero. —+ +
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We assume that

(ak (t)ak(0) ) = (a„ak) e "e
'"k'f "k'= 11ke

(ak«) ak'(0) ) = (okak ) e

—i cukt -rkf= (] —ok) e

(21a)

(2&b)

of J/f. The integral can be evaluated if we assume

that it converges for ~ (( z (z & 4) so that the upper

limit is extended to infinity and ~ (( z assumed in

the density-of-states expression (19). The result is

[3] {Q)+B, (g)] (~~+I.~)]/~

tJ 2(x+4)(x +r')

where et) k= tk/tr 'with ak the magnon energy of Eq.

(15); ttk is the occupation number given by Eq. (18),
and I k is a damping constant to be calculated later.

Insertion of Eqs. (21) into (20) then gives

(Tt ')t=
z
[At'(0)+B'(fI)] $, ", . (22)

r,
Nf ~2+I 2

Note that a feature of the fermion representation is

that the strongly temperature-dependent occupation

numbers cancel because the expression (20) calls for

occupation of state k by either a particle or hole. This

has been noted in a previous treatment' of the low-

temperature zero-field relaxation rate.
The expression (22) together with the spectrum

Eq. (15) shows that the T 0 relaxation rate is

strongly field dependent above and in the vicinity of
H, (z & 4). Consider first z & 4. In this case there is

a finite density of states at &ok =0 so that, assuming

small I k, we have

(25)

where x =z —4 &0.
In Fig. 8 we show the T =0 behavior of ( TI ' )],

which reflects the one-magnon density of states. For
H « H, excellent (within 50%) agreement is ob-

tained with the experimental data at T =1.08 K using

no adjustable parameters (the coupling constants and

J are taken from the shifts hH ). In Eq. (25) we take

{2 )
—t kT PJ(z 4)

J

as derived in Sec. V, [see Eq. (41)] for T =1.08 K.
A more complete numerical calculation is presented
in Sec. V.

Ho (kOe)

20 40 60 80 IOO I20 140

(T ),=, [A,'(n)+B,'(n)] Xg(, )
Nh~ k

[A, (II) + Bt (Q)]p(0) (23)

104

5-

where p(ak) = rr dk/dek is the normalized density

of states. Thus, the one-magnon rate for
z & 4(Hp & H, ) is given by the familiar golden rule

with a fermion density of states.
The small angular dependence in the z =3.55 curve

of Fig. 5 can therefore be understood as the ( —,a)'
and —,g„p,„ad [3 cos'($ —$0) —1] cross terms of A tz

in Eq. (8) since for a » g„~p,„d the one-magnon

process is dominant at low fields.
The e =0 density of states p(0) drops to zero for

z & 4 and thus the expression (23), which neglects

lifetime effects, gives a zero relaxation rate for z & 4.
The more complete Eq. (22) must then be used. We

assume that the dominant contribution to the sum-

mand comes near k =n where the gap
cu = h 'J (z —4) opens up at T =0 for z & 4. A

first approximation is then to take

IO

5-
I-
K 2-
X0
I-
X

UJ

2-
IO—t-

CL
Eh

IO ONE - MAGNON
RELAXATION RATE5—

(T] )[ 2' [At (0)+B](0)j g-4 +~+I ~

(24)

where I is the zone-edge damping constant in units

0 I 2 3 4 5 6
REDUCED MAGNETIC FIELD, Z (*9epLSHp~J)

FIG. 8. One-magnon relaxation rate of H5 vs reduced

field for T =1.08 K () and T =4.02 K (1). Solid lines are
no-adjustable-parameter theory as discussed in text.
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D. Two-magnon relaxation rate

From Eqs. (9), (10), and (13) the two-magnon (S] ) relaxation rate is

(Tt )t~ ——4
& & g Re dt[(ak, (t)a„(t)ak (0)ak (0)) —(a„a„)(ak ak )]~,2 (n)

1 2 3 4

4~,2 (n) I,
,
+r, ,

ltk (1 ttk )
k, k,

' ' (~k, —~k, )'+ (I, + I k, )'
(26)

If the resonance term is replaced by a 5 function, one
obtains

4~~2(n)
1 ll

x Jt da n (e) [1 —n (a) ] [p(e)], (27)

which may be seen from Eq. (19) to result in a loga-

rithmic divergence owing to the 1D character ~hich
enhances divergences and the fact that the density of
states is squared in the integrand of Eq. (27). Thus,
the damping constant must be retained. Note that

here letting I 0 produces an infinite relaxation
rate, whereas in the one-magnon case I 0 gave
zero relaxation above H, . In the limit of small damp-

&k0, i

90 IOO I I 0 l20 I30

I

ing, the resonance expression

(Ik +1k )/[(tdk atk )'+(Tk, +1k,)']

is sharply peaked at k2 = k] so that we may approxi-
mate Eq. (26) by

2~2'(n)
(~1 )11 = dk]rrk (1 —nI, ) G(k])

g2Jp~2 0 1 1

where

(28)

kl
G(k ) = „, , (29)

( —,y'cos k1 —y sink1)'+ qk

with rtk = I k /Jp. We have taken I k = I k,
I 1 2 1'

Ilk = nk, and
2 1

w&
—~k =2Jp(cosk] —cosk2)

1 2

=2Jp( —y'cosk, —v sink~)
1

lO—

2-
IIO—

2.

FKRM
80SONS

2
lO — kT/J

kT/J

~ 035
v 0.74

=0.74

and k2=k] —y. This is justified as long as I kh(( kT, which [see Eq. (41)] is valid at low tempera-
tures. The integral G(k]) may be done exactly, and
the resulting integration of Eq. (28) performed nu-

merically. The results of this are shown in Fig. 9
where I k is taken from the calculation of Sec. V.

1

At high fields and low temperatures, where the
two-magnon process is most important, the integrand
in Eq. (28) is strongly peaked at k1= m and the occu-
pation number nI, may be approximated by an ex-

1

ponential. In this case, a valid approximation to Eq.
(28) is

(T' ' ) = e ~ '* ln( —PJI') . (30)
122 (n)

~tJ

IO
0

1

4 V. MAGNON RELAXATION RATE

REOUCEO MAGNETIC FILL,O, Z

FIG. 9. Two-magnon relaxation rate of H5 vs reduced

field for the two lowest temperatures. Curves are the no ad-

justable theory for fermions and bosons as discussed in text.
Please note that there is a plotting error in Fig. 2 of Ref. 22.

Both the one- and two-magnon contributions to
Tt ' depend on the inverse magnon lifetime I k. Sim-

ple energy-conserving 5-function approximations give
either divergences or zeros in T] ' except for the
one-magnon rate below H, . Here we calculate I k by
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using time-dependent perturbation theory on the
interacting-fermion Hamiltonian of Eq. (14). The
perturbation X' is taken as the non-Hartree-Fock (or
nonrandom-phase) part so that we rewrite Eq. (14) as

where ak, ak are the "interaction representation"
values

f -IXot/t t r DCO(/f If «Ik I

ak =e ake =e ak (3Sa)

with

= ge&QInfk +X =OCP+Kt
k —r3Cot/k i jgof/0 rcukt

ak =e ake =e ak (35b)

3(' =2JN X 'cosqaI, +~a„, a„,a„t t

q, k, k

(32)

and ~k given by Eq. (15). The constant term in Eq.
(14) has been ignored and the prime on the summa-
tion sign in Eq. (32) means that RPA terms

q =0, +(k —k') are excluded. The equation of mo-
tion

and

0 ( k, k, c/) = QJk q + QJk-
k —q

=2Jp[cos(k+q) +cos(k' —q)

-cosk —cosk'] (36)

nk Ik [~ qk]
~ t -i t

=i cukak +4iJN ~ cosq ak+qa, a, (33)t t t
k-q k

k „q

As is common practice in time-dependent perturba-
tion theory, we iterate Eq. (34) twice and obtain an

expression valid to second order in K' for the corre-
lation (aq(I) aq(0)):

with QIg = eI, /h, is rewritten as

t
aI, =4iJN ' g'cosq a„+pa„, a„exp[i Q(k, k', q)I]k —q k

k, q (34)

-I'k t
(aa ( i) a„(0)) = nI (I —I„I)= n'„e

The damping constant I"k is given explicitly as

(3'7)

I I,. =16J N X cosq[cosq —cos(k+q —k')][n„,(1 —n„, ) +n„n„, —n„n„,] lim
k k —q q k -q q k Z~ Q(k k' q)2+Z2

k, q

(38)

Details of the derivation of Eq. (38) may be found in Appendix.
We replace the double summation in Eq. (38) by a double integral and note that for a continuous density of

states (N ~) the restrictions q 40, +(k —k ) may be removed apart from corrections of the order of 1/N
The integral is sharply peaked at O(k, k', q) =0 which occurs for q =O, k' —k, and k'= m —k, and we assume the
major contributions come from these regions. In the limit 5 0, we find

2J r

( )
1 cos k k )

p 7r — "' " )sink' —sink
)

2J
~) d [ (I ) ]

[cos'(k —q)+cos(k —q) cos(k+q)]
p 7p 1T sinq —sink

(39)

It is evident that the integrals in Eq. (39) contain
logarithmic divergences and thus cannot be evaluated
as they stand. A self-consistent solution would put
explicit damping in the right-hand side of Eq. (34) by

making the replacement

n(k, k', q) —n(k, k', q }+/(I „„+r, , +r, —rk)

The quantity 4 in Eq. (38) then becomes I"k+q +
r, +r, —rk so one no longer takes the limit

k —q k

0, and finds a contribution of the order of
n I, (1 —II g) In(1/I') from the divergent regions
k' = e —k, q = k, q = vr —k [there is no divergence at
k' = k because of the [I —cos(k —k') ]' term in the
numerator of the first integral in Ett. (39)). For the

I

T~ calculations we are primarily concerned with I k

for k = kq. Furthermore, only kq = m is of great in-

terest since the damping constant is important only
for fields near and above H, (z =4) and kF = n for
z «4. The one-magnon rate is insensitive to I k at

1

low fields where k~ = —, m and the two-magnon rate is

observable only for z «4. Hence, the logarithmic
correction is negligible at low temperatures where

IIp(1 —IT p) « (/7„(1 —Il„)),„

and ( ),„ is an average over the zone. Similar rea-
soning shows that the second integral in Eq. (39)
(that over dq} should be negligible compared with the
first one at low temperatures for k = kF = m. .
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In light of the above comments, Eq. (39) is there-
fore approximated by

e/2r.= dy nk y(1 nk y)-~/2 F y

[ I —cos( k' —y ) ]'
(40)

~sin(kr —y) —sin(kr —k')
~

calculation of I"k may not show such a strong varia-
tion away from kF, we use I k =1k throughout the

zone in the ensuing calculations of T] ' with I k

given by Eq. (40) for k" =0. The nature of the ap-
proximations also suggests that Eq. (40) works best
at k'=0 for low temperatures and H ) H, .

decreases rapidly with y, the integral should be in-

sensitive to the limits as long as they are well re-
moved from the divergences.

For H & H, and k = kF = m in the low-temperature
limit (p =1, s = —,), we may take

1

k -y( k -y) nk -y

= exp [ —pJ(z —4) —p Jy']

approximate the trigonometric expressions by their

y &(1 values, then extend the limits to + ~ and
thereby obtain

I„=—e &' ' y'e &y dy
J
7r 0

(pJ ) -2e-PJ(g-4)
2' (41}

For PJ(l —cosk')' ~1, we approximate Eq. (40)
by taking y =0 in the trigonometric functions so that

2J (1 —cosk')'
I

pm ~sinkr —sin(kz —k')
~

e/2

dy nk y(1 —nk y) (42)

for sufficiently large k". This predicts

r ' T'~'~k'~'e ajt*~&-
for H )H, and k' &(1 at low temperature com-
pared with I k ~ T e / '~ from Eq. (41).

It is, of course, unrealistic to assume the ~k'~'

dependence holds all the way to the zone edge, and it

is difficult to obtain an analytic expression for I

except in the vicinity of k'=0 because of the loga-
rithmic corrections. Since we expect the integrals in

Eqs. (22) and (28) to be dominated by the behavior
near kF and since it seems likely that a truly correct

where k" = kF —k and the expression is expected to
3

be valid at low temperature for
4

m ~ kF ~ 7r and

~k'~ &
z kr. The limits have been taken as + rr so-

as to stay safely away from the divergences which oc-
cur at +m for k = kF = m. Since the population factor

n„, ,(1 —n, ,)

VI. RESULTS AND DISCUSSION

NMR work by Jeandey et al. " on powdered n-
CuNSal at 300 K has shown that the powder-
averaged relaxation rate of protons follows T] '

~ co~' ' from 15—200 MHz. Their results are inter-
preted as a 1D spin-diffusion process. Our results in

the temperature range 1 —4 K show that T] ' is in-

dependent of frequency between 25 and 100 MHz for
the one-magnon relaxation rate of H5. We see no
evidence for 1D diffusion in the low-temperature
range, and the complete frequency dependence can
be understood on the basis of the AF F phase tran-
sition. This suggests, as is reasonable, that the spin

dynamics of the AF chain are governed by diffusive
processes only for T )& J/k,

At high temperatures, the fluctuation spectrum
near zero frequency is dominated by the slowly de-
caying modes (S„+(.r) Sk (0) ) which are diffusive for
k 0. These models have greatly reduced amplitude
at low temperature where the k = m modes are
favored because of the large staggered (AF) suscepti-
bility, and the magnon-excitation picture becomes ap-
propriate. It should be mentioned that a curious
feature of the fermion picture is that, although
(Sk+(r)Sk (0) ) is a constant of the motion at k =0
for the Heisenberg magnet in zero field, the same is

not true of the fermion correlation (ak (r) ak(0) ) at
k =0. Thus, one should not expect the fermion pic-
ture to describe relaxation processes which are dom-
inated by behavior of the spin operators near k =0.
The situation is somewhat mitigated by the fact, as
noted earlier, that X„(SI,+(r)Sk (0)) is equal to

g„(ak (r)ak(0)) even though the relation does not

hold for individual k's.
It is interesting to note that our value of Tt '

~t

=3.4 x 10 s ' in the low-field regime is near the
value reported by Jeandey et al. at low co~ of —2.4 &&

10' s '. However, there is a basic difference between
their room-temperature measurements and our low-

temperature ones: We are able to resolve the indivi-
dual protons and report data for the relaxation of
only the.strongly coupled H5's. Such resolution is

not possible at high temperature, and the nonex-
ponential decay observed by Jeandey e/ al. contains
contributions from all the inequivalent protons. This
obviously complicates the analysis and makes quanti-
tative comparison with theory difficult, especially
since, as we have shown, the strong coupling of the
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Hq protons to the electronic spin is decidedly nondi-

polar, a fact which was not accounted for in Ref. 21.
Hence, the agreement between our ( T~

' ) ~
for Hq

and that of Jeandey et at. which is some kind of a

weighted average, may be purely coincidental.
In Fig. 8 we show results of the no-adjustable-

parameter theory for the one-magnon process tEqs.
(22) and (40) with 1'„=1k ] for the kT/J =0.35 and

1.32 data. There is very good quantitative agreement
between theory and experiment over the complete
field range for the low-temperature data. Note that
the agreement is over more than four decades in the
relaxation rate. Other relaxation mechanisms for the
proton Hq are estimated to be much smaller than the
slowest rate shown in Fig. 8 because the nondipolar
relaxation rate of protons H~ —H4, which are not hy-

perfine coupled to the electronic spin, exhibit very

long relaxation times. The fit of the kT/J =1.32

theory is not as good as the low-temperature data but

certainly reflects qualitatively the measured relaxation
rates. The disagreement at higher temperature
perhaps reflects the reduction of the (low-temper-
ature-favored) k = m modes as noted above or the
fact that the perturbation calculation of I k is expect-

F
ed to be less reliable at higher temperatures.

The two-magnon relaxation rate for the two lowest
temperatures along with theory is shown in Fig. 9.
Due to the large contribution of the one-magnon rate
at lower fields and higher temperatures, we only have
data for z & 4.5 at the lower temperatures. The
agreement with theory is quite good at the highest
field but the observed field dependence is clearly
much stronger than calculated. This is puzzling since
the two-magnon rate is relatively insensitive to I k so
that the discrepancy seems to indicate that a descrip-
tion of the process in terms of Fermi factors is inade-
quate. Indeed, we find that a boson description,
shown by the labeled curve in Fig. 9, gives far better
agreement. That is, in the expression S;=S—n;, we

regard n; as a boson, rather than fermion, number
operator and calculate the spin-wave spectrum using
the Holstein-Primakoff transformation to lowest or-
der. The resulting ~k is the same as for the fermion
description in the low-temperature, high-field limit.
Consequently the boson curve is obtained simply by

changing 1 —nk to 1+nk in Eq. (28) and nk to
I

(e "—1) ' in Eq. (18) to give the well-known ex-
pression for the two-magnon (Raman) relaxation rate
for bosons. In this way we obtain the excellent
agreement shown, It is much better than indicated
by Fig. 2 of our earlier report ' which was plotted in-

correctly.

VII. CONCLUSIONS

In conclusion, we find that the fermion picture
gives a quantitative, no-adjustable-parameter fit to

the one-magnon relaxation rate of proton Hq. The
divergence of the 1D magnon density of states is

clearly seen by the enhancement of T~
' at the critical

field, and the lifetime broadening of the magnon en-
ergies, within the fermion picture, fully accounts for
the observed field dependence of the one-magnon
rate. However, a boson picture appears to give a

better description of the two-magnon rate. ' The fer-
mion model is obviously needed for the low-field,
one-magnon rate since the boson formulation would
produce a strong temperature dependence which is

not observed. ' Neither the fermion nor the boson
model is exact for the Heisenberg model. Further,
the one-magnon rate is strongly dependent on the
magnon lifetime I k

' and —at least within the frame-
work of a single golden rule calculation —is much
better described in the ferrnion picture. We find that
a boson golden-rule-type theory predicts a I k which
is very large at k = m and leads to a much weaker
field dependence of the one-magnon rate than is ob-
served above the critical field.

One might expect the fermion picture to be valid
for the transverse fluctuations in high fields since,
with longitudinal (S,*(r)S,*(0)) fluctuations suppress-
ed by the field, the transverse dynamics may be simi-
lar to those of the XY model which are given exactly
by noninteracting fermions. This is consistent with

the good agreement of the one-magnon rate, which
involves transverse fluctuations, with ferrnion theory.
The two-magnon rate is given by longitudinal fluctua-
tions, and it is not at all clear that these should be
described by a fermion calculation. An a posteriori

conclusion is that they are much better treated by
lowest-order Holstein-Primakoff theory. We have no
explanation, however, how this could have been anti-
c&pated a priori.

ACKNOWLEDGMENTS

We would like to thank B. Morosin for the x-ray
orientation of the samples. One of us (Z.G.S.) would
like to thank Sandia for summer support. We ack-
nowledge helpful discussions with M. A. Butler, B.
Morosin, W. G. Clark, P. Pincus, D. Hone, and J. C.
Bonner. Also, many thanks to J. C. Bonner for pro-
viding magnetization curves for the 1D antiferrornag-
net. We also acknowledge the technical assistance of
R. L. White. This work was supported by the U. S.
DOE under Contract No. DE-AC04-76-DP00789.

APPENDIX

We outline here the steps involved in going from
Eq. (34) to Eqs. (38) and (39). First, rewrite Eq.
(34) as

ak =i g' (Lk, k', qr) e x[ipQ(k, k', q) I ), (Al)
k, q
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where

L(k, k', q;t) =4JN 'ak+q(t)ak q(t)a, (t) (A2)

With the identity

f(t) = f'(0) + f'(t, ) dt,

we have

, (r(= „(0l+ Jdr, Z'L(ler, e& ,~ e, f (((e.(rel(
k, q

t ( I1
=ak(0) +i dt( L(k k', q;0) exP[i Q(k k', q)t(]+i dt, dt2 X'L(k i ', q;r2) .exP[iQ(k k', q)tt]0 0 0

k, q

(A3)
The derivative L(k, k', q;t2) is obtained by differentiating Eq. (A2) according to Eq. (33) and its Hermitian conju-
gate, Thus,

L(kk', q;t2) =4iJN ' X'cosq X' [L(k+q i'",q', t2)a a, exp[i Q(k +q k",q')72]
k ,q k ,q

+a„+qL(k' qk", q—';t2)ak exp[( Q(k +qk", q')72]

—ak+qa, L (k', k",q';r2) exp[ —iQ(i ', k",q')t2].] (A4)

tWe then make the usual approximation of assuming that ak, ak are slowly varying compared with the ex-
ponential time factors which appear explicitly in Eq. (A3) and (A4) so that the L's, a's and a 's on the right-
hand side of Eq. (A4) are at t =0. The correlation function (ak (t) ak(0)) is of primary interest. Use of Eq.
(A4) in the second equality of Eq. (A3) gives

(ak(t)a„(0) ) = irk 16J'N ' $'cosq [cosq —cos(k +q —k')]trk [llk(1 lr ) + 77k4477 lrk4477 ]
k, q

t

dtt dt2exp[i Q(k, k', q)(t) —72)] exp[ —5(rt —t2)]0 0 (AS)

may be computed by RPA and thus reduces to

rk rk k [g1,4(g3, 552, 6 62, 553, 6}

+ 51,5 ( ~2, 4~3, 6
—

&2, 6~3,4)

+ 51,6(~2, 553, 4 ~2, 4~3, 5) j

for k1& k2& k3 where 5„ is the Kronecker 5 for
k, k~.

The integral I in Eq. (AS) is transformed to

I = (t —r) exp[i Q(k, k', q)r]e 6'dr (A6)

where rrk = (ak (0) ak(0} ) = (ak ak), and an ima-
ginary part 5 has been added to Q(k, k', q) which
will later be let to approach zero.

In arriving at Eq. (AS), we have assumed that an
average such as

(a„, (0)ak (0)ak (0)ak (0)ak (0}ak (0))

{akt k2ak3 k4ak5 kt, )
t

I

with T = t1 —t2. The "long-time short-time" approxi-
mation is then employed whereby one assumes that t

is sufficiently long that t && v for the value of ~ for
which the integral is non-negligible and thus the
upper limit extended to ~ so that

I=t exp[i Q(k, k', q)r]e 'dr
0 (A7)

The time t is regarded, however, as sufficiently short
that the resulting second term on the right-hand side
of Eq. (AS) nkI kt is much less than nk, whence I k
may be seen to agree with the expression given in
Eq. (39) (only the real part of I has been taken since
a small frequency shift is not of interest) ~ In this
case, the first equality in Eq. (39) is taken as the-I ktleading terms in an expansion of e

Equation (20) shows that we are interested inf

�dr
(a„(t)ak(0) ), i.e. , the zero-frequency com-

0
ponent, for calculation of the one-magnon contribu-
tion to T1 '. In addition to the above, which, in corn-
bination with Eq. (22), expresses the (q =0 com-
ponent in terms of a damping constant I k, there is a
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competing process which gives rise to an car =0 corn-
ponent. It is equivalent to the virtual magnon
scattering discussed by Beeman and Pincus' and
comes about as follows: With the help of Eq. (35)
we may rewrite Eq. (AS) as

exp[i Q(k, k, , q) h]e

t O(k, k', cI) +i b, ]
(A9)

(a„'(h)ak(0)) =hh„e " —g'G(k, k', q)e "I, (Ag)
k, q

where I is the integral defined in Eq. (A6) and

G(k, k', cI) is the coefficient of I in Eq. (AS). Com-
plete evaluation of I rather than the approximation of
Eq. (A7) gives

1

Q(k, k', q)+iI [Q(k, k', q)+ih]

&& Jt exp(i[Q(k, k tq)+ruk+hr]h}Ch

X'G(k, k', q) 5[Q(k, k', q)+rd„]
k, q

where we have taken 5 0 and neglected the irna-

ginary part which leads to a frequency shift. If we
utilize the definition Eq. (36) of Q(k, k', q) and note
the previous expression for I k it follows that

(A I 0)

The first term in Eq. (A9) is the same as Eq. (A7)
and produces the damping constant already discussed.
The second term gives only a small amplitude shift
and is no consequence here. The third term contri-

butes to Ch(ak(h)ak(0)) an amount
0

G(k, k', q)
(Q(k, k', q)+i h )'

I' ch(a„'(h)a„(0)) = +K

G(k, k, q)[5(Qlk~q+Qj i Qik Qj, )+5(&gpk+ +~, —~,)]
k -q k-q k

k, q

(A11)

where we have assumed I k &( cork in the first term
on the right-hand side of the first equality and ig-

nored the logarithmic divergences associated with,

taking 5 =0. The first term on the right-hand side of
the second equality in Eq. (A11) is the contribution
from I k, while the second is the Beeman-Pincus
(BP) term. Note that they differ only in the energy-
conserving 5 functions, the former involving four
magnons and the latter three magnons. Although we

have not evaluated the three-magnon BP term expli-

citly, it seems reasonable that it should be smaller

than the I"k contribution on the general grounds that

I

the geometry is more restrictive for three-magnon
energy conservation. For example, there can be no
three-magnon terms for H ) 2H, since we require

H —2J = 2J(cosk2 + cosk' —coskt) (A12)

for the kt k2+k3 process at 0 K in high fields ac-
cording to the spectrum Eq. (15). The largest value
the right-hand side of Eq. (A12) can attain is 6J, and
thus the process is not possible for H ) 8J = 2H, .
%e therefore expect the BP process to be negligible
at least for sufficiently high fields.
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