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Phase diagrams and multicritical points in randomly mixed magnets.
III. Competing spin-glass and magnetic ordering
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The phase diagrams and critical properties of a quenched random alloy of a ferromagnet and

an antiferromagnet (or of two antiferromagnets with different periodicities) are studied in the
mean-field approximation and by renormalization-group techniques in d =6 —e dimensions, us-

ing the n 0 replica method. If only nearest-neighbor interactions are assumed, then one finds

ferromagnetic (F), antiferromagnetic (AF), and spin-glass (SG) phases. As the average

strength of the next-nearest-neighbor interactions is increased (e.g. , by an additional component
in the alloy), the F and the AF phases approach each other, and one may find regions in param-

eter space where a mixed F-AF phase exists, as discussed in Paper II of this series. The phase

diagram exhibits lines of multicritical points where the paramagnetic (P), F (or AF) and SG
phases coexist (P-SG-F or P-SG-AF), or where the P, F, and AF phases coexist (P-F-AF).
These lines meet at a new multicritical point, where all four phases coexist (P-SG-F-AF). Re-
cent renormalization-group analysis of P-SG-F, by Chen and Lubensky, yields complex ex-
ponents for the XY and Heisenberg cases. e show that the phase diagram predicted by that

analysis is difficult to understand even for the Ising case. The same method of analysis yields

similar difficulties for P-SG-F-AF. A modified way to take the limit n 0, which resolves these
difficulties, is presented. This modified way still lacks rigorous justification.

I. INTRODUCTION

In the present series of papers we study the p-T
(relative-concentration —temperature) phase diagrams
of quenched random alloys prepared by mixing ma-
terials that exhibit different magnetic properties. In
the first paper of this series' (denoted I) we studied a
random alloy consisting of materials with competing
anisotropies. In that case we found that in addition
to the'ordered phases which occur in the two com-
ponents when they are pure, the alloy also exhibits a
"mixed" phase, in which the order parameters of
these two phases coexist. We found that these three
ordered phases and the paramagnetic phase all coexist
at a decoupled tetracritical point. In the second paper
of this series' (denoted II) we studied a random alloy
consisting of two magnetic materials which show
(when pure) magnetic orderings with different
periodicities, e.g. , ferromagnetic (F) and antifer-
romagnetic (AF) (or different antiferromagnetic)
phases. A mean-field-theory (MFT) analysis of this
case, described in II, gave the phase diagrams sho~n
in Fig. 1. The tetracritical point [Fig. 1(a)] or bicriti-
cal point [Fig. 1(b)] results when next-nearest-
neighbor interactions are introduced. With only
nearest-neighbor (NN) interactions, this multicritical
point (and the mixed phase) does not exist at any
finite temperature, and the phase diagram of Fig.

1(c) may result. (MFT gives pF =pA at this point,
but fluctuations and frustration effects may yield a
finite concentration range p~ (p & pA where the
paramagnetic phase extends down to zero tempera-
ture. )

Competition between positive (ferromagnetic) and
negative (antiferromagnetic) exchange interactions
has been recently considered to be responsible for a
new type of magnetic ordering, i.e., that of a spin-
glass (SG).3 Although this phase has been experi-
mentally observed mainly in metallic alloys, charac-
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FIG. 1. Schematic sections of the phase diagrams of ran-
dom alloys mixing an antiferromagnetic, (with concentration
p) with a ferromagnet, without spin-glass ordering. P, F,
and AF are the paramagnetic, ferromagnetic and antifer-
romagnetic phases. A bold line denotes a first order transi-
tion. (a) Tetracritical point and mixed phase. (b) Bicritical
point. (c) The paramagnetic phase exists down to zero tem-
perature.
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FIG. 2. Schematic sections of the phase diagrams when
spin-glass (SG) ordering is introduced. (a) Concentration-
temperature diagram, exhibiting an intermediate spin-glass
phase. (b) View from the paramagnetic phase of the vari-
ous ordered phases and multicritical lines.

terized by long-range Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions, 4 5 it has been recently
shown (by computer experiments) to also exist for
competing positive and negative NN interactions.
In recent publications, 8 Harris, Lubensky and Chen
suggested that Fig. 1(c) may in some cases be re-
placed by the phase diagram shown in Fig. 2(a).

If we do not confine ourselves to NN interactions,
then in principle all the diagrams of Figs. 1,2, and
possibly combinations of them may occur. In partic-
ular, alloys in which two concentrations (p~ and pq)
can be varied experimentally could in principle yield a
multicritical point at which the F, AF and SG order
parameters all become critical simultaneously.
Viewed from the paramagnetic phase, the phase di-

agram in the p~-p~ plane could assume the form
shown in Fig. 2(b). In this work we study the condi-
tions under which each of these phase diagrams is
obtained.

We shall assume that the interactions are short
ranged, as is usually the case in insulating magnetic
materials. The MFT results of Figs. 1 and 2 describe
the phase diagrams quantitatively only at sufficiently
high dimensionalities, i.e., d )4 for Fig. 1 and
d )6 for Fig. 2. Below these dimensionalities the
effects of critical fluctuations may be introduced us-
ing renormalization-group (RG) theory. When this
was done for the multicritical point P-F-AF of Figs.
1(a) and 1(b) no stable fixed point was found. ~

Therefore, the nature of the transitions near P-F-AF
may be significantly changed by fluctuations. One of
the possibilities we raised in II was the allowance for
a SG ordering. This is one of the motivations for the
present study.

In I and II the results were the same for bond and
site randomness, since the order parameters were
average magnetizations, ignoring the identity of the
magnetic ion at each site. When a SG order parame-
ter is introduced in an alloy with NN interactions
only, special types of site randomness are known to

lead to different SG orderings. ' " We shall confine
ourselves to bond randomness leading to the SG or-
dering usually characterized by the Edwards-
Anderson (EA)~ order parameter, q = [(s;) l,„(the
average is over the random configurations). This was
the order parameter used by Chen and Lubensky to
obtain the phase diagram of Fig. 2(a). Serious
doubts were recently raised concerning the relevance
of the EA order parameter in realistic dimensionali-
ties. High-temperature expansions' indicate that the
EA order parameter vanishes at d =4 since the
Ising-model SG susceptibility exponent y~ diverges
as d 4+. Real-space RG calculations for the Ising
model with NN interactions indicate existence of a
SG phase at 3 dimensions' '" and some calculations
show SG ordering even in 2 dimensions. ' ' Real-
space calculations do not identify the order parameter
appropriate for the description of the ordered phase,
and therefore the SG they predict is not necessarily
that described by the EA order parameter. Computer
simulatioris for the Ising model with NN interactions
only show controversial results (some of them show
that the SG is a stable thermodynamic phase6' and
others indicate that the SG ordering decays after a
long time). ' It is possible that SG ordering exists for
d & 4 but is not described by the EA order parame-
ter. It is possible that the SG is not a thermodynami-
cally stable phase, but is a phase where correlations
decay much slower than exponentially. In this work
we confine ourselves to the vicinity of the transitions
from the paramagnetic phase, since we work in the
framework of the Landau-Ginzburg-Wilson Hamil-
tonian. In this region use of the the EA order
parameter gives correct results in the Sherrington-
Kirkpatrick (SK) long-ranged model, "compared to
computer simulations and to the modified MFT of
Thouless, Anderson, and Palmer. ' It is assumed that
the results will be qualitatively correct also in the
short-ranged model studied in the present work.
This assumption is encouraged by a recent calculation
by Klein et al. ,

'9 which shows that (for a Gaussian
distributed exchange model) the phase diagram
changes very little as the coordination number z is
varied for z «8.

We shall use the "n 0 replica method" in order
to obtain (in Sec. II and Appendix A) an effective
Hamiltonian by a Hubbard transformation in a way
similar to that of SK.' A serious difficulty arises in
the MFT analysis when the "n 0 method" is ap-
plied, since the free energy extremum is not a
minimum in the SG phase in the limit n 0.
However, if the minimization procedur'e is done for
n «2 then it yields correct results for the SK
model, "and therefore the same procedure will also
be adopted here. A detailed discussion of this point
is given in Sec. III below. In Sec. IV, RG theory in
d =6 —~ dimensions is applied to study the critical
properties of the random alloys in various regions of
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the phase diagram (Figs. I and 2). For the boun-
da'ries between the F and AF phases with the
paramagnetic phase P, and for the multicritical points
where F, AF, and P coexist (P F A-F-), the critical
dimensionality is d, =4, and therefore MFT applies in
6 —e ) 4 dimensions (the critical properties in 4 —».

dimensions were studied in II). For the transition
from the paramagnetic to the SG phase, the analysis
of Ref. 8 applies. In Sec. IV, we calculate the critical
properties of the multicritical points (MCP); (a)
where the P, SG, and F (or AF) phases coexist (P
SG-F or P-SG-AF), and (b) where the P, SG, F, and
AF phases all coexist (P SG-F A-F). T-he critical
properties of I'-SG-AF are identical to those of I'-
SG-F, and should not be analyzed separately. Chen
and Lubensky9 studied the critical properties of I'-

SG-F, using an» =6 —d expansion (d, =6). They
found complex critical exponents for the Heisenberg
(m =3) and XI' (m =2) cases, a result which is diffi-
cult to understand, leading for instance to a situation
where for a range of concentrations the ordered
phase is the high-temperature phase. In Secs. IV and
V we discuss this problem in detail. In particular we

show that the results of Ref. 9 lead to problems in

the structure of the phase diagram even for the Ising
(m =1) case. We then present a modified way to
take the limit n 0, in which these problems are
eliminated. The physical interpretation of the RG
results in terms of scaling fields and phase diagrams
is given in Sec. V. Finally, the results are discussed
in Sec. VI.

II. HAMILTONIAN

Our initial Hamiltonian is identical to that dis-
cussed in Paper II: we start with m-component spins
o. (i) on a d-dimensional lattice, with random ex-
change coefficients JJ,

R {JJ, o. (i) ) = —,$ Jq o- (i) . o. (j)
iWJ

(2.1)

%e next assume a magnetic unit cell of 1=2 spins,
and define cell spin variables

where j runs over cells, p runs over spins in the cell,
k runs over types of magnetic ground-state ordering,
and F is an orthogonal matrix, the elements of which
can be chosen to be F»~=+I/vi.

We now use the "replica method", '~' replacing @»
by {P», a =1,2, . . , n] and av. eraging over the ran-
dom values of the new coefficients

l

Jig = X Jiliili Fa~F» Ii
p,p' 1

(2.3)

A cumulant expansion, using the fact that R must be
an even function of the $» 's for each k separately,
then yields the effective Hamiltonian (see Paper II)

Jik 1 a 1

(5J/ks Ti') X p» ('i) $»' (j ) $» (i ) @»'(j ) + (hi /ks T)
Ji kk' a, P

x $ [ 4' (I») ' 4» (J) 4» (I) ' 4» (J) + 4» (&) ' 4» (J) 4» (I) p» ( j)1 +, (2 4)
a, i8

where ij run over the magnetic cells, while

p.p

hp = —$[AJ; J ]„F F» F„F„
pp

(2.5)

define spin-glass variables,

q„s (i) = —$ o." (p,i) o'a(p, i)

(2.7)

[ ],„stands for a configurational average over the
random distribution, EJ =J —[J],„, and the dots in

Eq. (2.4) stand for higher order terms.
Eq. (2.4) was the basis for the analysis in II, where

we assumed the @» 's to be the only relevant order
parameters. Our aim in the present study is to allow

for spin-glass ordering. Generalizing Ref. 9, we thus

q„„(i)= [@»~ (i)y»i—'(i) +yf, (i)@»s(i)]

a &P, k A k', (2.8)

where the indices IM, , v = 1,..., m count components of
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the spins within each replica. Note that qpa (i) is the
cell average of the usual Edwards-Anderson spin-
glass order parameter. 3 k 9 Eq. (2.4) can now be writ-
ten

.rr= —,' Xx[Ji"]., Xbk(i )A'k(j)

—,'
X (/kii/ka T) X X q„& (i )q pa (j)
ij pv aWP

—,'
X $ (/t,~"'/kaT) X X q„„(i)
ij krak'

xq„„(j)+
(2.9)

where the dots represent higher order terms.
Depending on the strength of the new coupling coef-
ficients [Jq ],„, /k&/ks T and b &&" /ka T we expect or-
dering of qL, q or q.

The next stage is to transform our spin variables
into a continuous form, via a Hubbard transforma-
tion. Details of this transformation are given in

Appendix A. After showing that q never orders be-
fore q, one ends up with a Ginzburg-Landau-Wilson
Hamiltonian of the form

X(rk+~kq +''') Sk('q) 'Sk (
2 Q ~q

k, o

(fg +Agq + ' ' ' )2

x X g'a(q)0 a(—q)+X', (2.10)
oWP

with X' in Eq. (A9) and rk, rq given in Eq. (A7).
From these, one obtains the mean-field temperatures
for ordering of Sk and of 0,

Tk X [Jkk]
m j
1=—X X [Jip~p ]avFgpFkp (2.11)

= (2lm') ' X X [5Jip2ip ],„.
J m'

(2.12)

Depending on the relative magnitude of T, and T~
we shall have ordering of the various Sk's and of Q.
Equality of two (or more) of these temperatures de-

fines multicritical points. For example, Tk= T» de-
fines P-F-AF (see Figs. 1 and 2) T,"=TP defines P
SG-F (or P-SG-AF) and Tk= T," = TP defines PSG--
F-AF.

T, and T can be changed by changing the relative
concentration of the materials forming the alloy. For
simplicity we shall restrict ourselves in what follows

to a section in the global phase diagram described in

Figs. 1 and 2, where there are only two types of mag-
netic ordering and spin-glass order. For definiteness,
we assume that k =1 corresponds to ferromagnetic
(F), k =2 to antiferromagnetic (AF) ordering, and
that the other types of antiferromagnetic ordering do
not become critical for the considered range of con-
centrations. In Appendix B we discuss the values of
T, and T~ in detail, and show that all the multicritical
points in Figs. 1 and 2 are indeed possible. In the
specific example discussed in Appendix B we consid-
er a two sublattice antiferromagnetic ordering (i =2).
Chen and Lubensky treated this ordering with
nearest-neighbor (NN) interactions only, and there-
fore concluded that F and AF orderings cannot coex-
ist. We introduce the next-nearest-neighbor (NNN)
interactions, and these make F-AF coexistence possible.

III. MEAN-FIELD'THEORY

The "n 0" method for a random ferromagnet is
based on the proof that the free energy per degree of
freedom obtained from a partition function of a ficti-
tious system consisting of n identical replicas of the
original system is equal, in the limit n 0, to that of
the original system. " Mean-field theory approxi-
mates the statistical sum involved in the calculation
of the partition function by one term, for which the
order parameter assumes the value that minimizes
the free energy. The question that arises when
mean-field theory is applied in the n 0 limit is what
is the correct order of the operations of minimization
and taking the limit n 0. For the ferromagnet (or
antiferromagnet) this question is irrelevant, because
all the "random terms" in the Hamiltonian are multi-

plied by n and drop out in the limit n 0." For the
spin-glass this question is crucial. We know how to
calculate the partition function only for the "replicat-
ed" system. If we would know how to calculate the
exact free energy of this system we would obtain the
correct free energy in the limit n 0. Note that the
EA order parameter q'&-S'S&(1 —8 a) can be de-
fined only for n «2. Therefore for systems involv-

ing SG we know the partition function only for
n «2. In the mean-field approximation the parti-
tion function is approximated by the most probable
term in the statistical sum, hence we should intro-
duce the mean-field approximation and minimize the
free energy only for n «2. The values of the order
parameter for which the minima of the free energy
are obtained are then analytically continued to n =0.
There is no reason to require that the free energy will

be a minimum with respect to the order parameter
for n =0, in this procedure, because the order
parameter is constrained to the value obtained by
analytic continuation of the value that minimizes the
free energy for n «2. We assume that if we knew



284 SHMUEL FISHMAN AND AMNON AHARONY

the correct partition function then the value of the
order parameter we obtained by the above analytic
continuation would minimize the free energy. The
above-described procedure is obviously correct for
the paramagnetic phase, where the order parameter
vanishes. This enables us to determine the boun-
daries of the paramagnetic phase. The ordered
phases will be studied by a Landau expansion24 in the
vicinity of the paramagnetic phase.

The above considerations lead us to the following
recipe in mean-field calculations: (i) Minimize the
free energy for n «2 and obtain the corresponding
values of the order parameters Q(n) and S(n) and
the free energy per degree of freedom F„. (ii) Obtain
the boundaries between the various phases (that
depend on n) (ii.i) Take the limit n 0 by which we

mean, take Q(0), S(0), and Fo, as the mean-field
value of the order parameters, and of the free energy
per degree of freedom. (iv) Obtain the phase boun-
daries by substituting n =0 in the expressions ob-
tained in (ii). Various justifications were given why

this particular extremum should be adopted as the
one describing the SG phase: (i) the free energy in
the n 0 limit is not an ordinary Landau free ener-

gy, but is defined only for physical values of the or-
der parameter. " (ii) Some of the (n —1) factors
should be continued to +I in the limit n 0 to ob-
tain a free energy minimum. 9 (c) The minimization
should be done for n & 1 and the result analytically
continued to n =0.

Previous works ' practically followed the techni-
cal steps of this recipe and comparison of the results
on the SK model with numerical simulations'
shows agreement in the vicinity of the paramagnetic
phase, although they deviate from the numerical
simulation results deep in the ordered phases. In
what follows we shall confine ourselves to the neigh-
borhood of the paramagnetic phase.

We next address ourselves to the question of the
nature of the SG phase. Following Chen and Luben-
sky9 and SK, '7 we assume that the value of Qg„" in
the SG phase is symmetric with respect to the inter-
change of rePlicas, Qgn —= Q„„(1—5 n), in order to
preserve the replicated nature of the Hamiltonian. In
a recent publication, de Almeida and Thouless have
shown that the extremum symmetric with respect to
an interchange of replicas is unstable with respect to
breaking of this symmetry. Bray and Moore" later
found a stable solution resulting from breaking this
symmetry, but this involved taking a limit which
needs further justification. Recently van Hemmen
and Palmer have shown exactly, in the SK model,
that the free energy is minimized for a value of the
EA order parameter symmetric with respect to repli-
cas interchanges. In a recent letter, Sherrington has
shown that the instability found by de Almeida and
Thouless for n =0 does not occur for n «2,
where the definition of the EA order parameter is

reasonable. Due to the above mentioned prescription
we minimize the free energy for n «2, therefore this
instability does not occur in our calculations. We
conclude that the instability with respect to breaking
the symmetry between replicas is probably unphysi-
cal, and assume the replica symmetric value of the
order parameter throughout.

To obtain the MFT (or Landau) equations, we ig-
nore all fluctuations in Eq. (2.10). This amounts to
keeping only the zero wave vector (q =0) terms,

Sl (q) -M 5(q), S2 (q) -N5(q)
Qgn -Q„„(1—5 s)5(q)

(3.1)

The MFT free energy in the Ising (m = 1) case thus
becomes [see also Eq. (A9))

F/nksT =
2

rlM +
2

r2N + vllM

+ vp2N +2vl2M N + (n —1)

x( rgQ2+-w Q3+wlQM +w2QN )

(3.2)

where vl2 replaces vlcc+2 vl2, Q =—Qll, and
w

—= w(n —2). The minimization of F (for n ~2) is
carried out in detail in Appendix C. Taking the limit
n 0 in the solutions (C4) - (C7), and considering
only the vicinity of the paramagnetic phase
(M =N = Q =0, which exists for r, , r2, rg & 0), the
nontrivial phases are the spin-glass (SG),

M=N=0, Q = —rg/3 w (3.3)

existing for rl, r2 & 0, rg (0, the ferromagnet (F),

N =0, Q = wlr, /(4vllrg+2wl2)

M'= rlrg/(4v„rg—+2wl ) (3.4)

existing for r~ r2 & 0, 3 = v~~ v22 —v&'2 )0.
A direct examination of the solutions sho~s that

the F SG and AF SG transitions as well as the
M F and M AF transitions are continuous. The
fact that these transitions are continuous can be
shown by showing that the solutions for M (or N) in
the mixed phase become imaginary exactly when
M =0 (or N =0) become minima of F. Expressions

existing for r, (0, r2 & 0, the antiferromagnet (AF),
obtained from Fby M~Nand 1 2, and the mixed
phase (M),

2
W2 rl —Wl W2r2 + 2(V22r1 —Vl2f2) fgM =—

4(wl v22+ W2vll —2vl2wlw2+2Arg)

2

N' =—, , (3.5)
wlf2 wlw2rl+2(vllr2 vl2fl)fg

4(wl vll+ w2vll —2vl2wlw2+2Arg)

Q
(Wl V22 W2 V12) fl + ( W2V 1 1 Wl V12) r2

2(wl v22+ w2vll —2vl2wlw2+2Arg)
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for the locations of the transition lines can be easily
obtained from Eqs. (3.3)—(3.5). The direct transition
F ~AF is first order if A & 0. The SG ~M transi-
tion occurs continuously on a line where M2 =0 and
N'=0, while Q %0.

Note that our results for the P, SG, and F phases
coincide with those already obtained by Chen and Lu-
bensky, who calculated more terms in the expansion
(3.4) and verified the continuity of the F SG tran-
sition. Our calculation reproduces all these results,
and in addition verifies that NNN interactions also '

make all the additional phase diagrams of Figs. 1 and
2 possible.

The only additional complication that arises for the
m & 1 models relatively to the Ising model are the
various relative directions of the magnetization, stag-
gered magnetization and the various "directions" of
the spin-glass tensor 0„„.When N =0 or M =0, the
analysis of the F, AF, and SG phases follows exactly
that of Chen and Lubensky, and will not be repro-
duced here. In the M phase, when both M and N are

nonzero, the following generalization is necessary:
let e ', ..., e be a set of orthogonal unit vectors.
Choose e ' and e in the plane determined by M and
N, so that e is in the direction of the bisector of the
angle between them. We define 8 via

cosH =M e'//M/ =N e'//N/ (3.6)

and define

Qt = g Q„„e„'e„'

02= g Q,.e,'e.' ~

012 X Qpv V, v

(3.7)

g g g el~e~l

where e is a unit vector orthogonal to e' and e . In
terms of these variables, the free energy becomes

F/nksT = r, M + —r2N + v—~&M + v22N +2vj2N M +4v&2M N cos 28

+(n —1) (z rg[0~ + 02 +20t2 +(m —2) 032] + w [Q~ + 023 +(m —2) 03 ]

+ wtM'(0~cos 8+02sin 8+Qt2sin28) + w2N (Qtcos 8+02sin 8 —0~2sin28)] (3.8)

Note that the decomposition [(3.6) and (3.7)] is
defined only if both Mand N do not vanish, i.e., in
the mixed phase. If only M (or N) is nonzero then 8
is undefined, e ' should be chosen in the direction of
M (or N), 0&2=0, and the last two terms in Eq.
(3.8) should be replaced by w~M'Q~ (or w2N'Qt).
This reduces to the analysis of Ref. 9, which is very
similar to that of the Ising case presented above.
Some details of the mean-field analysis of Eq. (3.8)
are presented in Appendix C. We show that the only
possible values of the angle 8 are 8 =0 (M IIN) or
8 = m/4 (Ml. N). The former value seems unlikely,
if the coefficients in Eq. (3.8) are not too far from
their simple initial values [Eq. (A10)]. For the latter
value we find Qt = 02 and Qtq &0. A detailed
analysis of this case can be made only if higher order
terms in 0~2 are introduced, and we leave these de-
tails for future work. In any case, we conclude that if
a mixed phase exists it will most probably have
Ml N, in agreement with our earlier analysis and

with many experiments.

IV. RECURSION RELATIONS AND FIXED POINTS

We now analyze the Hamiltonian (2.10) using the
renormalization-group technique. ' " If r~ is very
large, then the Qg& variables can be eliminated from
the partition function, and Xreduces to the Hamil-
tonian studied in II, exhibiting the phase diagrams of
Fig. 1. We therefore concentrate here on the case
when rg =0 and spin-glass ordering is important.
Once Q„s is an important order parameter, the cubic
terms in X' [Eq. (A9)] imply that the critical dimen-
sionality is d, =6, and we concentrate on expansions
in e =6 —d. For d & 4, the critical properties near
the F P and AF P transitions are described by
mean-field theory, and the quartic terms in Eq. (A9)
are irrelevant. Renormalizing the Sk 's (k = 1, 2) and
the Qg&'s, Eq. (2.10) can be written

2 p N

X=—,'
X g (rk+q')Sk(q) S„'(—q) ——' ' (r&+q') X Qg&(q)gpss( —q)

k 1 qa 1 aAP

2

X X wkg;.'(qi)~a" (qz)Sk"a( —qi —q2) + w X 0;.'(qt) Q.'„"(q2)0„";(—qt —q» . (41)
2 k 1aWP aAPAy
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This is exactly the Hamiltonian considered by Chen
arid Lubensky. We now follow standard
renormalization-group routines, "eliminate degrees
of freedom with I q I )A/b, and rescale q b q,
Sk fkSk, and Q~s (gQgp. Depending on the
values of I'1, I'2, and rg, various rescaling procedures
are adopted. ' For the SG P transition, we rescale
S1 and S2 so that r1 and r2 remain constant, w1 and
w2 are irrelevant and the recursion relations and the
critical exponents of Ref. 8 are recovered. We now
concentrate on the two remaining possibilities, ap-
propriate for the multicritical points P-SG-F and P-
SG-F-AF (Fig. 2).

A. P-SG-F (Paramagnet —spin-glass —ferromagnet)

For the P SG P(-or P--SG-AF) multicritical point
[Fig. 2(a)] we rescale S2 so that r2 remains constant,
hence w2 becomes irrelevant and the usual rescaling
of S~ and Qgs yields the recursion relations of Ref.
9, keeping terms up to order ~,

—4wt [A (0) 2Kgln—b r(]] (4.3)

r~ = b '(rt —4(n —1)mw~' [Aq —K~lnb(r~ +rg)] j

(4.2)
2

rg=b g]rg 36(n— 2)mw—(Aq —2Kqlnb rg)

q, =4(n —1)mK~w, '/3

qg
——[36(n —2) mw'+4w, ']Kd/3,

(4.6)

(4.7)

Ky '=2 'rr / 1'(d/2), A =K (1 —b ")/(d —4)

(4.g)

In general, apart from complex solutions, these re-
cursion relations have three fixed points of interest,
i.e., the Gaussian one, w'= w1 =0, the SG fixed

point, w~ =0, (w') = e/36Kd[(4 —n) m —2], which
coincides with that found in Ref. 8 in the limit n 0,
and a new fixed point, with both w'and w1 nonzero.
The first two fixed points are unstable, and it is this
third fixed point which should be used to describe
the multicritical point P SG-F [Fig.-2(a)].

Chen and Lubensky substitute n =0 everywhere
in the recursion relations, and find the results shown
under "Direct n =0" in Table I. The stability ex-
ponents of the w and w1 recursion relations at this
third fixed point are —e and A2 & 0. Linearizing the

c/2 -3qg/2w'=b

x(w +Kqlnb [36[(n —3) m +1]w3+4w~ /3})

(4.4)

wI = b g '(w~+4Kqlnb[ w~3+3(n —2) mww~~]]

(4.S)

TABLE I. Fixed-point values and exponents for P-SG-F.

"Direct n =0"'
m =2 m =3 m=1

"Modified n =0"
m =2 m =3

I
w'I (K,/. ) '/'

I w,
" I(K~/~)'/'

) 2/~

(A,, —2)/e

(z„—2)/~

(v —-)/~1

2

((t —1)/~

tg

Zg

1

6
1

2
5

3

1

3
1

3

8

3
5

3

0.0839

0.3032

-1.0791

—0.2451

—0.2149

0.0614

0.2373
—0.8686

—0.2253

-0.1960

0.1263

0.2797

—0.9149

0.1043

—0.2787

-(1.1501 (-0.9407 0.2933

—0.0733
—1.1986

0.2706

-7.3906

+0.3247i ) +0.2539i) —2.1039

0.0716

0.1882
—0.8301

0.0944

-0.1987

0.2417
—1.3297

—0.0605
—0.7857

0.1866

-5.3598

0.0547

0.1505

—0.7816

0.0906

-0.1849

0.2185

-1.1432

—0.0546
—0.6808

0.1369

-4,8709

—0.0366 —0.0348 —0.0281

'From Ref. 9.
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recursion relations for r~ and rg, Chen and Lubensky
found complex exponents for m =2, 3, which are
quite unsatisfactory in terms of our physical under-
standing of the scaling properties near P-SG-F. We
shall return to a discussion of related difficulties in
Sec. V.

In order to try to avoid the difficulties arising in
the direct n =0 approach, it is instructive to consider
the origins of the various n-dependent factors in the
recursion relations, noting the fact that there exists
some ambiguity in the analytic continuation to n 0.
The basic idea of the replica method was based on
the identity'

[F],„/mN = lim F„/nmN
n 0

(4.9)

where F„ is the free energy of the nm-component sys-
tem, represented by X, and [F],„ is the averaged free
energy of the original system. To obtain the latter,
one thus must consider the free energy per degree of
freedom of the replicated system. Counting degrees
of freedom caused no problem until the SG order
parameter was introduced. Introduction of Q~a arti-

FIG. 3, Diagram contributing the factor (n —1) in Eqs.
(4.1) and (4.6) [see Eq. (4.10)]. The wavy line represents a

0 propagator, and the straight line represents an S& propaga-
tor.

ficially added n (n —1)m degrees of freedom per
site, and various factors of (n —I) result from this
"overcounting". When only the SG phase was con-
sidered, e.g. , in Ref. 8, all these factors can be fac-
tored out [see, e.g. , Eqs. (3.2) and (3.8)]. Indeed,
they also factor out from the recursion relations for
r~, w, and qg, and do not affect the SG P critical
exponents. However, consider the contributions of
order w~2 in the recursion relation for r~ and in q~.
These result from the diagram shown in Fig. 3, i.e.,
from a summation of the type

SP(q)SP(—q) X ~ (SI'(q&)S&~(—q&))(Q ~(q&)Q a(—q, ))
q a/ q)

=(n —1) f SP(q)SP('—q) J (r~+q~~) '(ro+q~~) ', (4.10)J q g(

where „means integration over A/b &
~ q ~

& A.J q
Without such terms, the recursion relations for r~

and q], involve only the n ferromagnetic degrees of
freedom. The factor (n —1) in Eq. (4.10) simply
counts how many spin-glass degrees of freedom one
has per ferromagnetic degree of freedom. In the
end, we would like to have only one SG degree of
freedom per each ferromagnetic one, and this sug--

gests the possibility that these (n —1) factors should
be fixed equal to unity. In fact, one can easily check
that all higher order terms contributing to r~ and to

q~ will have the same factor of (n —I), for the same
reasons.

We therefore conjecture that maybe a "modified
n =0" procedure has some meaning, i.e., we replace
(n —I) wq in Eqs. (4.2) and (4.6) by w~ and only
then let n 0 in the remaining equations. No
rigorous justification for this procedure is offered at
this stage. With this procedure, the new P-SG-F
fixed points values are also given in Table I. Note
that all the exponents now become real. We shall
show in Sec. V that various additional difficulties are
also removed.

B. P-SG-F-AF
{Paramagnet —spin-glass —ferromagnet —antiferro magnet)

The only addition at the P-SG-F-AF multicritical
point is that S2 also becomes critical, and therefore

t

(d +2 —q2~/2
should also be rescaled by b ' . The recursion
relations for r~ and w~, and the expression for q~,
Eqs. (4.2), (4.5), and (4.6), remain unchanged.
Similar expressions are now found for r2, w2 and g2,
by simply replacing 1 by 2 everywhere. Finally, Eqs.
(4.3), (4.4), and (4.7) are modified with w~, wt r~,
and w~ being replaced by (w~ + w2), (wt r~ + w2r2),
and ( w&' + w2 ), respectively.

The recursion relations for w, w~, and w2 have in
principle 27 fixed point solutions. Using the modi-
fied n =0 recursion relations, 15 of these solutions

have w~ =0 or w2 =0, coinciding with fixed points
already discussed above. These solutions are howev-
er unstable with respect to w~ or w2, respectively. Of
the remaining solutions, 10 (or 8, or 4) are complex
for the m =1 (or m =2, or m =3) case, and 2 (or 4)
are "runaway solutions", i.e., solutions at infinity
which can be identified only if higher order terms are
included, '2 for m =2 (or m =3). In the case m =3
there are also two solutions with w' =0 and

w~ = —w2 =+0.6124(e/Kd)', but these are "un-
physical" since they cannot be reached by iterations
from our initial Hamiltonian. We are thus left with
two solutions for w, w~ = w2, of which we choose the
negative ones [see Eq. (A10)]. Values for these
solutions are given in Table II. Again, the fixed
points are stable, with exponents —~, ~2, and A3.

The situation changes if the direct n =0 recursion
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TABLE II. Fixed points and exponents for P-SG-F-AF.

"Direct n = 0"
m =2 m=1

"Modified n =0"
m=2

0.1491

0.3559

0.083 33

0.2500

0.062 35

0.2049

0.1277

0.2554

0.073 29

0.1788

0.055 87

0.1452

-1.6667
0.0780

-1.3333
-0.1667

-1.1276
—0.2482

-1.1304
—0.4348

—0.9970
—0.5437

—0.9104
-0.5842

q)/e = v)2/e

qg/~

-0.1689
-0.1958

-0.1667
-0.1667

-0.1679
-0.1679

0.0870
—0,2174

0.0852
-0.1726

0.0844
-0.1685

tg
a

Xg

1
(v —-)/e

2

(@g—1)/e
(P —1)/~

-2.5373
—0.8050
—0,3379

4.3399

0.9217

-1.3333
—0.8333
—0.3333

-1.0097
—0.8377
—0.3358

1.3380

0.9965

0.2865
-2.2431

0.1739

0.4317

-9.2650

—0.0716
-1.2648
—0.0563

0.2509
—1.4547

0.1705

0.3147
—6.3560

—0.0627
—0.8528
—0.0402

0.2294
-1.2406

0, 1688

0.2395

-5.5675

—0.0573
-0,7350
—0.0303

R2 0.2124 0.5 0.7447 -21.46 —20.20 -23
~ 25

relations are used: For m =2 and m =3, 10 of the
remaining solutions are complex, and 2 solutions give
~and ~~ = ~2, values of which are listed in Table II.
In the case m =1, there are six real solutions. Two
of these are of the same form as mentioned above,
with e~ = ~2, and they are also listed in Table II.
However, as seen from the table, these solutions
seem to be unstable for small e. The remaining four
real solutions are nonsymmetric, and have

I
w '

I (&d/&) ' ' =0 1577
I

w
'

I
(& /e) '"=0.2536, and

~
wp ~(Eg/e) =0.4562 (or a permutation of wt and

wq). These fixed points are stable, with exponents
—e, —1.7292m, and —0.1464». Ho~ever, since we find
the asymmetry of ~~ and ~2 difficult to accept on
physical grounds, we also tabulated the values for the
symmetric point. The small values of X3 for both
fixed points may indicate that higher order terms will

restore the stability of the symmetric fixed point at
finite values of e.

V. CRITICAL EXPONENTS AND SHAPES OF
PHASE DIAGRAMS NEAR THE

MULTICRITICAL POINTS

The main difficulty in the determination of the
critical exponents of a multicritical point (after find-

ing the appropriate fixed point) has to do with the
identification of the scaling fields. Temperature and
other directly measurable parameters (as concentra-
tions in our case) are usually not the scaling fields,
but rather linear combinations (in the asymptotic re-
gion) of them. In some simple physical situations,
where both competing order parameters are of the
same type, physical intuition directs one how to iden-
tify the scaling fields. ""In our case, the order
parameters are of different types: the F and AF or-
der parameters are vectors, and the SG order param-
eter is a tensor. Linearization of the recursion rela-
tions about the fixed points allows us to identify the
asymptotic scaling fields as the eigenvectors of the
corresponding eigenvalue exponents. The linearized
recursion relations for rt and rtt (or r~, r2 and rtt)
near the P SG F(P SG F-A-F) -fixed point ha-ve t-wo

(three) eigenvalues and eigenvectors. One of these
eigenvalues should be equal to 1/v, and the
corresponding eigenvector should describe the ther-
mal instability, leading into the paramagnetic phase.
We thus identify h, , = 1/v by identifying the eigenvec-
tor which points into the P phase. The remaining
eigenvalue(s), equal to A„=$/v (and X„=@tt/v)

describes crossover effects into a phase where only
some of the order parameters (e.g. , only St, S2 or
Q„S) order. The crossover exponents $ and @g
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determine the shape of the phase diagrams near the
multicritical points P-SG-F and P-SG-F-AF. In this
section we identify these exponents near the P-SG-F
and P-SG-F-AF fixed points.

A. P-SG-F

Let the eigenvectors corresponding to X, and A.„be
(a, , a, ) and (a„,,a„), so that the scaling fields are

However, it should be emphasized that even the case
m =1 does not lead to satisfactory results: the ratio
R turns out to be positive, implying a phase diagram
of the shape shown in Fig. 4(b). There is no way to
identify an eigenvector pointing into the paramagnetic
phase, and both transition lines appear between the
two scaling field directions. For this reason, we have
doubts about Chen and Lubensky's identification of
the exponents v and $ in this case.

p, r =ac Ar~+ar dirg
1 Q

pz=az, hri+az Erg
(5.1)

Pr =~1Pt ~ PZ = ~QPt (5.2)

and since for small e we find $ ( 1, we conclude that
the lines approach the P-SG-F point tangentially to
the p,„direction. The amplitudes A~ and Ag are
nonuniversal, but their ratio is universal, given by

a '+o(.) .
a„

(5.3)

Zero order values of R are also given in Table I.
Note that R & 0, as it should be in order that p, ,
indeed goes into the P phase.

Thus far we described only the results from the
modified n =0 calculation. If we use the direct n =0
approach, the calculation probably becomes meaning-
less for m =2, 3 due to the complex exponents.

P-SG- I.

Since we have a freedom of normalization, we can
choose a, ,

= a„,=1. Values for a, and a„are given

in Table I. For the modified n =0 case, we always
have a, &0 and a„&0. This led us to identify X„
since we want p, & to increase when both 4r~ and b rg
increase. The fact that p,„has opposite signs if hr~
or Erg are increased implies that the F P and the
SG P phase boundaries should be on opposite sides
of the p, , axis, yielding a phase diagram like that
shown in Fig. 4(a). The resulting exponents v and Q
are also given in Table I. Since the shape of the tran-
sition lines near P-SG-F is given by

B. P-SG-F-AF

We now have three scaling fields, p.„p,„,and p,„.Z)s "2'
It turns out that in almost all cases, two eigenvectors
are symmetric with respect to exchange of Ar~ and
Ar2, while the last one is always antisymmetric with
respect to this exchange. Thus, the scaling fields are
found to have the general form

b, r~+Ar2+ai dkrg
Q

pzg = Ar j + Ar2+ a„Erg

p,„=hr) —Ar2

(5.4)

The corresponding eigenvalues and values of a, and

a„are given in Table II. Again, in the modified

n =0 analysis we identify the thermal eigenvalue
X, =1/v through a, )0. The crossover to the sur-'g
face of P SG ordering or to the line P-F-AF of
P M ordering (with r~

=—r2) is described by
= $o/v, and the crossover to the surfaces of

P F or P AF ordering is described by X„=$/v.
Viewed from the direction of the paramagnetic

phase, the P-SG-F-AF point is surrounded by sur-
faces of P F, P AF, P SG transitions [see Fig.
2(b) l. These surfaces intersect on lines of P SG F, --
P-SG-AF, or P-F-AF points. In order to find these
surfaces, we first solve Etl. (5.4) for Ar~, ikr2, and
erg, in terms of p,„p,„,and p,„. Uqder RG itera-

ji

tions, p,„p,„,and p, transform into p, ,b' ", p,„bZg

and p,„b ". Fixing b by demanding that the Ar
corresponding to a noncritical variable be of order
unity, and equating the one corresponding to a criti-
cal order parameter to zero, yields expressions for the
various surfaces:

P SG, p.„=Ap.] Q

(5.5)
P F(AF), p,„=+(Bp,,~+Cp,„p,, &)

with the universal ratios

(a)

P-SG-F

(b)

R i = (B + C) /A = —1 +—0 (e)

R 2
= B/C = a„ /a—, + 0 (a)

(5.6)

FIG. 4. The shape of the critical lines in the vicinity of
the P-SG-F multicritical point. (a) Using the "modified

n =0" calculation. (b) Using the "direct n =0" analysis.

Zero order values of R2 are also given in Table II.
The results presented in Table II for the modified

n =0 calculation cause no problem: the thermal
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eigenvalue is easily identified, and all the critical sur-
faces approach the P-SG-F-AF point from reasonable
directions. This is not the case for the direct n =0
calculation, where again we find that both a, and a„
are positive and phase diagrams like that shown in
Fig. 4(b) are implied. Moreover, the case m = I is
even more tricky: the symmetric fixed point, given
in Table II, leads to the same difficulties as for
m =2, 3. For the nonsymmetric one, it is again diffi-
cult to give the results a satisfactory physical interpre-
tation: the eigenvalues are (X; —2)/ =e—1.2592,
—2.6250, —0.1905, and the corresponding eigenvec-
tors are (1, 0.2001, 0.8461), (1, 0.2607, 2.4870), (1,
-5.9240, -0.4378).

VI. DISCUSSION

In this work we studied the critical properties of
random alloys which may exhibit SG ordering. By
MFT we calculated (Sec. III) the global phase di-

agram of such a random alloy, i.e., the transition
temperatures between the various phases as a func-
tion of the averaged exchange couplings and of the
variances of these couplings. It was shown that all
the phase diagrams of Figs. 1 and 2 can in principle be
realized as particular cuts of the global phase diagram.
NNN exchange interactions were shown to be crucial
for the realization of some phase diagrams. We have
demonstrated explicitly (Appendix B) that a mixture
of a ferromagnet with a two sublattice antiferromagnet
will exhibit a SG phase, if the NNN interactions are
weak compared to the variance of the interactions
strength. Otherwise coexistence of ferromagnetic and
antiferromagnetic ordering is possible. This can be
understood by the following intuitive argument: the
NN interactions are the interactions between the sub-
lattices, while the NNN interactions are the interac-
tions between spins in the same sublattice, possibly
favoring both F and AF ordering. At the P-F-AF
multicritical point, the average NN interaction van-
ishes and the F and AF orderings are degenerate, but
T, = T,"")0 due to the NNN interactions. If the
variance of the interactions is large compared to
NNN interactions, it will tend to break the sublattices
locally and lead to SG ordering [Fig. 2(a)]. If the
variance of the interactions is small —the P-F-AF
multicritical point will be obtained [Figs. 1(a) and
1(b)l. In many previous theoretical studies the NNN
interactions were ignored leading to the phase di-
agram of Fig. 1(c) or to that of Fig. 2(a). All experi-
ments of which we are aware (which were discussed
in II), except one, 34 lead to phase diagrams of the
type shown in Fig. 1(a). We conclude that the NNN
interactions are essential for the study of phase di-
agrams of F-AF random alloys. In order to obtain
experimentally a SG phase in F-AF alloy we should
mix materials with weak NNN interactions, or with
AF NNN interactions. " In order to approach ex-

perimentally the P-SG-F-AF multicritical point, one
should mix alloys exhibiting the phase diagram of
Fig. 1(a) with alloys exhibiting the phase diagram of
Fig. 2(a), i.e., one has to mix at least three com-
ponents [Fig. 2(b)]. We assumed that the lattice
structure of all the components mixed to form the al-
loy is the same, therefore materials mixed to form
these alloys should have this property, in order to
avoid structural effects.

A few words should be said here concerning the
assumptions of the present calculations. The main
assumptions have to do with the replica technique
and with the SG order parameters. Sec. III contains a
detailed discussion of our MFT calculation in the lim-
it n 0, and we need not repeat it here. In view of
existing experience, we are inclined to believe that
the qualitative features of the phase diagrams come
out correctly. In Secs. IV and V we showed that the
direct substitution of n =0 in the recursion relations
yields "unphysical" phase diagrams. A modified cal-
culation was suggested, which gave much more
aesthetic results. We offer no real justification for
this procedure except for the heuristic arguments
presented in Sec. IV. Moreover, recent diagrammatic
expansions which avoid the replica method seem to
reproduce the direct n =0 results of Ref. 9. If the
direct n =0 results should indeed be used, then our
calculations leave many open questions, mainly con-
cerning the detailed structure of the phase diagrams
near the multicritical points. Probably, there is no
escape from having regions in which ordered phases
appear at temperatures higher than those in which
the disordered paramagnetic phase appears.

Another question concerns the relevance of results
obtained in 6 —e dimensions to three dimensions. It
has recently been shown, "that the quartic terms in
Q~n, which "re irrelevant near the P SG fixed
point in 6 —e dimensions, remain irrelevant even
below four dimensions for m & m', with 2 (m' & 3
to order e =6 —d. If these results are also relevant
for the P-SG-F and P-SG-F-AF fixed points, then the
qualitative features found near these fixed points
may be relevant for real systems. Moreover, since at
d =3 one has ~ =6 —d =3, it is impossible to know if
the difficulties found near d =6 using the direct n =0
calculation will persist down to d =3.

In any case, although the present study leaves
many quantitative questions for real systems
unanswered, its importance is in pointing at the qual-
itative possibilities. Experiments and direct three di-
mensional calculations should check how many of
these are really realized.
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APPENDIX A: CONTINUOUS-SPIN HAMILTONIAN

We wish to replace the trace over the fixed length variables o (p, i) by an integral over continuous variables.
Using the standard identity

I )

exP —,
'

XS&»S~ —= C„(gdx() exP —,'
XX,(& ')(J~J+Xx'S,

i,j I i,j I

(Al)

for each of the terms in Eq. (2.9), we find

with

z f Q d&„() Q dQ„„() Q dQ„, () p(R)
J ia i4, iaWp f, aWP.

ig, Vkkkk
(

(A2)

3C= —
2 x XE(J XSk (i) Sk (j) —

2 XL» x Qg s(i~)Q)p (j) ——,
' x XL»" X Q» (I) Q» (j)

i,j k a ij asap ij kk' aWP

a&P kk'i a,k
+ln Tr(&) exp X XSk (i) ~ pk (i) + X Qa„(i)qa„(i) + X XQ„„(i)q„„(i)

gs-'p
(A3)

where

[([J»k],„)--'k, T]„-,

L» = [(&J) '(kJ—J T) '],J,
etc. , and Xis given up to an additive constant. To perform the trace over o. we now expand the exponential in

Eq. (A3). Using the identities3k

Tr ~ [qbf (I)pf (I)l = gkk'/m

Tr&[q~s (i) qg
s (i)] =1/lm

Tr~( q~„q„„)=1/m',

Tr~(q a&q~yq ya ) = 1/l2m3

Tr (q s@-Py„"s)=1/lm

Tr~(@~(;)@~(()@"(()g"(,)) =(1+25„„)/Im(m+2)+(I —1)/Im' .

(A4)

etc. , we end up with

X=—,' QXE»XSk()) Sk(J) ——, XL~~ X Qg~&(i)Q„p(j) —,' QXL~J" X Q~„' (I) Q~„(j)
i,j k a Ij aWP ij kk' a&P

ia, v gi, V

+ XX~Sk(I)~'+, X X [Q„s(I)]'+,X X g [Q„', (l)l'+" (AS)

Fourier transforming the variables, Sk (i) Sk (q), etc. , we find

.3!=—T' J X(rk+Akq + ) Sk (q) Sk (—q) —
2 (rq+Aqq + ) X Q»S(q)Q)S( —q)

qk, a
2 4 ~q

asap

(F kk +g kk' 2y. .'. ) X Qk" as( )Qkkas( ) +gp
q

asap

P, V

(A6)
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where J = (a/22r)~ JI d q with { q { & A, 3." in-
q

eludes the higher order terms, and

rk = [kl) T/ Jk (0) —1/m] (a /22r)

Jk(q), h(q), and 5kk(q) are the Fourier
transforms of [Jjkk]„, 5„", and /3, jkk. From the
definitions (2.5) and (2.6) it is obvious that

J &122 Jkk (Ag)

rg = [(k T) /8 (0) —I /Im ] (a/22r)

/~Q ——[ (ks T) / g ""'((1)—I/m2] (&2/22r)"

etc. (a is the size of the magnetic unit cell), while

Therefore, one always has rr2 ( re, and Q always
orders before Q. We can therefore treat Q with a
perturbation expansion, and eliminate it from K
This will result in some shifts in the coefficients of
X'. Explicitly, X' has the form

&'= —$J g J gvkkSk(q)). Sk(q2)Sk(q3). Sk(—ql —
q2 'q3)

a 1 2 q3 k

+ 2 X Vkk'Sk (Tql ) ' Sk (q2) Sk'(q3) ' Sk (—ql —
q2 —l3)

k Wk'

+4 X Vkk'Sk~(ql ) ' Sk'(q2) Sk (q3) Sk'( ql q2 q3)
k Wk'

"XXf, f, &&:.'(i&i)Ã."(iTi&Q.";&—
i&i

—
i&i&

p, vq apy

X "k XXf f Qg (7i&i)&k"(i&i)&i"'&—
iTi

—i&i) +
k pv &p "1 "2

with (if we ignore the shift resulting from the elimi-
nation of Q and of irrelevant AF orderings)

vkk= vkk = vkk = [4lm (m+2)] '(l2/22r)
(AIO)

)v = I 'm '(a/2—n)', )vk = —(6Im') '(a/22r)'"

etc. One can easily check that the elimination of Q
leads to a negative shift in vkk leaving unaffected vkk

and v~k. Note that the signs of ~ and wk are arbi-

trary, since we could write Eq. (A3) with the opposite
signs in the exponential. We choose the signs to be
as indicated in Eq. (A10), in order to have positive
values of (Q'") generated by ordering of (5 ).

The explicit form for 3C given here contains only
second cumulants of the distribution of the random
exchange variables. If this distribution is non-
Gaussian then higher cumulants will contribute to the
various coefficients. These are irrelevant, unless
they cause a vanishing of some of the coefficients al-
ready given, in which case higher-order critical points
may arise. We ignore these possibilities here.

APPENDIX 8: INFLUENCE OF NNN INTERACTIONS

In this Appendix, we work out a simple example,
demonstrating that all the sections of the phase di-
agram depicted in Figs. 1 and 2 can in principle be

obtained in'experiments. Assume we treat a d-

dimensional lattice with NN and NNN interactions
only. We investigate concentrations for which only
the ferromagnetic (k =1) and the simple two sublat-
tice antiferromagnetic (k =2) types of order are
relevant, so that I =2. In this case [See Eqs. (2.11)
and (2.12)],

[Jl]-=pl JF + (I —p))4 (B2)

so that Tcl = Tc2 for pl =J„/(J„—JF). If J2 )0 is not

k2& Tc (Cl [Jl],„+C2[J2],„)/m

ks Tc = ( Cl [Jl] „+C2[J2],„)/m (Bl)

k, T, = {(C,[aJ,2],„+C, [aJ,2],„)/2m2]'~2,

where J] and J2 are the NN and NNN exchange coef-
ficients and C~ and C2 are the corresponding coordi-
nation numbers [for a hypercubic lattice, Cl =2d and
C2 ——2d(d —1)].

If J2=0 then clearly Tc can be equal to T~ only if
Tcl = Tc2 =0, whereas TP )0. Therefore, Fig. 2(a)
results, as found by Chen and Lubensky. 9 If NNN
interactions are introduced then T~ = Tc implies
[Jl],„=0, ksTcl =k23Tc = C2[J2]»/m This ma.y be
higher than k~T~, implying the phase diagram of Fig.
1(a).

Assuming a probability p~ that J~ = J~ & 0 and a
probability 1 —p~ that J~ = J~ &0, we find
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sensitive to the identity of the ions then
kB TC ks TC C2J2/m ks TC (Cl JF I Jgl/2m')'",
and one can estimate when T~ = Tc & T~. Thus, a
ferromagnetic average NNN interaction favors a sit-
uation ~here the F and AF phases coexist. If we in-
troduce an additional component into the alloy,
reducing the average NNN interaction, one may
reach —as a function of the concentration p of this
ingredient —a point at which Tc = Tc = TP,

' i.e., the
point P-SG F AF -[F-ig. 2(b)]. The global phase di-

agram, exhibiting all possible multicritical points, can
thus be realized in the T —p1 —p2 space.

APPENDIX C: MINIMA OF THE FREE ENERGY

8(F/nks T)
9M2

r& +2v&&M + (n 1)w]g (C8)

The appropriate second derivatives are

These solutions are minima if the determinants of
all the principal minors of the matrix of the second
derivatives of F with respect to M, N and Q are posi-
tive definite. Clearly, P is a minimum if r1, r2, r~ & 0,
and SG is a minimum if r1, r2 & 0 and rg & 0. To dis-
cuss F, replace Eq. (Cl) by (note that N =0 and
r2) 0 in F)

In this Appendix we follow the recipe outlined in
Sec. III, minimize the free energies (3.2) and (3.8)
for n &2 and let n 0.

For the Ising (m =1), Eq. (3.2) yields

8(F/nks T)
au

= [r~ +4vttM~+4v~2N2+2(n —1)w~g]M

(cl)

'd (F/nks T)
a(M2) ~

8'(F/nk, T)
8Q2

8'(F/nk, T)
8M28Q

= (n —1)[(n —1)w~~/2vtt +h, ~]

(c9)

8(F/nks T)
9N

[r2 + 4v2$N +4v\2M' + 2(n —1)w2Q]N and the appropriate determinants are

=0 (c2)
d( =2v)), d2=+2v))(n —1)h) (C10)

=(n —1)(rgg+3w Q + w M + w2N2)
8

=0 (c3)

b, = ro —(n —1)w,'/(2v)j)

Q, =(b, +3 w w~rt/v~t)'~

(c6)

antiferromagnet (AF), replace N ~M, 2 ~1 in Eq.
(C6), and mixed (M),

Q = [ b+ (b + 12 w C) '—]/6 w

b = rtt
—(n —1)(w~ v22+ w2 v~t —2v~2w~ w2)/2A

C = [(w~ v22
—w2v~2) r~ + (w2vtt —w~ v~2) r2]/4A '

(C7)
M = [r2vq2 —r~v22+2(n —I) (v~2w2 —v22w&) Q]/2A

N = [r~ v~2
—r2v~~ +2(n —1) (v~2w~ —v~~w2) Q]/2A

A V11 V22 V12
2

The extrema are thus as follows: paramagnet (P),
M=N=Q =0 (C4)

spin glass (SG),
M = N =0, Q = ro/3 w— (CS)

ferromagnet (F),

N =0, Q =(—bi + bi)/6 w

M' =—[r) +2(n —1)w, g]/4v„

Hence, for n ~ 2, we must choose the positive sign
of h~ in Eq. (C6).

The calculation for AF is similar. For M, we can
consider derivatives with respect to both M' and N .
The resulting determinants are

d~ =2v~~, d2=4A, d3=+4A (n —1)5, (Cll)

where & = (b'+ 12 w C) '~' is the square root appear-
ing in Eq. (C7). Again, we conclude that the positive
sign of this square root must be chosen. In addition,
we conclude that the mixed phase exists only if
A & 0. This condition is the same as noted in II for
obtaining the phase diagram of Fig. 1(a). If A (0
then Fig. 1(b) results.

In the vicinity of the paramagnetic phase, r1, r2, or
rg are small. Expanding Eqs. (C6) and (C7) in
powers of these, putting the positive signs for 41 and
for 6 and letting n 0 yields Eqs. (3.4) and (3.5).

Note that the transition F P (or AF P) is
second order only for b1 & 0. For n & 1, if rg is
small, b~ can be negative and therefore Eq. (C6) can
not be used to determine Q. Higher-order terms in
Mand Q must be added to F in order to find details
of the transition, which will have to be first order.
This need not worry us in the limit n 0.

We now turn to the case m & 1. The equations for
the extrema of F [Eq. (3.8)] in the M phase now
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become,

'd(F/«s T) 2 2 — 2 2 2 ' 2

9M
= —[r~+4v~~M +4v»N +g v~zN cos 28+2(n —1)wt(Q~cos 8+Qzsin 8+Qtzsin28)] =0, (C12)

8(F/nks T)

9%

8(F/nks T) = (n —1) [rgQ~+3 w Q~z +(w~Mz+wzN') cos'8l =0,
8

'd(F/nks T) = (n —I) [roQz+3 w Qz + (w~M + wzN ) sm 8] =0

(C14)

(CIS)

8(F/nks T)

0Qiz

8(F/nks T)
&Qz

8(F/nks T)
88

= (n —1) [2r8Q, z+ (w, M' —wzN') sin28] =0 {C16)

= (n —1) [roQz + 3(m —2) w Q3 ] —0 (C17)

= —S v» M' N'si n48+(n —I) [(w~M'+ wzN') (Qz —Qt) sin28+2(w~M' —wzN') Q»cos28] =0 .(Cl8)

Substitution of Eqs. (C14)—(C16) in Eq. (Clg) yields

([ro+3 w (Qt+Qz)][(n —1)(w~M —wzN ) +16v»M N ro] —(n —1)ro(w~M + wzN ) }sin48=0, (C19)

—32 V)2M2N2 (C20)

and all mixed second derivatives with respect to 8
and one of the other variables vanish. Thus, if Eq.
(C20) gives a negative result, then we need not con-
sider 8=0 any further. If Eq. (C20) gives a positive
result, we must consider the remaining variables. If
8 =0 then Qtz =0 and the equations for Qz and Qz
decouple from the other equations. We thus consider
only M, N, and Q~. In terms of these variables, and
8=0, Eq. (3.8) reduces to Eq. (3.2) (with Q~ Q
and again v~z viz+2 vzz). The mixed phase will

hence 8=0 (M llN) or 8=
4

m ( MzN ). In order to

determine which ordering actually occurs one should
examine the matrix of the second derivatives, in both
cases.

For 8=0,

&'(F/«s T)
Qg2

=2 (n —I) (Qz —Qz) (w~M + wzN )

thus exist only if v~~vzz ) (viz+2 vtz)'. If these vari-
ables are not too far from their initial values, Eq.
(A10), then this condition clearly does not hold.

For 8=zr/4, Eq. (C18) yields Qt =Qz. Contrary to
the situation for 8 =0, we may now have Q~z %0.
However, Eq. (C16) is not always sufficient to deter-
mine Qtz'. For large positive ro, Qtz is very small. If
one ignores Q~z then Eq. (3.8) again reduces to an
expression very similar to Eq. (3.2), and a solution
can be found, similar to that discussed in II. For
smaller ro, Eq. (C16) yields

Qtz = —,' (wtM' —wzN )/rtt

and this can be substituted in Eqs. (C12)—(C14),
which can then be solved in a way similar to that out-
lined above. However, the fact that rg appears in the
denominator indicates that some trouble will be en-
countered as rg 0. Indeed, when rg becomes small
one must include in the Hamiltonian higher-order
terms in Qtz, i.e., terms of quartic order (e.g. , Q&z).
We leave such a detailed analysis for future studies.
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