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Lo~-temperature thermal conductivity of antiferromagnetic Mnc12 4H20
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Measurements of the thermal conductivity of MnC12 4H20 as a function of temperature and

magnetic field along the easy axis for sublattice magnetization are reported. Results are ob-

tained in the antiferromagnetic, spin-flop, and paramagnetic phases. The principal features of
the data can be ascribed to intrinsic scattering processes and reproduced by a simple model for

two-magnon —one-phonon scattering. Inclusion of magnetic field dependence of the

interaction-matrix elements is essential to the agreement between model and experiment.

I. INTRODUCTION

The antiferromagnet MnC12 4H20 has received
much attention as a model system for the study of
the bulk properties of antiferromagnets. ' ' Interest
in this material has stemmed from the relatively low

exchange and anisotropy energies, allowing the field-
induced phases to be readily studied. In addition
large, high-quality, single crystals can readily be
prepared by solution growth. This feature is especial-
ly important for transport studies.

MnC12 ~ 4H20 has a rnonoclinic structure with four
Mn'+ ions per unit cell. ' ' The magnetic structure
has been determined by neutron diffraction to be col-
linear antiferromagnetic structure with the spin direc-
tion inclined from the normal to the a-b plane (c'
axis) by 2.8' toward the a axis. ' At sufficiently low

temperatures in magnetic fields along this direction
the compound exhibits a first-order phase transition
to a spin-flop phase at an internal field of HAF =7.0
kOe and a transition to the paramagnetic phase at
HFp 18.5 kOe. ' Figure 1 shows the magnetic unit
cell for MnC12 4H20. One notes that the magnetic
unit cell is identical to the chemical unit cell in all

three magnetic phases. It is also significant that each
spin has parallel as well as antiparallel near neighbors.
Thus, there are ferromagnetic contributions to the
exchange energy as well as antiferromagnetic.

The anitferromagnetic contribution to the exchange
energy and the anisotropy energy can be calculated
from the measured critical fields for the magnetic
phase boundaries. ' The effective total exchange en-

ergy has been estimated from zero-field specific-heat
measurements to be z,frj, rr/ks =+0.76 K with

H, „-+JX&&&S; S& where the sum is over z,rr neigh-

bors. This value is 25% larger than that obtained
from the critical fields. This is to be expected since
J,ff includes both the ferromagnetic and antifer-

romagnetic interactioris indicated by the magnetic
structure. The effect of the ferromagnetic interac-
tions is to increase the energies of short-wavelength
magnons. J,fi. determines the width of the magnon
energy band and thus, sets energy-conservation limits
on magnon-phonon scattering processes. The aniso-
tropy arises primarily from single-ion crystal-field ef-
fects."

Previous reports of the thermal conductivity of
MnC12 4H20 have shown it to be a promising ma-
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FIG. 1. Magnetic structure of MnC12 4H20. Note that
Mn2+ ions lie at general fourfold positions in this cell. Of
the six nearest neighbors of each Mn2+ ion, four are aligned
ferromagnetically; and two, antiferromagnetically. The unit
cell used in this work and due to Groth (Ref. 20) is defined

by the crystallographic axes A &, B2, C& and is shown by

solid lines. The unit cell shown by the dashed lines (Ref. 21)
is defined by the crystallographic axes A2, B2, C2.
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terial for a detailed investigation of the role of mag-
nons in reducing the lattice thermal conductivity. " '

The magnons seem to be unimportant as heat car-
riers, and there is little, if any, effect from critical
fluctuations near the Neel temperature, T& =1.62 K.
In a saturating magnetic field, the lattice thermal con-
ductivity closely approaches the ideal Casimir limit.

In Secs. II and III we present measurements of the
thermal conductivity of MnClq 4HqO as a function of
temperature and magnetic fields applied along the
easy axis for sublattice magnetization. These results
are interpreted in terms of a simple model for two-

magnon —one-phonon scattering presented in the
preceding paper. '

shows that critical fluctuations have a negligible influ-
ence on the thermal conductivity since no phase tran-
sition occurs in a field of 40 kOe. At lower tempera-
tures the high-field thermal conductivity exceeds that
in zero field. Since the effect of the field is to depop-
ulate the magnon branches by increasing their ener-

gy, this shows that scattering of phonons by magnons
dominates any possible heat transport by the mag-
nons in this temperature range. These features sug-
gest MnClq 4HqO as a system for testing models of
magnon-phonon scattering processes.

To investigate the behavior of the thermal conduc-
tivity in the high-field phases, measurements were
made as a function of magnetic field along represen-
tative isotherms. These are shown in Fig. 3. One

II ~ EXPERIMENTAL

Single crystals of MnClq 4HqO were grown from
an aqueous solution by evaporation at ambient tem-
perature. Samples in the shape of rectangular paral-
lelepipids with dimensions of 4 & 5 x 25 mm' were cut
with a string saw so that the long dimension was
parallel to the c'crystallographic axis. These were
coated with a thin layer of GE 7031 varnish to
prevent the loss or absortion of water.

Thermal conductivities were measured by the
steady-state longitudinal heat-flow method in a 'He-
evaporation refrigerator. Magnetic fields up to 40
kOe were applied along the c'axis, parallel to the
heat flow, by a superconducting solenoid. Nominal
470-0, 0.5-W Speer carbon resistors were used for
thermometers. Details of the calibration and correc-
tions for magnetoresistance were as described previ-
ously. "

0.5

III. RESULTS AND DISCUSSION
A. Experimental observations

Thermal conductivities were measured as a func-
tion of temperature in zero field and an applied field
of 40 kOe from 0.25 to 2.7 K. Results were similar
for all the samples studied. Figure 2 shows represen-
tative data for a sample in which a 14-rnm thermom-
eter separation was used. To facilitate intercompari-
son of results, all data shown in the figures are from
this sample.

There are three effects of the magnetism in this

compound that one might expect to observe in the
thermal conductivity: heat conduction by the mag-
nons, decreased lattice thermal conductivity due to
critical fluctuation near TN, and decreased lattice
thermal conductivity due to scattering of phonons by
magnons. Comparison of the zero-field and high-
field data shows that the last of these is dominant in
MnC1~ 4H~O. There is no significant difference in
the thermal conductivity near T~ =1.62 K. This
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FIG. 2. Thermal conductivity pf MnC1~ 4H&O along the
c'axis. Filled circles are data in zero applied field. Trian-
gles are data in a field of 40 kOe applied parallel to the c'
axis. The curve is a least-squares fit to the 40 kOe data as
described in the text.
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FIG. 3. Magnetic field dependence of the thermal conductivity of MnC12 4H20. Note that the magnetic contribution to the
thermal resistance persists into the paramagnetic phase.

notes that at the lowest temperatures there is a sharp
minimum in the thermal conductivity at the first-
order phase boundary between the antiferromagnetic
and spin-flop phases. At higher temperatures a
strong inflection is seen at this phase transition
although not a minimum. At the transition to the
paramagnetic phase no distinct structure was ob-
served, the thermal conductivity changing continu-
ously across the phase boundary. Finally, one notes
that in the low-temperature, high-field limit the ther-
mal conductivity saturates, demonstrating that effects
of magnons have become insignificant.

B. Analysis

The data were analyzed using the two-mag-
non —one-phonon scattering model developed in the
prededing paper. 8 Relaxation times for the phonons,
due to magnetic scattering, were obtained with
scattering amplitudes for the various processes ex-
pressed in terms of gradients of the exchange and an-
isotropy energies. Thermal conductivities were calcu-
lated by the conventional Deybe model for lattice
thermal conductivity,

er. ' The high-field data could be well represented by
including contributions from boundary and point de-
fect scattering only, ro ' - v/0. 45 +6.0 x 10~'cu'. The
boundary scattering length L -0.45 cm agreed to
within experimental error with that calculated from
the sample's geometry. This calculated thermal con-
ductivity is represented by the curve in Fig. 2.

To model the thermal conductivities in lower fields
where effects of magnons are important, the conven-
tional addition of reciprocal relaxation times was used
to include the magnon contributions, T Tp

'

+ r '(H). The exchange and anisotropy from zero-
field equilibrium properties' were used to evaluate
the magnon spectrum, The magnon contribution to
the relaxation rate was obtained from the model of
the preceding paper. These have the form

&mc $(e (goTiv+4 k, T/o)+-6 foTtL&]'k, 'n;njn, '

(3)

and

r~n - ~(g'(do y'A2 +e-o, y'4tz)+(g'eo'6t2 ~'

kq k~T e/T x4e
K dx

2e' v g o (e —1)
x k, (n~ +1)n2n, ' (4)

where s denotes a phonon branch and i and j the
magnon branches. k, is a magnon wave vector on the
energy-conservation surface, and the n's are occupa-
tion numbers. C processes are those in which a pho-
non decays into two final-state magnons, and R
processes are those in which the phonon scatters a
magnon from one state to another. The factors qh

and T"& are tabulated in the preceding paper. The

T is the net relaxation time for the phonons, o is the
average sound velocity, and x-geo/ks T

The nonmagnetic contributions to the relaxation
time were obtained by applying the Deybe model to
the high-field measurements. The average sound
velocity v-3.0 & 10 cm/sec was estimated from the
specific-heat measurements of Friedberg and Wassch-
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scattering amplitudes CJ, and e~ are constants arising
from modulation of isotropic exchange and single-ion
anisotropy, respectively. These were treated as
disposable parameters to model the experimental
results. It should be noted that Eqs. (3) and (4) con-
tain four relaxation channels for the phonons but
only two disposable parameters. Thus, it is not possi-
ble to vary the amplitudes of the individual channels
independently. The magnetic field dependence arises
from the occupation numbers, which are taken as an
equilibrium distribution of bosons, and equally im-

portantly from the T",
&

transformation coefficients in

the field-induced phases.
Figure 4 shows the temperature dependence of the

thermal conductivity in zero field with the T factor
of Eq. (2) divided out to faciliate the use of linear
scale. The solid curve is obtained using two-

magnon —one-phonon interactions as the sole effect
of the magnetism. The parameters 8 and 8 were
adjusted to obtain the same maximum reduction in
thermal conductivity as observed experimentally.
The fit is excellent over the whole range of tempera-
tures except near T& where renormalization of mag-
non energies becomes important. It should be em-
phasized that the temperature at which the maximum
thermal resistance occurs is determined by the mag-
non spectrum and not by the disposable coupling con-
stants. The only effect of 6 and 6 is to set the
magnitude of the reduction. Since both exchange
modulation and anisotropy modulation have the same
temperature and field dependence in the antifer-
romagnetic phase, it is not possible to determine CJ
and 6 uniquely from this fit alone; there is, in ef-
fect, only a single coupling constant in the antifer-
romagnetic phase.

To apply the two-magnon —one-phonon model to

the magnetic field dependence, it is necessary to ap-

portion the scattering between the exchange modula-
tion and anisotropy modulation. This is because of
the strong field dependence of the transformation
coefficients T",

&
in the field-induced phases. Figures

5 and 6 show the thermal conductivity as a function
of field at 0.36 and 0.49 K. The dimensionless field
variable h is defined by

h =H/HAp, H Hpp

I + (H HAp)/(Hpp HAp) HAp + H ~ Hpp

It =I +H/Hpp, Hpp & H

This is used to take account of the ferromagnetic
contributions to the exchange in MnC12 4H20 which
have not been included in the model. The dashed
curves are calculated with all the scattering attributed
to exchange modulation with 8 =1.0
(cm' K/sec')'r'. This value was determined from the
minimum in the temperature dependence of the
zero-field data. One notes that the sharp discontinui-
ty at HAF is obtained as is the general shape of the
field dependence observed in the field-induced
phases. The thermal conductivity in the spin-flop
phase rises to a maximum followed by a shallow
minimum and a gradual increase until saturation is
obtained well into the paramagnetic phase. The
model predicts a small anomaly at HFP. This was not

I 0
I
V

~~z ~

K
hl 40XI-

X
E100-

E

50
0

FIG. 4. Temperature dependence of the thermal conduc-
tivity divided by T . Curve A is the least-squares fit to the
40-kOe data (triangles). Curve 8 is a model calculation in-

cluding two-magnon —one-phonon scattering with the scatter-
ing amplitude adjusted to produce the same maximum
reduction in thermal conductivity as observed in zero field
(circles).
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FIG. 5. Magnetic field dependence of the thermal con-
ductivity at 0.36 K. The reduced field h is defined in the
text. The curve is the result of the two-magnon —one-
phonon calculation.
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FIG. 6. Magnetic field dependence of the thermal con-
ductivity at 0.49 K. The reduced field h is defined in the
text. The curve is the result of the two-magnon —one-
phonon calculation.

observed in the present experiments. However, a
sharp change in slope near H~p seen in 0.49 K data
suggests that the data points were not sufficiently
close to Ht:p to observe the minimum predicted
there. The model also predicts that the field depen-
dence in the antiferromagnetic phase should be weak-
er than observed in these experiments. This addi-
tional scattering may be due to the presence of other
relaxation channels allowed by magnetic dipole in-

teractions not included in the model or may be an
impurity effect.

Extension of the model to high temperatures is
limited by magnon renormalization whose effect on
the magnetic phase boundaries is substantial even at
0.8 K." This is also seen in the discrepancy between
the observed specific heat and that estimated from

noninteracting —spin-wave theory. Although renor-
malization precludes a successful quantitative com-
parison between theory and experiment, there is still
qualitative agreements with the expected effects of
two-magnon —one-phonon scattering.

The maximum energy of phonons that can partici-
pate in two-magnon —one-phonon processes can be
estimated from the experimental values for ex-
change and anisotropy. In the antiferromagnetic
phase this maximum energy is 4.4 K while in the
spin-flop phase it is 3.5 K just above the critical field
for this transition. At 0.85 K the phonons in the
band between 3.5 and 4.4 K are important heat car-
riers. Thus, there is a tendancy for the thermal con-
ductivity to increase on crossing the phase boundary.
For exchange modulation the model predicts a strong
minimum near the middle of the spin-flop phase in

the absence of renormalization. This is because the
increasing energy of the upper branch of magnons in-
creases the maximum energy of phonons that can be
scattered by two magnons. This increase will be lim-

ited by renormalization resulting in a less pronounced
structure. One notes in Fig. 3 that there is an inflec-
tion, but no minimum, as the spin-flop phase is
crossed at 0.85 K.

In conclusion, it has been found that the major
features at low temperatures of the thermal conduc-
tivity of MnClq 4HqO can be accounted for by intrin-
sic scattering processes. Two-magnon —one-phonon
processes appear to dominate. Earlier attempts to ac-
count for these results by invoking one-mag-
non —one-phonon processes and heat conduction by
the magnons were unsuccessful. Both the tempera-
ture and magnetic field dependence are obtained
from a simple model" of the scattering, provided the
magnetic field dependence of the transformation to
magnon variables is included. Most of the prominent
features of both can be obtained using only a single
parameter to represent exchange modulation.
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