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An analysis of the concept of renormalization of magnons is presented in view of a recently

developed Bose expansion of spin operators. The advantages as well as the limitations of this

concept are discussed. It is shown how the kinematic interaction becomes crucial in the critical

region. In our renormalized magnon picture it turns out that the phase transition of the Heisen-

berg ferromagnet can be described as a generalized Bose condensation in the "kinematic space".

Finally, our formalism is used to calculate the magnetization curve of the Heisenberg ferromag-

net, yielding T, in excellent agreement with high-temperature expansions.

INTRODUCTION

The fundamental work of Dyson' produced a clear
picture of the low-temperature behavior of ferromag-
nets. Their elementary excitations were shown to be
Bose-like weakly interacting species —the magnons.
Later it was realized that the same picture could be
used for temperatures comparable with the critical
temperature, provided the energy of the magnon was
"renormalized". This renormalization represents the
dressing effect of the interaction on the bare (free)
magnon spectrum, the latter being exact with only

one magnon present. Practically speaking the renor-
malization in most works consisted of a temperature-
dependent factor multiplying the bare-magnon ener-

gy. This is purely a renormalization of the magnon
"mass".

Two main nonperturbative techniques were used
for the calculation of the renormalization of mag-

nons: the Green-function approach2 5 and a varia-
tional technique6 s (see, however, Ref. 9). In the
latter approach the diagonal part of the Dyson-
Maleev" Hamiltonian was used to calculate a free
energy that was subsequently minimized with respect
to the magnon (Boson) occupation number. The
nondiagonal part as well as the kinematic interaction'
were neglected.

In the present work we use the exact Bose expan-
sion that was developed in Refs. 11 and 12 (based on
Ref. 13). It consists of the following expressions:

(2)

S+ Bt( X b„Bt"B")
nW

S -( X b„Bt"B")B
H IIIO

Sz X C BtnBn
ItW

where

b. -(—I)"—,X („")(I+y) '"n!„a"
even

( I)n+12n-I/& [

(4)

Expressions (3) and (I) are equivalent in the sense
that their matrix elements are equal in the Bose
space. They constitute an exact Bose expansion of
the spin operators. The Heisenberg Hamiltonian

0 = —XJg(S;+S) +S*SJ)
ij

J, i,j, nearest neighbors

0, otherwise

(5)

where S;+,S;,S;. are the usual three spin operators
(for s —,) and B,Bt are Bose operators1

[BJ,B; ) =5,;
and N = B'B is the number operator in the Bose
space. Alternatively one can use the following ex-
pressions".

N.S' ——(—I) '

where i,j denote the% lattice sites (i &j) can be writ-

ten in terms of the Bose operators. This is simply
done by replacing SI+,S;,S,' by the appropriate ex-
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pression in B;,B;t

H = —X Ji)8; ( X b„b~ Bi™B;"Bg~B)~)&)
n, rN

—X Je X C„C 8; "8;"B&™B) (6)

e " is a c number inside each block, which we

denote by e

Z-= X (Trb, „e a )e
all blocks

ij nnt

Since ij are different lattice sites and [8;,BJ ] =0 for
i W jone can write

Trb[„ke "is the partition function Zi~ of the Heisen-
berg model, for any block. In the mth block of a
spin S,*=—— Wis given by X, (4m, + I). Hence

H = —~ JI bnb~BI
"+ B™BI"B

i,j
n, IN

—XJ&C„C 8;™B)™B;"Bi
i,j

(7)

OO k

Zg=Z~ X exp —p X(4m;+I)
all IN,.W I

(12)

n, tn

This is the Bosonized Hamiltonian we are going to
use in this paper. As shown in Ref. 12 the represen-
tation of Eq. (7) in the Bose space is one of repeating
blocks of size 2+x 2+ each block being equal to the
matrix representing H in the spin space. The opera-

N.
tor X,. [2N, + (—I) '[ is an invariant of the. blocks,
i.e., it is a c number inside each block.

In this work we use a variational approach based
on the Peierls-Bogolubov" inequality in order to find
an effective free-Bose Hamiltonian whose free energy
is optimally close (in the sense defined below) to the
exact free energy of the Heisenberg model. In con-
trast to previous work ' our Bosonized Hamiltonian
is Hermitean and thus the use of the Peierls-
Bogolubov inequality is justified. In addition the
kinematic interaction is not neglected in the Hamil-
tonian and its effect is shown to be very important
in the critical region.

The structure of the paper is as follows: The varia-
tional approach is presented in Sec. II. Section III
presents the calculations and the results. The reader
who is uninterested in technical details can skip it.
Section IV is devoted to a discussion of the results
and a brief summary of the paper,

Defining: F„=—-(I/X) T inZ~ and

Fz = —(I/3T) T InZ+ one obtains a relation between
those two free energies

F- =F~ —TlnH
1 —e~& (13)

Using the Peierls-Bogolubov inequality"

1F- «Fir +—(H —Hp) pH p
(14)

where ( )p means averaging with respect to Hp
From Eqs. (9), (13), and (14)

Fg «Fg + (H —Hp)p+ (W)p+ Tln
1 p T e"
X 1 —e~&

(15)

Thus the free energy of the Heisenberg ferromagnet
is bounded from above by the expression on the
right-hand side of Eq. (15), which will be denoted
henceforth as F,d. The minimal value of this upper
bound is our "best estimate" of F&. F,d depends on
p, and the n's

(e+Pa( k, T) I )-I

II. VARIATIONAL APPROACH

In this section it is assumed that the free energy of
the Heisenberg model can be represented by using a
free-Bose Hamiltonian Hp with a temperature-
dependent interaction (renormalized Bosons)

Hp= $e(k, T)81k.B-k

In an exact theory the value of p, is irrelevant (see
Ref. 12). Here, however, we choose the p, that
minimizes F,&. Doing so we get from Eq. (15)

0I (W)p=
I

1 1 +3e~i'

The right-hand side of Eq. (17) is the average of 8'
with respect to H, (W) y, that is the original average
of W

Let

H-H (+ IP/)pW

bloc

blocks
k

locks

blocke (18)

Zfr -Tr(e &"e "+) (1O)

where y, is a positive constant, P = I/ks T, and Wis
the block invariant. Since 8 commutes with H, one
can ~rite Z„-, the partition function of H,

Thus the variational principle leads to the result that
the average of W must be kept equal to its "real"
average. 8'plays the role of a conserved quantity
(like the number of particles in a usual Bose system)
and p. is its associated "chemical potential".
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As is shown below, the averages (H) p and ( W) o

depend only on two parameters, N and L, defined
through relations

From Eqs. (16) and (23),

p(k, T) gt(T) +gt(T)a(k) (24)

where

1 1—Xnz, L —Xa(k)nk
k k

(19)

+ (W)p —gt N ——Xnp, T 1

x k

a(k) -—, (cosk„a +costa +cosk, a)

for the sc lattice and a equals the lattice constant. In
addition, F,d depends on the n-„'s directly. There-
fore we find the minimum of F,d by using two

Lagrange multipliers g~ and g2 so that we can in-

dependently vary N, L, and the n-„'s. The function

to minimize is

X [(nk +I) ln(n-„+1) —n lknn]kT

k

1+ ~ (H) p + T ln
1 —e~&

where the fact that g~ and g2 are temperature depen-
dent has been made explicit. The magnon renormali-
zation in our case consists of a multiplicative factor
g2 and an additive one, g~.

Equations (16) and (21)—(24) enable one to ex-
press the n-„'s in terms of N, L; and Eq. (19)
expresses N, L as functions of the n-„'s. The result-

ing two self-consistent equations are then solved nu-
merically.

III. CALCULATIONS AND RESULTS

This section is mainly devoted to the calculation of
the averages (H)p and (W)p (Secs. III A —III C).
After completing these calculations, we can find

a(H)o/aN, a&H)p/BL and 8(W) p/8N and formulate
the self-consistent equations and their numerical
solution (Sec. III D).

1—g) L ——Xa(k)n-„ (20} A. Calculation of (W)p and

(( 1) )o (S )o

gt — (H)p+ (W)p,1 Q p, T
X aN X aN

(21)

The first term in Eq. (20) is the entropy of a free-
Bose gas. Performing the derivatives with respect to
N, L, and the n-„'s one obtains

Using Eqs. (3) and (4) one obtains
A oo

(( I) ')o X, &13'"@")p
r~ V.

Going over to Fourier representation

(25)

&H)o,
1 (22) 1

8i
ik T,

XBke (26)

n-k+1
ln -gt + a(k) gtn-

k

(23) and using Wick's theorem' we obtain

n,
" (-2)~((-» ')o-X X X X X k k k XIIgk

Vt +r ~
"1 2 r ) ) o(J)+J

1 1 r

A oo

((—I) ')p- X (—2)"N" . (28)

o denotes a permutation of (I, .. ., v). The summa-
tions over the q's yields one when acting on the pro-
duct of Kronecker 8's. Then, using X 1 v!, the

number of permutations of v objects, and using the
fact that the summations are decoupled we obtain

(W)p-2N + 1

1+2N 00)

I

for any N. This is essentially due to the fact that
N.

((—1) ')p is bounded in absolute value by I and can-
not be a singular object.

Using the definition of W (see the Introduction)

For N (—, the sum in Eq. (28) is

A

I+2N (29)

One can easily be convinced that Eq. (29) is correct

Ni N
B. Calculation of ((—1) '(—1) )p

N. N
The term ((—I) '(—1) ~)p corresponds to the

(—X»J»S/SJ') part of H.



2836 I. GOLDHIRSCH AND V. YAKHOT 21

N.
Expanding (—1) ', like in Eq. (25), we get for i W j

(( 1) '( 1) ~) —X (B "B B"B )m!
(31)

We have used (B;,BJ ] =0 for I &j. Going to the Fourier transformed representation and using Wick's theorem

( 2}" ( 2)
((—1) '(—1) J)0 —— g X . X X g exp i X(k„—q„) 5„" n „n-k n-„

n 0 n!3V m!% n+m
1 kn+m &1 n+m

where

xx X 8-„ (32)

5&=—r; —r&

When 1 ~ v ~ n the sum over q„ in Eq. (32) is

Xe '" 'J8-„-, =exp( —ik („) Z~)
a(Z) 'le

'1X

when n +1 ~ v ~ n + m the sum over q in Eq. (32) is

5- —=1
cr(v)' q v

(33)

(34)

Consequently, summing over all q v yields

(—2)" (—2)
((—1) (—1) &)0= X X X exp(i X k„h&)n-kn-k n-k Xgexp(i kt„~ SJ) .

m, n-p n. m.~n / ~m
k 1

1 2 n+m cri 1
1 n+m

The sum over all permutations cr is equal to the following expression

n!m! -i k ~ d.Xge ' '~= ' ' dpe'a ff (1+e 'ae J ')
cr 4, 1 2' 0 X-1

This is so because

2%

Jt dd eiant

ik~ h,
so the integral in Eq. (37) picks up all possible products of n terms of type e ~ 'J, each product appearing only
once. Hence

((—1)'(—1)') = X X X Jt d'X" 'X -„-„2n
1 n+m

n n+m -i k ~ a,
xexp i g k„rL, Q (1+e 'ae " ' )n "n-

v 'ij kl kn+
v~1 v~1

The surnrnation over the n-„'s is now decoupled, so we can perform it. The result is

A A 2 1r

((—1) '(—1) ~)o- X (—2)"(—2) (e'aL,&+N)"(N+e 'aL,J)
n, m 0

where

(38)

L =— e " 'Jn- =— e " '&n-
ot X ~

k~ k~

(40)
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For (ij) nearest neighbors L&=(1/31) X-„dz(k„)n „-[see Eq. (19)]. Hence, after performing the summation in

Eq. (39) we have to calculate the integral over @. To do so we define z = e'~ and z ' = e '~ and we obtain a con-
tour integral on the unit circle

((-1)'(-1)'),= t "'.
2rri 1+2(N+Ljz) z(1+2N) +2LJ

Since clearly ~2L&/(1+2N)
~
( 1 only the pole at z = 2LJ/—(1 +2N) contributes to Eq. (41). Hence

A

((—1) '(—1) i)0= [(1+2N)' 4L,)']—'

(4&)

(42)

C. Calculation of (S;+S& )~

First we use expression (3) to express (S;+S& )0 in terms of Bosons

(S+S-) X b b (II t d+ IIt)NIIrtIII)(+))

n, m III0

The fact thati & jhas already been used in Eq. (43).
Next we go to the Fourier transformed variables and use Wick's theorem

OO n+1 n

(S;+Sd )o= X b„b X . X X X expi gk„Z,J —i g p„Z,J nk nk
1 n+m+1

1 n+m+1 ~1 ~ n+m+1 l

(43)

n+m+1

(44)

where (r denotes a permutation of [l, . .., n + m +1]. Summing over the p's

) 'I

OO n+1

(S;+Sz) = X b„b, X X expi gk„Z& n „n-„-Xffe
".+ +1

(4S)

where we used Eqs. (34) and (35).
As in Sec. III B we express the sum over the permutations cr as an integral

n+m+1

Xge '"' 'J=n!(m+1)! e'~" g (1+e " ' )
0

cr v 1
2' v~]

(46)

Proceeding as in Sec. III B we get

(S;+SJ )()= X b„b~n!(m+1)! ! e (~(N+Le)&)"+'(N+Le '&)~
f~ dz

n, mW 2m'
(47)

In order to perform the summation over n and over m in Eq. (47), we use the following representation of the
coefficients b„[see Eq. (4)]:

b„= dx e ' [(1+e )"+(1 —e ' )"]
n!2tw

(48)

The equality of Eqs. (48) and (4) can be easily checked (see the Appendix of Ref. 12). Next we perform the
n, m summation and calculate the integral over qh by the substitution z - e'& and use of Cauchy's theorem. The
result is

(d, d;), ='l f d*J dd
* * X X tl(+N(1+, *))tl+N()+, ))

4~ ~+] g m+]

X —2 -2—L,jz(1+ a, e * )(1+a,e & )] ' (49)
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D. Self-consistent equations and

the magnetization curve

Using the results of Secs. III A —IIIC we can write

&H)p in terms of N, L, and the parameters J [see Eq.
(5)] and T

—&H), -—&S S-)p ——
&(

—1) (-i) i), , (50)1 JZ + JZ

x 2 8

where i,j are any pair of nearest neighbors (due to
the cubic symmetry of the problem it does not matter
which pair), z is the number of nearest neighbors and
the factor —, is there to avoid double counting. The

two averages in Eq. (50) are given in Eqs. (42) and
(49) as functions of N and L. The parameter p, can
be expressed in terms of N, using Eqs. (30) and (17)

I I I I
I

I & I I
I

& I I I

I

I I I I

10—

M 06-

0.4-

0.2-

0.5 1.0 I. 5
7/J

FIG. l. Magnetization curve. The solid line represents
the magnetization M vs the scaled temperature T/J, the
dashed line represents the result of M. Bloch (Ref. 6) res-
caled to our units and the dotted line is the extrapolation of
the M —(T, —T) ~ behavior we get up to T/J —1.5.

N+1
p, —ln

2 N
(51)

(54) and (29):
Using Eq. (30) we obtain

8&W)p

8N (1+2N)'
(52)

N -—X {exp[gt(N, L, T)+ u(k)gz(N, L, T)] —1] '
k

(54)

L -—X u(k) {exp[gt(N, L, T)X
k

+u(k)gt(N, L, T)] —1] ' (55)

For numerical purposes it is more convenient to use
the following expressions, derived by going to an in-

tegral in Eqs. (54) and (55)
I

—slÃgt J3 P gP

m 1

Hence the substitution of Eqs. (50) [with the aver-
ages as given in Eqs. (42) and (49)], (51), and (52)
in Eqs. (21) and (22) yields g~ and gq as functions of
N and L for every temperature.

The effective spectrum a(k, T) is, according to Eq.
(24)

a(k, T) -gt(N, L, T) +u(k)gz(N L, T), (53)

where the N, L dependence of the g's has been stressed.
Now using Eqs. (16) and (19) we have

I 1

1+2N (57)

M-IT 1.68JI'" (Ss)

in the critical region. Thus the critical exponent P, "
is mean-field-like. This should come as no surprise
since we have essentially used a random-phase ap-
proach. In the region where T/J is bigger than 1.5,
the magnetization deviates from Eq. (58). As ex-
plained in Sec. IV, this is due to the fact that in a
noninteraction Bose model [Eq. (8)] there is no tran-
sition to the paramagnetic phase. To obtain this tran-
sition one has to add a nonlinear term in the n-k's to
the Hamiltonian. This term will presumably influ-
ence the results only for T/J ) 1.5. The extrapola-
tion of the straight line in Fig. 2 to the M~ 0 axis
yields T,/J —1.68 for the critical temperature. The

I.O—
I I I I I I I I

The solid line in Fig. 1 is a plot of M versus the tem-
perature measured in units of J. The broken line
represents the results of Bloch. ' Figure 2 is a plot
of M' versus the temperature. For 1 ( T/J ( 1.5 we

get a straight line. Hence

I

-Jemg&
—pmg~ &

—pmg~
L g„e I~ 1(]

I

(56) 0.6-
M

0.4-

0.2-
where Io and I~ are Bessel functions of imaginary ar-
guments. Equations (54) and (55) are a couple of
self-consistent equations for N and L for every tem-
perature T. Their solution has been found numeri-
cally. The magnetization M can be found using Eqs.

I I

1.0 I. I 1. 2 1.5 1.4 1.5 1,6 1.7 1.8
7/J

FIG. 2. Squared magnetization vs the temperature. The
meaning of the different lines is as in Fig. 1.
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extrapolated part is denoted by dotted lines in Figs. 1

and 2. Our result for T, is in excellent agreement
with the results obtained from high-temperature ex-
pansions. "

IV. DISCUSSIONS AND SUMMARY

This section is concerned with analysis of the
results obtained in Secs. I—III. Section IV A deals
with effective diagonal Hamiltonians in general. Sec-
tion IV B is devoted to an analysis of the meaning of
the results. In Sec. IV C we treat the special case of
an effective noninteracting Bose Hamiltonian. Sec-
tion IV D summarizes the paper.

A. General diagonal Hamiltonian:

the existence problem

e(k, T) = Tln
N(T)

where N satisfies

(59)

M(T) =
I +2N(T)

The main question to which we address ourselves
in this subsection is: Can one find a diagonal Hamil-

tonian Hp, such that averaging entitities of physical
interest (such as S*) with respect to it [e.g. ,

-PH
p

-PH
pTr(S,*e P)/Tre P] one obtains the same (or close)

results one would have obtained by averaging with

respect to the original Heisenberg Hamiltonian? By
"diagonal" we mean, as defined in Sec. I, a Harnil-

tonian Hp that depends only on the operators
~~ =8&8&. This question is related but not
equivalent to the question whether Hp can be reached
from H through some kind of renormalization-group
(RG) transformation. ' The reason is the fact we

want to average the original (like S*) operators with

respect to Hp, whereas in an RG approach one has to
transform the operators too (which may be a very
difficult task).

The reason we are able to analyze such a problem
is the fact that all averages in Sec. III are correct for
any decoupled diagonal Hamiltonian Hp (see Appen-
dix A).

We start with the magnetization M (defined as
2(S*)p). According to Eq. (29) it is given by

M =1/(1+2N). Hence in the critical region below

the critical temperature T„N must be very big. At
and above T„N must be infinite. One can easily see
that it is possible to find an Hp that reproduces the
exact (or any other) magnetization curve, given the
curve M(T) choose Hp to be a nonintegrating Bose
gas [see Eq. (8)], with

Then, according to Eq. (16)

n„=N(T) . (60)

Consequently: N(T) =N(T), which is what we

wanted to have.
The next question is whether one can reproduce

both the magnetization and the spin-spin correlation
functions. The answer to this question is negative, at
least in the critical region. The reason is the fact that
the denominator in Eq. (42) tends to infinity when N
does [L,~ is always smaller than N, see its definition
Eq. (40)]. Hence

(S,"SJ')p 0
N ~oo

(61)

For any pair (ij) such that i W j. Since it is clear
that the nearest-neighbor correlation function cannot
go to zero at T„we conclude that no decoupled diag-
onal Hamiltonian (however complicated) can correct-
ly reproduce both M and the longitudinal spin-spin
correlation functions. The correct treatment of the
longitudinal correlation function poses problems in

the Green-function approach too. ' On the other
hand, the asymptotic behavior of the transverse
correlation function, Eq. (49), in the limit N ~ is

L;J
(S;+S) )p (62)

(S&S=„)pc n-„ (63)

for small k.
In the same limit, assuming L,& &( N, we get from

Eq. (42)

(S~~S*V)p~y nV pn p- (64)

n „cannot be 1-/kt even for small k, otherwise the

longitudinal correlation diverges for finite k.
The conclusions from this subsection are:
(a) A renormalized magnon model cannot repro-

duce the spin-spin correlation function for high tem-
peratures and small momenta. This conclusion is in-

tuitively clear since at high enough temperatures
(close to T,) the longitudinal correlations become
very important, whereas in renormalized magnon
model one mainly concentrates on the transverse

If n-„= N for every k, L„"=0 and if one chooses n-„

to be a sharply peaked functions at k -0 and very
small for other k's, L,& can be made as close to 1 as
one cfishes.

Thus any intermediate value can be attained. The
same holds for the exact expression, Eq. (49).

Since Eqs. (42) and (49) are correct for any pair of
lattice points i 4i, we can find the asymptotic
behavior of the longitudinal and transverse correla-
tion functions in our model. Using Eqs. (40) and

(62) we obtain (for N )) 1)
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correlations. Perhaps a model that is in the nature of
van Kranendonk's for high k and of a renormalized
magnon type for low k is a good description. For an
attempt in this spirit see Sokoloff (Ref. 21).

(b) The fact that M -1/(1+2N) explains why one
may obtain "wrong" powers of T in the approximate
temperature expansions when one uses the approxi-
mate formula M -1 —2N. This is so because substi-
tution of Dyson's expansion' in Eq. (29) leads to

z
N= ——, —2ap8 —2a~8 +4apt 83+, (65)

where ao, a~ etc. are given in Ref. 18. The appear-
ance of the "spurious" 8' merely indicates that one
has used the wrong formula for the magnetization.

(c) It is possible that by using a model in which

only high-k spin-wave operators are bosoniz'ed one
can get a better description of the ferromagnet (in-
cluding correlations).

When one works in the first block only, one effec-
tively disregards the kinematic interaction. The mere
existence of higher blocks reflects the fact that there
is a kinematic interaction. This inclusion of more
and more blocks as the temperature approaches T,
means that the kinematic interaction becomes in-

creasingly more important. Hence in the picture we
describe, the phase transition is kind of a generalized
Bose condensation, where the object that becomes
singular is the number of contributing blocks. We
call this phenomenon kinematic condensation.

It is possible that our picture overemphasizes the
role of the kinematic interaction. In this sense it is

complementary to the magnon renormalization
theories, in which this effect is neglected.

In order to clarify our result further we note that
from Eq. (51) it follows that:

S. Kinematic condensation

Formula (29) teaches us that if our model has a

phase transition to a paramagnetic phase than the
number of bosons N is infinite at the transition point
T, and beyond it. It is interesting to note that one
arrives at a similar formula using the method of
Tyablikov and Callen. In their work N does not
have the meaning of a number of bosons. It merely
arises from the fluctuation-dissipation theorem. At-
tempts to interpret their result in terms of bosons
meet with difficulties if one restricts oneself to the
first block' of the bosonized Hamiltonian, as is usu-

ally done. This is so since N «1 in the first block.
In our approach this result creates no difficulties at
all and as we shall show, it has a physical interpreta-
tion. On the other hand it becomes clear that the bo-
sons we are dealing with are not the physical mag-
nons —at least in the high-temperature limit, be-
cause the number of magnons is clearly restricted to
one (at most) per lattice site.

When N tends to infinity we see from Eq. (51) that

p, —1/2N (66)

Thus p, tends to zero as N ~. In this respect p.
behaves like a chemical potential of a free-Bose gas.
As p, 0, more and more blocks contribute to the
partition function, until at p, =0 all blocks contribute
to the partition function, which yields an infinite N
and an infinite partition function.

On the other hand, at low temperatures, when
N 0, we obtain from Eq. (51)

1
p, ——lnN

2
(67)

In this limit p, ~, effectively projecting out the first
block only.

which has the appearance of a Bose distribution in

the "kinematic space".
We can actually regard the Bose space as a direct

product of the "dynamical space" and the "kinematic
space". Assume the "Hamiltonian" of the "kinematic
space" is

Hk;„—p, 8'

Then the corresponding free energy is

e ~
Fkin =—T ln 1-e~&

as is clear from Eqs. (12) and (13).
The corresponding entropy Sk;„ is

1 e"
Sk;„=—(p W) + ln (70)

Hence F „[see Eq. (15)] can be expressed as

F p
—TSp+ TSk;„(H)p1

where So is the free-Bose-gas entropy.
Thus, our model is such that includes a correction

to the entropy of the effective Hamiltonian in the
form of Sk;„. When p, 0 the kinematic entropy be-
comes far more important than the So entropy and
determines the fact that the system undergoes a con-
tinuous transition. In models where the kinematic
part is absent, it is not clear that such a transition oc-
curs and indeed in the usual magnon renormaliza-
tion, there is a first-order transition.

Finally, we should mention that a noninteracting
Bose Hamiltonian gives no transition at a11, (see Ap-
pendix B) but N goes practically to zero at a well de-
fined temperature). We believe that even a small
nonlinearity will make the transition occur at finite T.
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C. Case of effective noninteracting

Bose model

where g~ and g2 depend on the temperature only and

a(k) is as in Eq. (19), and depends only on k. gt
turns out to be positive and g2 negative. The un-

renormalized spectrum of the Heisenberg model'2 (or
the coefficient of the 8~k8-k term in the Bose expan-

sion) is proportional to a(k) given by

pp(k) - 1 —a(k) (72)

Hence, one can rewrite e(k, T)

e(k, T) = g~ + gp + (—g2) ru(k)

Thus the fact that g2 (0 is consistent with our
understanding that the k -0 magnons have the
lowest energy. g~ +g2 must be positive, otherwise
the n-„'s are infinite. Consequently gj itself is posi-

tive. The term g~+g2 may be considered as a chemi-
cal potential where as —gt~(k) can be regarded as
the energy spectrum of the effective Bose model.

The operator $&~ creates Godstone excitations"
in the Heisenberg model. Since 8~k~ is different

from $&~, it does not necessarily create zero energy

excitations. Hence its spectrum does not have to go
to zero as k tends to zero —and indeed ~(0, T) &0,
except for zero temperature. However, if one accepts

g~ +g2 as a chemical potential, the spectrum
—g2rp(k) goes to zero as k 0. Thus B&~ creates
an "effective Goldstone Boson" if the effective Bose
system is described in an appropriate grand canonical
ensemble.

As seen in Fig. 1 and described in Sec. III, the
magnetization curve does not reach the M =0 axis.
This property is correct for any finite temperature in
our approximation (a proof of this fact appears in

Appendix B). Thus either the variational approach
breaks down close to T, or Hp is a too simple effec-
tive Hamiltonian.

The magnetization curve shows a clear tendency
(i.e. , M —

I
T —T, I' ' for T ( 1.5. Hence only the

region that is very close to T, has to be changed.
This can be done by adding a nonlinear term with a
small coefficient to Hp. Only when N becomes very

big, or close enough to T„will such a nonlinear term
show its presence and bend the magnetization curve
towards the M -0 line.

In the case of an effective noninteracting Bose
model [see Eq. (8) [ one obtains a spectrum [Eq. (24)]

e(kT, ) =g, +g2a( k)

D. Concluding remarks

(a) The concept of renormalized magnons is both
elegant and fruitful. It leads to an elegant picture of
what is happening in the ferromagnet on one hand-
and it enables one to calculate physical quantities like
the magnetization curve and the critical temperature
on the other hand.

(b) An analysis of the role of the kinematic in-
teraction in the critical region is presented here for
the first time. It is possible that we have overes-
timated the importance of this interaction, being
complementary to other approaches who neglect this
interaction altogether.

(c) Bound state have not been taken into account,
as our main interest was the critical region and
three-dimensional systems.

(d) It would be interesting to generalize our ap-
proach by introducing more constraints (such as a
correct low-T behavior') and by adding the critical
fluctuations.

(e) Using a Bose expansion for general spin,
developed by one of the authors, 2~ one can general-
ize the present work to any spin.

(f) It seems possible to construct a theory of renor-
malized magnons in the critical region and in the
paramagnetic region. The basic idea involved in such
a construction is the fact that close to T, there exist
big regions in space, of the size of the correlation
length, in which the spins are strongly correlated for
long times. " Thus the magnetization inside such a
correlated region is slowly varying both in space and
time. Consequently for high enough k, one can find
spin waves inside this correlated droplet. An attempt
in this direction is the work of Sokoloff. "

(g) It seems possible to use ideas similar to those
that appear in this work, for the investigation of
dynamical properties of ferromagnets.

APPENDIX A: WICK'S THEOREM FROM A GENERAL
DECOUPLED DIAGONAL HAMILTONIAN

Let Hp be a general decoupled diagonal Hamiltoni-

an, i.e., Hp is of the following form:

Hp- Xf-„(n-„) (Al)
k

where the f-„'s are any set of functions and n-„ is the
usual Bose-number operator. Let I (nk)) denote a

state, defined by the eigenvalues n-„of the
-PH

pcorresponding n-„'s. Hp and e are diagonal in

this representation. When all p; are different from
each other

T

((nk) IB& 8& 8& 8& e pl (n-„[) ((n k[18-, 8-, Bg, ' ' ' Bg 1(n-„})exp —p Xf-„(n-„) . (A2)
k
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Hence From Eqs. (B3) and (B4)
'I

L T 1
1 ——— -u+0— (B5)

where o. is a permutation of {l,..., rl. ( )o means

thermal averaging with respect to Ho and n-„ is the

thermal average of n-„, namely,

where we have neglected g1 with respect to T, To the
same order it follows from Eq. (Bl)

Ig2IN

u+I —a(k) (2gr)'

-@(n
g n, e

n~ 4
P

n
P

-Py(n )'
e (A4)

When u =0 the integral W(u) in Eq. (86) is
Watson's integral ' 8' =1.516.... It can be shown
that

0.659 « —u «1 for u &01

W(u)

APPENDIX B: UNATTAINABILITY OF ZERO
MAGNETIZATION IN AN EFFECTIVE

FREE-BOSE MODEL

Hence using Eq. (86)

u+1 T u +0 659
(B7)

The aim of this Appendix is to show that our ap-

proach, where Ho describes a noninteracting Bose
gass cannot lead to a second-order transition at a fin-
ite temperature. This is done by proving that the as-

sumption of a finite critical temperature leads to an
inconsistency.

Let us assume that our model has a finite transi-
tion temperature, T, . The total number of Bosons is
[see Eqs. (16), (19},and (24)]

d3k 1
4 w (2gr)3 Stg)+g2n(k)l1 2

(81)

Since —1 «n(k) «1, it is not difficult to show from
Eq. (Bl) that N can tend to infinity as T T, if and

only if both g1 and g2 tend to zero as T T, at most
as 1/N. Let L denote L,J for (i,j ) nearest neighbors.

Using Eq. (Bl) and the corresponding integral ex-
pression for L [see Eq. (19)] we obtain

/3(g, N+g, L) —f J)Jt","'k,
I+, /3[g +gt (»

(82)

Substitution of Eq. (87) into Eq. (85) yields

0 —« 034 o ~ ~
L
N

(B8)

The result (BS) is crucial to our proof since it enables
us to find the asymptotic behavior of g] and g2. To
understand this point let us examine [see Eq. (42)]

8(S'Si)o 1+2N
BN [(1+2N) 4L ]—(B9)

1 B(N)o ~a
8N N

(B10)

Equation (89) contributes to gt. If L/N —I was

possible, the contribution of this term to g1 could be
of order 1/N, whereas using restriction Eq. (88) it

follows that this term is of order 1/N' In order to.
examine the contribution of (S;+S, )o to gt and gt in
the limit of very big N, it is enough to take only the
contribution of at = a2 =1 in Eq. (49} and to replace

-x2 2 2
1 —e "

by x and 1 —e by y'. Then one rescales
the new variables x =xJN and y =~N. The result
is that in the limit N ~ one can write

Hence, to order 1/N':

1

1 ———
N N( —gt)

g]
g2

(83)

8 (H)o a
aL N'

where q ~L/N and

(B11)

Let us define

u = —1 (B4)

Jz ~r' d d
I+u +u'+(1+3q')u'u'
[1+u'+u +(I —q') u'u ]'

(B12)

From Eqs. (21), (22), and Sec. III it follows that

g1 & 0 and g2 & 0. Since necessarily nk & 0 for all k
one must have gt ) lg2{. From those properties of
g1 and g2 it follows that u &0.

a is clearly of order unity.
Using Eqs. (51) and (52) it follows that

B(B')o
QN N 2N2 N3

i

(B13)
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From Eqs. (21) and (22)

(Bio)N + I/2 ~a qa
T N TW

If q 0 at T„ it follows from Eq. (B14) that Nis
of order one in contradiction to our assumptions.

q 0 at T„corresponds to [see Eq. (BS)] the equaii-

ty on the right-hand side of Eq. (B17) which is
correct only in the limit u ~. Hence from Eq.
(B6): Ig2IN 0 at T,. But from Eq. (Bl1)
ig2iN a at T, and a WO. So in this case we have a
contradiction too.
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