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Lattice thermal conductivity of antiferromagnetic insulators
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The effect of two-magnon —one-phonon scattering processes on the lattice thermal conductivi-

ty of antiferromagnets is studied. Transition matrix elements are obtained by expansion in lat-

tice displacements of the exchange and anisotropy for an anisotropic Heisenberg Hamiltonian.
Relaxation times for the phonons are determined by conventional perturbation theory and lat-

tice thermal conductivities are then calculated in the Debye approximation. Results are ob-
tained in all three field-induced phases for fields parallel to the easy axis for sublattice magneti-

zation. It is found that in the spin-flop phase, the coefficients of the transformation to magnon

operators make a substantial contribution to the magnetic field dependence.

I. INTRODUCTION

The thermal conductivity of magnetic insulators
has attracted the attention of many experimenters
over the last twenty years. ' Despite this activity
there has been only moderate success in relating the
observations to microscopic models of processes of
heat conduction and thermal resistance. Qualitative-
ly, it has long been understood that magnons may af-
fect the thermal conductivity either by providing a
mechanism for transport or by providing scattering
processes to impede heat transfer by the phonons. In
many experimental studies the analysis of the results
has not proceeded beyond this qualitative stage ex-
cept to suggest which magnon-phonon processes
might be in important ones and to identify a contri-
bution of the magnons to the thermal transport. It
has been suggested also in both thermal-transport
and ultrasonic-propagation studies that magnetic
domains may provide a strong mechanism for scatter-
ing phonons. ' "'~ Several workers have attempted
to interpret the thermal conductivity in zero magnetic
field by detailed microscopic models of the magnon
contribution to the transport and/or magnon-phonon
scattering. ' ' ' ' " A much more convincing
case can be made for the validity of a proposed
model if it accounts for the magnetic field depen-
dence, as well as the temperature dependence, of the
thermal conductivity. To our knowledge this has
been achieved only for two magnetic materials, yttri-
um iron garnet [YIG (Ref. 14)) and MnFq (Refs. 22
and 23). In the first instance'4 Walton, Rives, and
Khalid were able to account for both the temperature
dependence and field dependence of the thermal con-
ductivity of a YIG crystal with a model for magnon
thermal conductivity and a resonant one-mag-
non —one-phonon interaction. While this is the most
successful representation to date of magnon effects in
the thermal conductivity, the lattice thermal conduc-

tivity of this sample was much smaller than the
boundary limit, probably as a result of macroscopic
defects introduced in the flux growth process. In the
case of MnF2 (Refs. 22 and 23 ) it has been possible
to account for the thermal conductivity without either
scattering or conduction by the magnons. The
anomalous effects were found to arise by resonant
scattering from the tunneling states of OH impuri-
ties. No successful quantitative interpretation of a
nonzero effect of magnons on the magnetic field
dependence of the thermal conductivity in an antifer-
romagnet has yet appeared.

There are several reasons for this failure, both ex-
perimental and theoretical. On the experimental side
strongly coupled impurities, such as OH in MnF2,
may mask the intrinsic effects of magnon-phonon in-
teractions or magnon heat conduction. Hartmann"
has found that the magnetic field dependence of the
thermal conductivity of RbMnF3 is controlled to a
great extent by the presence of trace concentrations
of transition-metal impurities. This has led to some
suspicion that impurities may be so dominant that it
might not be possible to observe the intrinsic effects
of magnons.

Theoretical attention has been directed largely to-
ward the effects of magnons as heat carriers" ' rath-
er than as a source of thermal resistance. ""It now
appears, however, that magnons manifest themselves
as a major source of thermal resistance at least as
often as they contribute to the heat current. To date
most theoretical models have focused on magnets
with high Curie and Neel temperatures, such as the
iron garnets and ferrites. The magnons are then ade-
quately treated at low temperatures by a small wave-
vector approximation with the magnon energies ex-
panded to terms quadratic in the wave vector. Such
an approximation breaks down for magnetic materials
that order only at cryogenic temperatures. In these,
magnons may be excited over a substantial portion of
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the Brillouin zone even at liquid-helium tempera-
tures.

Most recently experimental interest has been
directed toward antiferromagnets that order only at
cryogenic temperatures. The materials studied have
included MnF2 and RbMnF3, ' ' for which one
has detailed dispersion relations from neutron scatter-
ing and nearly exhaustive determinations of the
equilibrium magnetic properties. The motivation
here has been to study systems that are thoroughly
understood and for which reliable numerical calcula-
tions might be made including many of the detailed
properties of the materials. This program has
been impeded by the impurity problems noted
above

A second group of antiferromagnets that have re-
ceived recent experimental attention are those that
order only at liquid-helium temperatures. ' ' ' In-
terest here derives from the accessibility of the field-
induced phases with modest superconducting magnets
and the interest in critical behavior near T&. The
thermal conductivity in this group of materials is
characterized by rapid, or even apparently discontinu-
ous, changes as the phase boundaries are crossed in

applied magnetic fields. Effects of this kind were
first observed by Donaldson and Edmondss in their
original study of the thermal conductivity of antifer-
romagnets in applied fields. Here, too, samples have
shown specimen-dependent thermal conductivities,
especially those grown from high-temperature fluxes.
While this indicates that impurities also pose a prob-
lem here, the similarities among the behavior of the
compounds in this group, particularly those features
associated with changes in magnetic phase, strongly
suggest an intrinsic mechanism or mechanisms by
which the magnetic states scatter phonons. ' ' ""
There are semiquantitative indications that there is
also a contribution to the heat transport from the
rnagnons in some of these materials, "' reinforcing
the picture of intrinsic effects of the magnons as sig-
nificant.

It is important to know the effect of the intrinsic
magnon-phonon interactions upon the temperature
dependence and field dependence of the lattice ther-
mal conductivity. Otherwise, it is not possible to
separate the magnon contribution to the thermal con-
ductivity in a quantitative way when they contribute
both to scattering and transport. Neither can it be
determined whether the magnetic field effects that
are observed arise primarily from impurities or from
intrinsic magnon-phonon interactions, except in the
case of an identifiable dominant impurity whose ef-
fect on the phonons can be calculated, such as OH
in MnF2. "" It can be anticipated that intrinsic mag-
non effects might be especially important at low tern-
peratures for those antiferromagnetics that order in
the liquid-helium range. Here virtually the entire
magnon spectrum can be thermally populated, and,

as noted above, there are experimental indications
that much of the observed scattering arises from in-
strinsic mechanisms. The effect of intrinsic
magnon-phonon interactions on the lattice thermal
conductivity of materials such as these is the primary
concern of this study.

Previous studies of intrinsic magnon-phonon in-

teractions in antiferromagnets have concentrated on
the one-magnon —one-phonon resonant process. ""
It has been shown that the Hamiltonian for the mag-
nons and phonons, including this resonant interac-
tion, can be diagonalized to obtain coupled magne-
toelastic normal modes. The alteration in the normal
mode spectrum from that of uncoupled magnons and
phonons is insignificant except in a narrow band near
resonance. In this band the normal modes have
characteristics of both magnons and phonons. The
relaxation time for the coupled modes can be ob-
tained from the relaxation times for uncoupled pho-
nons and magnons as described by Kittel' for a fer-
romagnet. Unless the magnon relaxation time is very
much smaller than that for the phonons in this band,
the thermal conductivity due to the coupled modes
will not differ substantially from that of uncoupled
phonons and magnons. These interactions have been
invoked to account for the temperature dependence
of the thermal conductivity in FeC12, ' and
CoC12 6H20. ' It should be noted, also, that because
the Hamiltonian can be diagonalized including these
one-magnon —one-phonon interactions they do not
contribute to the relaxation time of the normal
modes in first-order perturbation theory.

The question of the effect of magnon-phonon
processes on the lattice thermal conductivity of a
given material may conveniently be considered in
three parts. What are the interactions responsible for
magnetic order in this material? What magnon-
phonon processes arise from the modulation of these
interactions by the lattice vibrations? Which of these
magnon-phonon processes have a significant effect
on the lattice thermal conductivity? The answer to
the first of these questions determines the band of
magnon energies available to scatter phonons and the
interactions available for modulation. The answer to
the second gives the scattering amplitudes and selec-
tion rules for the possible magnon-phonon processes,
including their dependence on temperature and mag-
netic field. The last question relates to the relative
magnitudes of the scattering amplitudes and to popu-
lation factors that allow consideration to be limited to
a few low-order processes, at least at low tempera-
tures.

In this paper a simple model of two-magnon —one-
phonon scattering is developed from a model Hamil-
tonian commonly used to describe the static prop-
erties of antiferromagnets, especially in the field-
induced phases. The interaction responsible for the
ordered magnetic state in this model system are iso-
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tropic exchange, Ising-like anisotropic exchange,
uniaxial single-ion anisotropy, and the Zeeman in-
teraction with an applied field. The motivation for
studying this particular model is threefold. First, it is
one of the simplest Hamiltonians exhibiting field-
induced phase transitions. Second, it has frequently
been used by experimentalists to interpret measure-
ments of the static properties of antiferromagnets.
Thus, one has access to a parameterization of the
magnetic interactions in such materials as
MnC12 4H20, GdVO4, and CoC12 6H20 independent
of any measurements of thermal conductivity. Final-

ly, the transformations to magnon operators are
known, making it possible to follow the scattering
amplitudes of the magnon-phonon interactions from
one phase to another. The scattering amplitudes and
phonon relaxation times for these processes have
been obtained without recourse to the long-wave-

length approximation for the magnons. This permits
the inclusion of the effects of the finite extent of the
magnon energy bands. The energy-conservation sur-
face in reciprocal space has been obtained for these
processes in the limit that the sound velocity is much
greater than the magnon group velocities. This ap-
proximation is appropriate to magnets ordering only
at liquid-helium temperatures. For such materials
the sound velocity is typically 10'—10' times larger
than that of the magnons. The phonon relaxation
times are related to the lattice thermal conductivity
via the conventional Debye model. 3 Results are ob-
tained in the antiferromagnetic phase and in the two
field-induced phases for fields applied along the easy
axis for sublattice magnetization. Methods of distin-
guishing experimentally between these the effects of
these two-magnon —one-phonon processes and those
of other magnon-phonon processes are discussed.

The model is applied in the following paper"
(hereafter referred to as Paper II) to the analysis of
the thermal conductivity of MnC12 4H20, a material
in which thermal resistance has previously been
shown to be the dominant effect of the magnons. '

is considered. 0. and P are lattice sites on the a and

p sublattices, respectively; and the sum over (a, p) is
over nearest-neighbor pairs. Ising-like exchange an-
isotropy has been included in the K term, and the L
terms represent single-ion anisotropy. The magnetic
field 0 is applied parallel to the Z axis which is the
easy axis for sublattice magnetization. The equilibri-
um properties for such a system have been treated in
the spin-wave approximation by several authors. " '
It is found that at sufficiently low temperatures a
transition occurs to a spin-flop phase as the field is
increased. At still higher fields a second transition to
an aligned paramagnetic state occurs.

The phonons are described in the harmonic ap-
proximation by

f 1

Xp ——$ta)r, (c„c„+—, )

where c, , and c~, are, respectively, creation and an-
nihilation operators for phonons with wave vectors q
and polarization s.

It is the interactions between the phonons and the
magnons that is of interest here. Because of the
dependence of the exchange and anisotropy parame-
ters of the spin Hamiltonian on the relative positions
of the magnetic ions and their surroundings, the en-
ergy of a given spin configuration is modulated by
the lattice vibrations. This gives rise to interactions
between the phonons and magnons. These interac-
tions are introduced into the model by letting
a=ao+u and P=PO+u&, where ao and Po are the
equilibrium positions of the ions and u and u& are
their displacements from equilibrium. The spin
Hamiltonian can be expanded in the displacements as

3'.s =3'.s +X

Here Xs is the Hamiltonian with the exchange and
anisotropies evaluated at equilibrium. At low tem-
peratures one-phonon processes will dominate; thus,
only first-order terms in the displacements need be
retained in the interaction Hamiltonian X. Then

II ~ METHOD

A uniaxial antiferromagnet described by the aniso-
tropic Heisenberg Hamiltonian

X, = X J(a —P)S(a) S(P)
&,e)

+ X )t( -—p )S,( -)S,( p )
& e)

—X L ( a )Sz( a ) —$L ( p )Sz ( p )
a

—
t H $Sz( a ) + g Sz ( P )

X'= X J' (u —up)S(a) S(p)
&,o)

+ X k '
( u. —ua )Sz ( a ) Sz( P )

+ X XL„, ( u. —u„„)Sz ( a )
a y,x

+ $ XL„„(ua —u„„)Sz'( p )
P y,x

(4)

where y denotes the cell and x the basis vector of
each ion, nonmagnetic as well as magnetic; J and K
are gradients with respect to u, evaluated at equili-
brium; and L~„ is the gradient with respect to u„„,
evaluated at equilibrium. The magnon-phonon in-
teractions are obtained by transforming the spin
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operators into magnon variables by the Holstein-
Primakoff transformations ~ that diagonalize X~
and expressing the lattice displacements in phonon
variables as

u„„= i X—e, (t/2Nm, u&„)'~'
q.s

x (c,~, —c «,, ) exp(iq y )

R- P ROCESSE S

N is the number of chemical unit cells, eq is a unit
vector in the direction of the displacement of an ion
at basis vector x due to the ( q, s ) phonon, and m, is

the mass of this ion.
In terms of the magnon variables the equilibrium

Hamiltonian takes the form

—WN'

C- PROCESSES

Xs X (t ~1k blk blk +t 2kb2kb2k )
k

(6)

Since terms bilinear in the magnon and phonon
operators can be removed by the simultaneous diago-
nalization discussed in the Introduction, ~ '" the
lowest-order contribution from X to the phonon re-
laxation time comes from the three-boson (two-
magnon —one-phonon) processes shown schematically
in Fig. 1. These are designated as conversion

FIG. 1. Classes of two-magnon —one-phonon decay
modes. For magnets with magnon group velocity smaller
than the second velocity, the decay channels for R processes
with both magnons on the same branch are forbidden.

processes (C processes ) and radiation processes (R
processes). The contribution from these to the in-

teraction Hamiltonian is

I
'!

X3 =X xx[C&(q, k, k')b;kbjk +Cjj (q k k )b ~ $pk+R,&(q, k, k )b&kbjk j(cq C —k )
qs kk' ij

where i and j go over the magnon branches. The requirement that scattering processes satisfy conservation of
energy and conservation of wave vector up to a reciprocal-lattice vector restricts the contribution of these terms
to the phonon relaxation time. When the group velocity of the magnons is smaller than that of the phonons, R
processes cannot satisfy these selection rules unless the two magnons lie on different branches of the excitation
spectrum. This is similar to the well known restriction on three-phonon processes for longitudinal modes. 4' This
restriction will be true for most materials in which the high-field phases are experimentally accessible. Additional
selection rules arise from the vanishing of the C+ and R,& matrix elements in the various phases. The'se selec-
tion rules and the relation of C,& and R,& to the gradients J, K, L, and to the transformations to magnon
operators are obtained in Sec. III.

The relaxation times associated with these processes are obtained by conventional time-dependent perturbation
theory as

and

TR (qs) =2rrt '
Q IR»( q "—q k )I'(~t( k —q ) +i)az( k )~. '( q )~(~qs+~lk —q 2k)
k

r, '(q, s)-2et 'X Ic~q( q, q —k, k )I2nt(q —k )n;( k )n, '( q)8(~, , —~k k
—~k)

k

(8)

where n;( k ) is the occupation number on the ith
magnon branch.

The sum over k in these expressions is nonzero
only over the energy conservation surface is recipro-
cal space. A knowledge of the magnon spectrum is
required to determine this surface fully. This spec-
trum is known for the model considered
here, ' ~ and an approximate treatment of it to

obtain the energy-conservation surface is considered
in Sec. IV.

A full expansion of the interaction Hamiltonian 3C

also contains three-magnon —and four-magnon —one-
phonon terms. In the temperature range where the
spin-wave approximation for the magnon energies is
valid without renormalization, these higher-order
terms in 3'. should be negligible compared to X3
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since it is similar terms trilinear and quadralinear in

the magnon operators that lead to renormalization by

magnon-magnon interactions. In both cases this
neglect is justified by the smallness of the magnon
population. By similar reasoning processes involving
more than one phonon have been neglected in this
low-temperature approximation.

Before proceeding it should be noted again that the
form of3C, has been chosen for simplicity rather than
completeness. Real magnetic materials will have
magnetic dipole forces, and perhaps antisymmetric
exchange, " in addition to the isotropic exchange
and Ising-like anisotropy considered here. Even if
these are small enough in the equilibrium configura-
tion of the lattice that 3C, is an adequate parameteri-
zation of the spin Hamiltonian to account for the
static properties of the crystal, it is not always true
that they must be small in the lower symmetry in-

duced by the lattice vibrations. There may also be
other nonaxial contributions to the single-ion aniso-
tropy. Although these may make substantial contri-
butions to 3C' in specific materials, the exchange in-

teractions included in this model are ubiquitous and

very sensitive to interionic separation. Thus, they
can be expected to be among the dominant sources
of magnon-phonon interaction most frequently en-
countered. Although it is explicitly supposed that
other sources of magnon-phonon interaction are not
present for the model system considered here, the
method can be applied to systems with much more
complex interactions by calculating the coefficients of
the transformation to magnon operators numerical-

44

and

S+( a ) =(2S) f (S)a

S ( a ) = (2S)' 'a f ( S)

S,(a)=S —a a

a1k = (2/N) 'i' g aexp( i k—a )

a2„= (2/N)' Xaaexp( i k p )—
atk =(2/N)'i2 Xa exp(i k p }

azk ——(2/N)' 2 ga& exp(ik p )
P

and retaining only terms quadratic in the a' s,

~s =SJz Xy( k )(a1„a2 k+atkaf „)
k

+ (SJz + SKz +2SL) X (atkatk+ azkazk)
k

S+( I8) =(2S)' 'a f (S)

S ( p ) =(2S)'i'fa(S)ait,

S,( P ) = —S +a&a&,

where

f a(S) = (1 —a aa a/2S}'i2

If magnon-magnon interactions are ignored, this
factor can be truncated to f &( S) = 1. Applying the
Fourier transformations

III. MATRIX ELEMENTS AND SELECTION RULES

+AH X (atka1k a2ka2k }
k

(1O)

In this section the procedure for obtaining the
dispersion relations for the magnons" is outlined
to establish a notation for the transformation to mag-

non operators. Both the eigenvalues of X, and the
matrix elements of the diagonalizing transformations
are exhibited. These are used to calculate the matrix
elements C+ and 8+ of the two-magnon —one-
phonon processes of X3. By careful attention to the
source of the interactions and the transformations to
magnon operators these scattering amplitudes can be
followed as a function of applied field. They are used
in Sec. IV to obtain numerical results for the thermal
conductivity.

A. Antiferromagnetic phase

The Holstein-Primakoff transforrnations for the an-

tiferromagnetic phase are well known. '~ Spin devi-

ation operators are introduced for each sublattice,

Here z is the number of nearest-neighbor magnetic
ions and

y( k ) =z ' Xexp( ik p-)
P

where p denotes the relative position vectors of the
nearest-neighbor magnetic ions. This quadratic Ham-

iltonian is diagonalized by the transformation to mag-

non operators

b1k = i1( k ) a jk + i2( k )a,

b2k = l&( k )a)k+ l2( k )a2

b)k = l)( —1 )a2k+ l2( —k )a~

b2k = l)( —k )a]k + l2( —k ) a2 -k

Letting A =SJz+SK 2zS+L and dk=SJzy(k), the

magnon frequencies are

ifCt11 2k=(A dk) +ikH
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and the transformation coefficients are

l1( k ) =cosh(Xk), I2( k ) =sinh(Xk)

with

tanh(X„) =(A —(A' —dk')'"j/dk

One notes that these transformation coefficients are
independent of magnetic field.

The application of these transformations to the in-
teraction terms X is straightforward. The scattering
amplitude for one-magnon —one-phonon processes
vanishes in this phase as do the R, ~2 matrix elements.
These may be seen physically as a result of angular

momentum conservation in this model since each
magnon carries a quantum of spin-angular momen-
tum. For similar reasons the only nonvanishing ma-
trix elements for C processes are the C, ~2 terms.
These can be conveniently expressed as a sum of
contributions from the modulation of isotropic ex-
change, anisotropic exchange, and single-ion aniso-
tropy,

C12(q, k, k ) =C12( q, k, k ) +C 12( q, k, k )

+C~2(q, k, k )

In the long-wavelength limit for the phonons these
have the form

C 12 ( q, k, k' ) =Aq, (l1( k )l2( k )@p( q ) —
2

[Iy( k' ) I1( —k ) +l2( k' )I2( —k )] kg( q ) j5( q —k —k ), (13a)

C,"12 ( q, k, k ) = Ap«, ( k ) I, ( k ) $P( q ), (13b)

C,12( q, k, k') =Ap, ( k )I2( k )QP(q ), (13c)

where 5( q —k —k ) is a Kronecker delta and

A„=(8SA )'~'J e,N '~'

A,",= (SS'li )' 'K ep, N ' '

Ap~g=(2S'8)' 'e
g XL,gN ' '

(i4)

(is)

dk(q) =(p1,,, ) 'I'Xq pexp(ik p )
P

For R processes the only nonvanishing matrix ele-
ments are R, ~~ and R,22. For the materials of present
interest these cannot conserve energy and wave vec-
tor. Thus, the only three-boson processes that con-
tribute to the relaxation of long-wavelength phonons
in the antiferromagnetic phase are those in which a
phonon decays into or forms from a pair of magnons,
one from each of the two branches.

B. Spin-Aop phase

The equilibrium Hamiltonian for the spin-flop
phase has been studied by Wang and Callen' and by
Feder and Pytee. ' Because the spins on the two sub-
lattices make angles 8(H) and —8(H) with the ap-
plied field, the transformations to diagonalize X are
somewhat more complicated than in the antifer-
romagnetic phase.

A coordinate system rotated about the x axis by 8
for the e sublattice and by —8 for the P sublattice is
introduced. With the spin operators in the rotated

coordinate system denoted by a tilde,

S«( a ) = Sz( n )

Sy( a ) =cosHSy( a ) —sinHSz( n )

Sz( a ) =smHSy( u ) +cosHSz( a )

s (p)=s&(p),
Sy( P ) =cosH Sy( P ) +sinH Sz( P )

Sz( P ) = —sinHSy( P ) +cosHSz( P )

and the Holstein-Primakoff transformations are ap-
plied to the spin components in the rotated coordi-
nates.

The quadratic Hamiltonian in the Fourier
transforms of the spin-deviation operators is

+S2 ~ $ $ ajkaik
k J

+ —,'8 Xx(a&kai k+aika& „)
k J

+ Xdk( 1k 2 —k+ 1ka2-k)
k

+ X ek( a1ka2k + a1ka2k )t
k

where

A = —SJz —SEz +2SL
+2 sin'8(SJz + SKz/2 —3SL/2) + p, H cosH

8 =LS sin'8

dk =Sz(J+K/2) sin Hy( k )

ek =SJzy(k) —dk

and the angle 8 is determined by

cosH = IkH/(2SJz + SKz —2SL)
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at equilibrium. In the following 8 is taken to be fixed

by this constraint.
The quadratic Hamiltonian is diagonalized by the

transformations

QJJ[ X [ Vjj( k )b'k + Wj(( k )b; k]

and

jk=x[~j» (k)b; „+Vj; (k)b,.„]

giving the magnon energies

lf ~~k = [(A +8 —dq —ek)(A —8 +dk —ek)l' (18)

resonant conversion process, if it lies in the same
band. Consideration of magnon relaxation times and

heat conduction by the magnons is beyond the scope
of this paper; the effect of the resonant conversion
processes is deferred to a separate publication, except
to note that they may affect the thermal conductivity
in cases of fast magnon relaxation.

The leading contribution to the phonon relaxation
time is still the two-magnon —one-phonon scattering
described by X3, Eq. ('7). In the spin-flop phase all

the C and R processes that can satisfy energy and
wave-vector conservation survive the transformation
to magnon operators.

The matrix elements are again expressible as a sum

and

& ~p„= [(A +8 + dk + ek )( A —8 —dk + ek )] ' (19)

Defining '

l~j( k ) =[(A —8+dk —ek)/jlco(k]'

and

and

C„j(q, k, k ) = X C~j(q, k, k )
X JKL

R„j(q, k, k') =XR„j(q,k, k )
x

I2f( k ) =[(A —8 —dk+ek)/a»»p„]'"

the transformation coefficients are

V()( k ) =2 [l)f( k ) + l)f'( k )] = —V2)( k ), (20)

V)g( k ) =2 ' '[12j( k ) +12j( k )] = V22( K ), (21)

W)(( —k ) =2 ' '[/)j( k ) —1))( k )] = —W2(( —k ),
(22)

8 )2( —k ) =2 [I2f( k ) —l2f'( k )] = H 22( —k )
(23)

Note that these depend on applied field, unlike those
in the lower phase.

As before, the magnon-phonon interactions are ob-
tained by applying these transformations to the in-

teraction Hamiltonian Hj, Eq. (4). In the spin-flop

phase, one obtains a term bilinear in the magnon and

phonon operators as well as one linear in the pho-
nons and quadratic in the magnons. This extra term
allows resonant magnon-phonon conversion. As noted
above, such terms may be removed by simultaneous
diagonalization of the magnon and phonon Ham-

iltonians, leading to coupled rnagnetoelastic
modes. ' " ' The alteration in the normal mode

spectrum is insignificant except in a narrow band
near resonance. In this band the modes have charac-
teristics of both magnons and phonons. Unless the
magnon relaxation time is much smaller than that for
phonons in this band, the thermal conductivity due
to the coupled modes will not substantially differ
from that of uncoupled phonons and magnons. Also,
the two-magnon-one-phonon processes act over a

broad band of frequencies and tend to mask the

The contributions from the individual interactions
take the form

C&( q, k, k ) =A„[$0(q ) T„j( k, k )

+f-k ( q ) T2jj( k, k ' )]

xh(q —k —k ) (24)

and

R ( q, k, k ) = A;,.[yo ( q ) T3,j( k, k )

+$„(q )T4,,(k, k )]

x&(q —k+k ) (25)

The coefficients A~, and $k( q ) are defined as be-
fore by Eqs. (14)—(17). The Txj factors are bilinear
combinations of the coefficients of the transforma-
tions to magnon operators. These are more complex
than the corresponding factors in the antiferromag-
netic phase and are tabulated in the Appendix.

One finds that for modulation of single-ion aniso-

tropy the T~,j and T3j'factors vanish if i =j. Thus,
this interaction does not couple phonons to pairs of
rnagnons on the same branch. However, such
processes are possible for exchange modulation. The
simple connection between angular momentum con-
servation and selection rules has been lost because
the axes of quantization for the two sublattices are
not coincident with the z axis about which spin angu-

lar momentum is conserved. Now the magnon
operators create and destroy spin deviations on both
sublattices. As was the case in the lower phase, the

R, ~~ and R,22 terms cannot produce first-order
processes that conserve energy and wave vector.
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C. Paramagnetic phase

In the paramagnetic phase the two sublattices can
no longer be distinguished by the direction of sublat-
tice magnetization. The magnetic unit cell is then the
same as the chemical unit cell. If this unit cell con-
tains only a single magnetic ion, the spin Hamiltonian
is diagonal in the aq operators. Thus, the only pos-
sible two-magnon —one-phonon processes are R
processes. These are forbidden by energy and wave-

vector conservation for low-group-velocity magnons
since there is only a single-magnon branch. For ma-

terials with magnon group velocities greater than
those for phonons, the paramagnetic phase at low

temperatures occurs at inaccessibly high magnetic
fields. Thus, in this case no two-magnon —one-
phonon processes occur for materials of experimental
interest.

If each chemical cell contains magnetic ions on
both the a and P sublattices, a different situation oc-
curs. Two distinct magnon branches remain, and the
spin Hamiltonian is that for the spin-flop phase with
8-0. The C„& matrix elements vanish; the R, 12 ma-
trix elements are given by Eq. (25). Thus, the
scattering changes continuously across the upper
phase boundary.

IV. NUMERICAL RESULTS FOR
MAGNETS WITH LOW T~

A. Approximate evaluation of the relaxation times.

In the case of present interest the group velocity of
the phonons is much greater than that for the mag-
nons. If the spatial anisotropy of the dispersion rela-
tions is neglected, the energy conservation surfaces in
reciprocal space will be approximately spherical over
most of the Brillouin zone (k )) q ). The sum over
k in Eqs. (8) and (9) may be approximated as an in-

tegral over a sphere. The energy 8 function for R
processes takes the form

8( ~,,s+ ~t a-, —~2m) = 8( k —k, )/v',

where k, is the value of k that conserves energy and

q) vz(k) I

Thus, from Eq. (8)

rn' =( V/v'2rrt ) [R,2t(q, k, .k, —q) (

&& k, ( nt +1)n2n, '

where Vis the sample volume. Similar expressions
are easily obtained for the C processes.

Because of the highly dispersive nature of the mag-
nons and the fact that the phonons interact with the
whole magnon band, a simple algebraic expression
for the relaxation times is not readily obtained. Con-

sequently, these have been evaluated numerically to
obtain thermal conductivities.

Because the gradients of the exchange and aniso-
tropy are not generally well known, it is convenient
to combine these and the other constants in the ma-
trix elements into a single parameter by defining

Ct =A, V/(2 hvt ) 'i

gK gK V/(2 tt2)l/2

8 =A V/(2rrg')'~'

Each scattering amplitude 8~ may then be treated as
a parameter to compare the model with experiment.

B. Calculation of thermal conductivities

Thermal conductivities have been calculated using
the conventional Debye approximation, '

e/T
K-(ka/2n'v)(kaT/g )' rx'e'(e" —1) 'dx

0

where x =t cu„/ks T, and the other symbols have
their usual meaning. In this approximation the dis-
tinction between phonon polarizations is neglected,
and v is an average velocity of sound. The relaxation
time ~ is the effective relaxation time due to all pho-
non scattering processes. This can be obtained from
the relaxation times for both magnetic and nonrnag-
netic scattering by the usual addition of reciprocal re-
laxation times

-1 ~ -1

J

where the sum is over different scattering processes.
In the results presented below, the only nonmagnetic
scattering is that due to specimen boundaries. 4' The
velocity of sound has been taken as 3 & 10 cm/sec
and the boundary-scattering length as 0.3 cm. It has
been assumed that the Debye temperature is high
enough that the upper limit of the integral may be
taken as infinite. These approximations should hold
satisfactorily in high quality crystals at temperatures
below 1 K.

Figure 2 shows the temperature dependence of the
thermal conductivity in the absence of a field for
several values of exchange and anisotropy typical of
magnets with Neel points in the liquid-helium range
of temperatures. The T3 factor in Eq. {26) has been
divided out to display the relaxation effects more
prominently. One notes that, as expected, the tem-
perature of maximum scattering shifts with the mag-
non energy band. The effect of varying the coupling
between the magnons and phonons is shown in Fig. 3
for exchange modulation. Here the temperature of
maximum scattering is seen to be rather insensitive
to the coupling strength although the magnitude of
the effect changes greatly. This behavior is also
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FIG. 2. Thermal conductivity calculated as a function of
temperature in zero field for several values of exchange and
anisotropy. Curve A: J =0.126 K, K =0, L -0.02 K.
Curve 8: J =0.126 K, K =0, L =0.059 K. Curve C:
J 0.916 K, K =0, L =0.059 K, Curve D: J 0.275 K,
K =0, L =0.059 K. In each case the coordination number z

has been taken as six; and the scattering amplitudes were
taken as CJ=1.0(cm K/sec )', CI( =0, and CL-0. The
dashed line is the boundary scattering limit.

found for modulation of the anisotropies.
The physical basis for this behavior can readily be

understood from the shape of the Debye distribution
of heat carriers and the selection rules for magnon-
phonon interactions. The Debye distribution,
x'e"( e"—1 ) ', is peaked at energies near 4ka T
Roughly two thirds of the thermal energy is trans-
ported by phonons in the band between 2k' T and
6k&T. In zero field the two-magnon branches are de-
generate. Selection rules for C processes dictate that
these two-magnon —one-phonon processes can scatter
only those phonons that lie in the band between
twice the smallest magnon energy and twice the larg-
est magnon energy. For the model used here these
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FIG. 3. Thermal conductivity calculated as a function of
temperature in zero field for several values of the scattering
amplitude. Curve A: CJ 1.0(cm K/sec )'l' Curve B:
CJ 0.25(cm K/sec ) . Curve C: CJ-0.10(cm K/sec )'

In each case J 0.126 K; K 0; L 0.059 K; and z 6.

extremes of magnon energy occur at zone center and
on the zone boundary, respectively. No R processes
are possible if the sound velocity is larger than the
group velocities of the magnons. Thus, one expects
the maximum effect of two-magnon —one-phonon
scattering to occur at a temperature near Tt - e,„/4ka
where ~,„ is the mean energy of the magnon band. It
is important to note that the selection rules used here
derive solely from conservation of energy. Thus, the

argument holds independent of the mechanism by
which the magnons and phonons interact as long as C
processes dominate.

In the numerical examples presented in Figs. 2 and
3 the magnon energies calculated from Eq. (12) give
a band of phonons scattered by C processes that ex-
tends from approximately 3k~ T to Sk~ T at the tem-
perature of maximun scattering in each case.

It is of interest to compare the effect expected
from the resonant magnon-phonon conversion pro-
cess. For systems ordering only at liquid-helium
temperatures the resonance is near zone center.
Thus, the maximum effect of the resonant conver-
sion process should occur near Tt ep/4ka where ap

is the energy of the zone-center magnon. It should
be possible, therefore, to distinguish experimentally
whether the resonant conversion (one-magnon —one-
phonon) process or C processes dominate in such
materials. Similar arguments can also be made for
higher-order magnon-phonon interactions.

At the highest temperatures the dominant contri-
bution to the scattering comes from the highest-
energy magnons. Magnon-magnon interactions,
which have not been included in this model, will

lower the magnon energies as the Neel point is ap-
proached. Thus, the model tends to overestimate
the effect of the two-magnon —one-phonon processes
near T&.

In Figs. 4 and 5 the magnetic field dependence of
the thermal conductivity is displayed for two
representative temperatures assuming that modula-
tion of a single magnetic interaction dominates the
scattering. The coupling coefficients have been
chosen to give equal thermal conductivities in zero
field. Several features are apparent. The thermal
conductivity has only a weak dependence on field in
the antiferromagnetic phase. It is highly structured in
the spin-flop phase with the details of the structure
determined by the particular magnetic interaction be-
ing modulated. For exchange modulation the scatter-
ing persists into the paramagnetic phase if there is
more than one magnetic ion per chemical cell. The
most prominent feature is the discontinuity seen at
the antiferromagnetic to spin-flop phase boundary at
0.5 K. This structure is almost absent at 0.85 K for
the exchange and anisotropy used in the calculation.

These features result from the magnon energies
and their relation to the Debye distribution and from
the changes in selection rules as the system passes
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FIG. 4. Comparison of the magnetic field dependence of
the thermal conductivity calculated for the three types of
magnon-phonon coupling. The solid curve is isotropic ex-
change modulation, QJ =1.0(cm K/sec )'; the dashed
curve is anisotropic exchange modulation,

+& =15.0(cm K/sec )'~, the dotted curve is single-ion an-

isotropy modulation, CL =55.0 (cm K/sec )' . The values

of the scattering amplitudes have been chosen to give the
same thermal conductivity in the antiferromagnetic phase.
The phase boundary between the antiferromagnetic and the
spin-flop phases is indicated by HAP., that between the spin-

flop and paramagnetic phases, by HFP.
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FIG. 5. Comparison of the magnetic field dependence of
the thermal conductivity calculated for the three types of
magnon-phonon coupling. The solid curve is isotropic ex-
change modulation, CJ =1.0(cm K/sec2)'; the dashed
curve is anisotropic modulation, 6& =15.0(cm K/sec )'
the dotted curve is single-ion anisotropy modulation,

gL =55.0(cm K/sec )' . The values of the scattering am-

plitudes have been chosen to give the same thermal conduc-
tivity in the antiferromagnetic phase. The phase boundaries
are indicated by H„F and HFp.

from one phase to another. In the antiferromagnetic
phase the effect of a field parallel to the easy axis is
to raise the energy of all magnons on one branch by
the Zeeman energy and to lo~er all those on the oth-
er branch by the same amount. Selection rules prohi-
bit all two-magnon —one-phonon processes except
those C processes involving one magnon from each
branch. Thus, the band of phonons that can interact
with the magnons is not changed by the field as long
as the system remains in the antiferromagnetic phase.
The only source of magnetic field dependence is then
the scattering amplitude C, ~2 and the magnon occupa-
tion numbers appearing in Eq. (9). It was shown in
Sec. III A that the C, ~2 scattering amplitudes are in-
dependent of field. The entire field-dependence
results from the product of occupation numbers for
the two-magnon branches. Since one branch is raised
in energy by the same amount that the other is
lowered, the field dependence in these two occupa-
tion numbers tends to cancel; this cancellation would
be exact if the occupation number were a Boltzmann
factor rather than a Bose-Einstein function. Hence,
only a weak field dependence results with its main ef-

feet occurring as the energy of magnons on the lower
branch becomes small compared to k~ T.

%'ith so little intrinsic field dependence it is easy to
see that impurity effects might dominate the magnet-
ic field dependence in this phase. " It can also be
seen that if the magnons contributed substantially to
the heat current then the proportionality to the mag-
non occupation number expected for such a contribu-
tion" should be easily observable. It should likewise
be noted that contributions from magnon-phonon in-
teractions that do not conserve spin angular momen-
tum would have a strong dependence on field and
thus are readily distinguishable from those processes
allowed by the selection rules of the present model.

At the phase transition to the spin-flop phase both
the magnon energies and the selection rules change
discontinuously. One important effect is that the
band of phonons that can participate in two-

magnon —one-phonon processes no longer has a finite
lower limit. For the numerical examples in Figs. 4
and 5 this band of phonons extends from 0 to 3.50 K
in contrast to its location between 2.19 and 4.37 K in
the antiferromagnetic phase. At 0.5 K the additional
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phonons scattered by the magnons includes important
heat carriers. This produces the sharp drop in ther-
mal conductivity as the system passes into the spin-
flop phase. At 0.85 K these phonons are not impor-
tant carriers, and there is little change as the phase
boundary is crossed. At still higher temperatures the
thermal conductivity of this model system rises on
passing into the spin-flop phase. This is because the
maximum magnon energy is smaller here than was
the case in the antiferromagnetic phase. This has not
been presented in a figure since the effects of
magnon-magnon interactions and higher-order
magnon-phonon interactions can be expected at these
higher temperatures to alter the detailed results ob-
tained in the two-magnon —one-phonon approxima-
tion used here. Nevertheless, this qualitative
behavior could be expected if two-magnon —one-
phonon scattering were important.

As the field is increased within the spin-flop phase
one of the magnon branches increases its energy,
especially near zone center, while the other branch
remains at zero energy at zone center and changes
only slightly at other wave vectors. The field depen-
dence of the thermal conductivity arises from the
magnon occupation numbers, from the increased
width of the band of phonons that undergo two-
rnagnon —one-phonon scattering, and from the field
dependence of the transformations to magnon opera-
tors. At sufficiently low temperatures the increased
width of the band of scattered phonons will be unim-
portant compared to the exponential variation in the
occupation numbers. This is the case in the numeri-
cal example shown in Fig. 4. Since the effect of the
occupation numbers is to decrease the scattering
monotonically as the field is increased, the inflections
in the thermal conductivity are seen to result from
the field dependence of the transformations. The
differences between the scattering induced by modu-
lation of isotropic exchange, Ising exchange, and
single-ion anisotropy arise from the different combi-
nations of transformation coefficients that enter their
scattering amplitudes. Thus, one sees that it is
essential to know what combinations of spin opera-
tors occur in the interaction coupling the magnons
and phonons and to carry out the details of the
transformation to magnon operators. Otherwise, im-
portant contributions to the field dependence will be
neglected.

At the higher temperature represented in Fig. 5 the
upper limit of the band of phonons that participate in
two-magnon —one-phonon processes lies near the
peak in the Debye distribution. The increase in this
upper limit as the higher-magnon branch is raised in
energy by the magnetic field now can have a signifi-
cant effect on the lattice thermal conductivity. This
is responsible for the prominent dip found in the
rniddle of the spin-flop phase for exchange modula-
tion. The recovery of the thermal conductivity as the

upper phase boundary is approached results from the
vanishing of the scattering amplitudes for C
processes. This structure is less prominent for modu-
lation of single-ion anisotropy as this mechanism
does not couple phonons to pairs of magnons on the
same branch, and hence the band of interacting pho-
nons broadens more slowly as the field increases.

If the broadening of the band of interacting pho-
nons is a major source of the increased thermal resis-
tance, then the renormalization of the magnons to
lower energies by magnon-magnon interactions will

substantially alter the field dependence of the thermal
conductivity. This effect can be taken into account
quantitatively only if experimental determinations of
the temperature dependence of the magnon energies
are available. When these are not available, the tem-
perature above which magnon renormalization be-
comes significant can be estimated from the ternpera-
ture dependence of the magnetic phase boun-
daries' or from the range of temperature over
which noninteracting spin-wave theory can account
for equilibrium properties such as the heat capacity.
No attempt has been made here to include magnon
renormalization effects because of the lack of agree-
ment between theory' ' and experiment for the
temperature dependence of the magnetic phase boun-
daries.

The dip occurring at the upper phase boundary for
exchange modulation is worthy of separate note.
When observed experimentally, such structures have
usually been attributed to critical fluctuations at this
second-order phase transition. "' Here it is found
that two-magnon —one-phonon scattering can produce
such a structure so that the invocation of a separate
mechanism to account for such a dip may be un-
necessary.

As noted earlier there is no two-magnon —one-
phonon scattering in the paramagnetic phase if there
is only one magnetic ion per chemical cell. In this
case the thermal conductivity is independent of field
in the paramagnetic phase except for the possible ef-
fect of four-magnon-one-phonon processes which
can arise in this model but have not been treated
here. If two-magnon —one-phonon scattering due to
exchange modulation is the dominant process in the
spin-flop phase, the thermal conductivity will increase
discontinuously at this phase transition.

The numerical results for the paramagnetic phase
are shown for more than one magnetic ion per cell in

Figs. 4 and 5. Here the thermal conductivity varies
continuously across the phase boundary. This is be-
cause the two-magnon branches are still distinct and
R processes are possible. The field dependence in

this phase arises from the exponential variation of
the magnon occupation numbers. Note that at suffi-
ciently high fields the magnon-phonon scattering is
negligible, making possible the assessment of the ef-
fect of nonmagnetic scattering mechanisms.
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Although the existing experimental results are
complicated by effects of impurities and heat conduc-
tion by the magnons, it is possible to recognize many
of the more prominent features of the predictions of
this model in the data on CoC1~. 6HqO,
MnC1~ 4HqO, and GdVO4, " three antiferromagnets
that have been studied into the field-induced phases.
Each of these exhibits a weak field dependence in the
antiferromagnetic phase with a strong reduction in

the thermal conductivity on crossing the phase boun-
dary to the spin-flop phase, an exception to this being
the features at the lowest temperatures in GdVO4.
These were interpreted" as arising from a magnon
heat current. In MnClq 4H&O, where there seem to
be little heat transport by the magnons, and above
0,25 K in GdVO4, the thermal conductivity in the
spin-flop phase exhibits the inflections predicted by

the present model. As these features differ substan-
tially from those expected for the one-magnon —one-
phonon resonant conversion process, particularly as
regards the relative magnitude of the thermal con-
ductivity in the two phases, it seems likely that two-

magnon —one-phonon processes are more important
than resonant conversion in producing the observed
field dependence. The available data do not entirely
exclude the possibility that higher order processes may
be also significant at some temperatures and fields.

The second velocities in MnFq are larger than the
group velocities of the magnons. " The selection
rules found here are thus applicable, even though the
technique of numerical integration over the energy-
conservation surface fails because all the excitation
velocities are comparable. Sanders and %'alton

have successfully accounted for the thermal conduc-
tivity of MnF& in the antiferromagnetic phase without
any scattering or heat conduction by the magnons.
This observation is consistent with the present model
for the scattering. The lowest magnon energy is
12.54 K in MnFt (Ref. 50); thus, the lowest-energy
phonon that can be scattered is at 25.08 K. This

lower limit is independent of field. At temperatures
of 4 K and below this phonon energy is greater than
6k' T. Hence, the phonons that could be scattered
carry less than 20% of the heat. Moreover, the mag-
nons available for scattering have only small wave
vectors. The prediction of this model as applied to
MnF~ is that the intrinsic magnon-phonon scattering
should be weak and independent of field without re-
gard to the magnitude of the coupling constant for
two-magnon —one-phonon processes. It can be ar-

gued with some confidence that higher-order
processes should be small because of the small popu-
lation of magnons at these temperatures.

V. SUMMARY

A simple model of the effect of two-magnon-one-
phonon scattering on the lattice thermal conductivity
of antiferromagnets has been presented. It has been
shown that in the spin-flop phase important terms in

the field dependence arise from the coefficients of
the transformation to magnon variables. Conse-
quently, in this phase the symmetry of the spin
operators in the magnon-phonon coupling has a
strong influence on the intrinsic field dependence. In
the antiferromagnetic phase there is a much weaker
field dependence. It is found to be identical for
modulation of exchange or anisotropy, up to the

magnitude of the coupling coefficient. The weakness
of the intrinsic field dependence probably accounts
for the sensitivity of the field dependence to impurity
effects at low fields.

The results of this model are in qualitative agree-
ment with measurements on CoCl~ 6H~O, '
MnC1~ 4HqO, GdVO4, " and MnF~. "

In the following paper a quantitative comparison is

made for MnClq 4HqO, an antiferromagnet in which
there seems to be little heat conduction by the mag-
nons in any of the magnetic phases.

APPENDIX

The transformations to magnon operator introduce important wave vector and field-dependent factors into the
two-magnon phonon-relaxation times. These appear in the transition matrix elements as T~&( k, k ). They are
tabulated below for the several phases:

A. Antiferromagnetic phase

Tf)g = Tf)g - Tf)g 1)( k' )lp( k )

Tt)p —
—, [I)( k~ )I)(—k ) +It( k' )lp( —k ))

T212 T212 0 ~

K L
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B. Spin-flop phase

T]J=(1 5J)(sin 8
2

) Vg( k ) 8 [j( k )

T2j= —{sin'8[V1i ( k ) V»( k ) + W~;( —k ) W2j( —k' )1

+cos'8[ Vi;( k ) W2j( —k ~ ) + W„( —k ) V»( k )]}

T3,J = (1 —8,J ) (2 sin'8 —1) V& j( k ) V» ( k )

T4j2 {s'in'8[ V&;( k ) W2j ( k ) + Wi;( —k ) Vp) ( k )]

ii( ) 2j(k')+W)(( —k)W2j( —ki)]}

Tfj = (1 —8j) cos~8 V&;( k ) Wij( —k )

Tf& =sin 8—, [ Vi;( k ) V»( k ) + Wi;( —k ) W»( —k ' ) —Vi;( k ) W2j( —k' ) + W~;( —k ) V2j( k )]

T3jJ = ( 1 —SjJ) cos 8 V]j( k ) V)J ( k( )

Tfg =sin 8—[ V„( k ) W2j ( —k ) + W„(—k ) V j ( k ) —y ( k ) V j ( k ' ) —W„(—k ) W ( —k )]
TiL( = (1 —8j) {sin28—[ Vi;( k ) V2j( —k ') + W„(—k ) W»( —k ) —Vq;( k ) Wq&( —k )

+ Wi;( —k ) V»( k i )] + 4cos' Vi;( k ) Wij( —k ' ) }

T3,j= (1 —Sj) {sin'8[ V„( k ) W2j ( —k ) + W„.( —k ) V2'j ( k, ) y, ( k ) y,
'

( k, )

Wli( k ) W» ( —k ~ )] + 8 cos 8 Vi;( k ) Vi, ( k i ) }

C. Paramagnetic phase

These are the same as those in the spin-flop phase with 8=0. The WJ transformation coefficients vanish;
thus, all the T],J and T2,J factors vanish in this phase.
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