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Charge-density eaves in two- and three-dimensional jellium
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The stability of the electron gas in jellium against the formation of charge-density waves is

studied using the density-functional formalism. Charge-density waves occur in three-

dimensional jellium for r, ) 26 and in two dimensions for I; & 17 in our approximation. The

theory is applied to two-dimensional electron gases on liquid-helium surfaces and in semicon-

ductors.

I. INTRODUCTION

The nature of the ground state of electrons in

solids has long been investigated using the "jellium"
model in which the electrons move in a rigid uniform
positive background. At high electron density n,

(i.e. , small r„where , mr, ' = lt/n—)t the ground state

is the usual spatially uniform paramagnetic electron
gas which shares many properties with electrons in

metals, These properties are dominated by the large
zero-point kinetic energy raising from Pauli principle.
At low densities the electron-electron interactions be-
come relatively more important, and we can expect
the spatial density to become ttonuniform to minimize
the energy by keeping electrons out of one another' s

way. This was first pointed out by Wigner' who hy-

pothesized a crystallized phase of electrons" at very
large r, .

It is natural to inquire about the nature of the on-
set of Wigner crystallization and, in particular, wheth-
er there are precursors to the crystallized phase: that
is, inhomogeneities driven by the Coulomb repulsion
of electrons. Overhauser4 considered such effects for
a model different from jellium. These are called
charge-density waves (CDW's). In Overhauser's
model the background is not rigid, but completely de-
formable (as the ions in alkali metals might be). If
the electron gas is treated in the Hartree-Fock ap-
proximation it is unstable against CDW's at any den-
sity, though correlation probably moves the instability
to low density. '

In this paper we inquire when CDW instabilities
occur in jellium and how they set in. It is clear that
such instabilities must occur at some density because
the Wigner crystal can be regarded as a CDW state in

extreme form. This point has caused some confusion
in the past. 6

Our technique is to use the density-functional
method. This takes into account exchange and

correlation in an approximate way (the local approxi-
mation) and is uniquely suited to calculate energy
differences between uniform and nonuniform states.
In Sec. II we discuss the method and outline how we

apply it to our problem.
Our motivation in this work is twofold. First, we

are interested in the structure of the theory and how
it compares to previous theories of the three-
dimensional Wigner crystal and charge-density waves.
These points are discussed in Sec. III. We also brief-
ly discuss possible magnetic states such as spin-
density waves and how corrections to the local ap-
proximation might modify our result. Second, we are
interested in physical systems that approximate jelli-
um and which might show CDW instabilities of the
sort we discussed here. The systems we are aware of
are all effectively two dimensional. Section IV out-
lines our results in two dimensions applied to cases of
experimental interest, namely, inversion layers and
heterostructures in semiconductors and surface
bound electrons on helium. Section V gives a brief
summary.

We should point out that all the examples of
CDW's yet observed occur in systems very unlike jel-
lium such as transition-metal dichalcogenides and
certain chain compounds. It is widely believed that
CDW's in these materials are driven by peculiar
features of the Fermi surface and/or a strong
electron-phonon interaction. We take no account of
such effects in this paper.

II. FORMULATION OF THE THEORY

We seek to find the spatial nature of the ground
state of no electrons per unit volume in a rigid posi-
tive background. We compare the energy of the uni-
form state with certain inhomogeneous states where
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the density takes the form

n(r ) = np+n& cosq r

This is a CDW of wave vector q and amplitude n&.

We need the ground-state energy for various
values of np as a function of the deformation. The

function required is provided very conveniently by
the density-functional theory of Hohenberg and
Kohn~ and by Kohn and Sham. The theory tells us
that the ground-state energy can be written to a good
approximation as follows (atomic units are used
throughout this paper):

[n ( r t) —n p] [n ( r 2) —np)
E(n(r)) =T+— dr&dr2+ n(r)e„,(n{r))dr

2
(2)

In this expression T is the kinetic energy of a system
of noninteracting electrons which are subjected to
sufficient external potentials to acquire the density
» ( r ) and «„,(n) is the exchange and correlation en-

ergy per particle of a uniform electron gas of density
n, This expression rests on firm theoretical founda-
tions" for systems which are nearly homogeneous
(which is our interest here) and has been tested in a

wide variety of physical situations.
For low density there are some problems connected

with the last term of Eq. (2) which uses the "local ap-
proximation" for exchange and correlation, that is,
the integrand depends only on n (r). The local ap-

proximation works very well at high densities but its
validity at low densities has not been tested. As we

will see, we treat e„, in such a way that the theory is
correct for the extreme low-density limit (the Wigner
crystal). We will discuss this point further below.

There are two ways to apply the theory to our
problem depending on how the CDW instabilities oc-
cur. We know that for np large there is no deforma-
tion {n ~

=0). At some critical value, np = n„defor-
mation sets in and it may occur continuously (nt
small for np= n, —5, a second-order transition) or
discontinuously (n~ finite for np = n, —5, a first-order
transition). We consider these two possibilities
separately.

(i) If a second-order transition should happen to
occur our approach can be the classic method of Lan-
dau and Lifshitz. ' We note that n~ be considered to
be the order parameter of our transition. Clearly,
p(n) is even in nt so that S /Snet =0 for nt =0. If
this extremum of the energy is to be stable
S'p/Snt' )0; if S'c/Snt' (0 the system will simul-
taneously distort and a CDW will set it. Thus, the
signal of a continuous transition is the vanishing of
S2a/Snj~ Now fro.m Eqs. (I) and (2) and a brief cal-
culation the transition will occur if

1 5e 1 5T d (ne„,)0=— =— +e(q) +0 Qn ] 0 )')] dn2 ~p
(3)

is the volume (or area) of the system. The right-
hand side of Eq. (4) is simply related to the dielectric
function; Eq. (4) corresponds to setting a —I =0.

The first term in Eq. (3) is well known in elec-
tron-gas theory: it is the inverse of the density-
response function, Xp, of the free-electron gas. This
identification follows at once if we recall that the
change in energy for the free-electron gas when dis-
torted is

SE = nt /2xp(q)

g[f(k) -f(/'+q) [
xp(q) =

«(k) -«(k+q) (6)

Here f is the (zero-temperature) Fermi function and

« the free-electron energy. The function Xp is
evaluated in many standard references in two" and
three' dimensions.

Thus we will have a second-order transition if

Xp

d (n axe) + v(q)
dn

(7)

This is a form of the Chan-Heine criterion for a
charge-density wave. Since Xp is positive Eq. (7) is
satisfied only if the negative exchange-correlation po-
tential is larger than u(q). The authors of Ref. 6
point out that this is unlikely at metallic densities,
but it is not at all impossible in principle, as we will

see.
(ii) If a first-order transition occurs, a more diffi-

cult calculation must be performed. In this case
there are two separate local minima in the energy, at
n ~

=0 and n ~ finite. A t the transition the value of
the energy will be the same for both. We are led to
evaluate E(n) for various values of n~ and q. This is
done using the Kohn-Sham method. ' We posit a
symmetry-breaking potential $ = $~ cos(qz) and solve
the associated one-dimensional band-structure prob-
lem. If p are the wave functions and q(k) the corre-
sponding energies

4~~ '4

2'/q
(4) T=xq(k) —Jyn dr

for three and two dimensions, respectively. Here 0 By varying $~ and q to minimize E(n) we can locate
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the transition. This technique will, of course, find
second-order transitions too, if they occur.

There is a missing element in both these tech-
niques, namely, the function ~„,(n) for t~'s below

metallic densities. We expect the densities for which
CDW's occur in jellium to be far out of the range of
validity of RPA-like perturbation treatments precisely
because CDW's in jellium signal the dominance of
potential over kinetic energy. The present authors
investigated this density range in the course of a

study of the Wigner crystal. ' The essential point to
be made is that ~„, reflects the nature of the correla-
tions of the electrons; i.e., at sufficiently low densi-
ties electrons avoid one another and are on the verge
of becoming localized. If we wish to describe such a

situation with a density-functional theory ~„, takes a

special form because isolated electrons have no

exchange-correlation energies and also no self-
electrostatic energy. We choose ~„, so that these en-

ergies cancel (as they do in Hartree-Fock theory).
The remarkable fact is that a local ~„, can be chosen
to cancel the nonlocal Hartree term for a very large
class of charge-density profiles.

The forms to choose are in, atomic units (1 a.u. =2
Ry):

t
—1.668'I'

lim e„,(n) ='
—1.09n'

(10)

for two and three dimensions, respectively. As Ref.
3 makes clear these are the best local ~„,'s as» 0.
Since we will always work at very low densities, we

use these limiting forms in our calculations.

III ~ RESULTS IN THREE DIMENSIONS

(i) Dielectric-function method. It is a simple matter
to solve Eq. (7) using the standard form' for Xo.

The equation is most conveniently rewritten

F(x) =9 72n' /(1.47 —x . )

where

F( )
1 1 —x21 1+x
2 4x 1 —x

x =c//2kr (13)

and kF is the Fermi wave vector.
For large density there is no solution to Eq. (11),

and for small density two solutions; see Fig. 1. The
instability occurs when a solution starts to exist. We
find this to be at r, =25.4 and q/2kr =0.99. Note
that q = 2kI for this transition and that we have a
situation reminiscent of Overhauser's Fermi-surface
instabilities.

(ii) First-order transitions. In our previous work on

x=cl/ZhF

FIG. 1. Graphical solution to Eq. (11). Solid line:
Right-hand side (proportional to Xo). Dashed lines: Lef't-

hand side for no above and below the transition.

the Wigner crystal we found a first-order transition at
r, ——26, but in that work we only investigated crys-
tallization into a close-packed structure. One of our
motivations in this paper was to see whether the or-
der of the transition would change if more general
symmetries like CDW's were allowed.

We solved numerically for the band structure in-

duced by a self-consistent CDW potential as outlined
above. We found a first-order transition once more;
however, it occurs at only slightly higher density than
the second-order calculation would indicate, and at
essentially the same q; i.e. , r, =25 and

q =(0.99)2k .
We conclude that the simple calculation using Eq.

('7) gives reliable results in this case, even though the
phase transition seems to be first order.

(iii) Magnetic states. We have not yet considered
possible magnetic states of the electron gas. Early
work on this subject has been extensively reviewed

by Herring, ' who concludes that while uniform fer-
romagnetism is unlikely for any density, states of
nonuniform magnetization but uniform density (simi-
lar to the spin-density waves which are observed in

Cr) cannot be ruled out.
We have not included magnetic states in our f'or-

malism. We should note that this is not necessarily a

defect: The density-functional theory should, in prin-

ciple, yield the correct spatial state provided the
correct ~„, is inserted. In practice better physical in-

sight is provided by using the spin-density-functional
formalism which yields the magnetic state as a by-

product. We have not used this method because we
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d'(n a«)
Xp(q) dm'

(i4)

where m = n+ —n is the amplitude of the spin-
density wave tcf. Ref. 6, Eq. (20)]. Since Xp has its
maximum at q =0 the instability sets in at q =0,
which corresponds to ferromagnetism. The key as-
sumption made in deriving Eq. (14) is the absence of
nonlocal (q-dependent) terms on the right-hand side
which differ for spin up and spin down. Since at low

densities correlations keep electrons apart most of the
time and reduce the spin-dependent exchange terms,
the assumption is probably reasonable. The same
reasoning implies that the right-hand side of Eq. (11)
should be quite small.

(iv) Nonlocal corrections. In our view, the weakest

have no reliable way to find e„, as a function of the
densities of spin-up and spin-down electrons at low

total density.
Related questions have been investigated recently

by Ceperley" and Perdew' and by Perdew and Dat-
ta." Ceperley did a correlated basis-function treat-
ment involving an extensive numerical calculation.
He finds a ferromagnetic transition at r, = 26 and a

Wigner crystal for r, & 67, in clear disagreement with

this work. We believe that Ceperley systematically
underestimates the stability of the slightly distorted
state because he adopts crystal wave functions ap-
propriate to an extreme low-density limit with a large
amount of localization and magnetic order built in

(i.e., an insulating state). In our previous work on
Wigner crystallization' we argued that near the transi-
tion the electrons would not be particularly localized
even though their density is not uniform and that
overlap effects would make treatments such as
Ceperley's unreliable except at very low density. In
fact, it is possible that the phase Ceperley treats is

separate from the one we are concerned with here.
That is, there are possibly two phase transitions, one
to an inhomogeneous state (perhaps near r, =26)
and another, at lower density (probably signaled by

the appearance of magnetic order) to a truly localized
state.

Perdew and Datta'5 do dielectric-function calcula-
tions similar to ours; however, they use e„,'s extract-
ed from Ceperley's work, and allow for magnetic
transitions in spin-density-functional formalism. In
the local-spin-density approximation they find no
disagreement with our results: Their treatment yields
a CDW transition around r, = 22 and no spin-density
waves. The only magnetic transition found is the
possibility of a uniform ferromagnetic phase for
22 & r, &67 if certain approximations for a nonlocal

e„, are used.
Incidentally, it is easy to see why true spin-density

waves cannot occur in a theory of the present sort:
The analog to Eq. (7) for a spin-density wave is

point in our theory is our use of a local density form
for e„,. The development of corrections to the ap-
proximation is the subject of intense current
research. '

The most commonly used form for such a correc-
tion is the gradient approximation which adds to Eq.
(2) a term of the form'

(i5)

IV. RESULTS IN TWO DIMENSIONS

(i) Dielectric-function method. In the previous sec-
tion we showed that the dielectric-function method
and the more general treatment allowing for finite
distortions yield very similar results for three-
dimensional jellium. For the two-dimensional sys-
tems discussed in this section only the simpler
dielectric-function calculations have been made:
These should at least give a lower limit to the transi-
tion density.

For an ideal two-dimensional gas an equation
analogous to Eq. (11) can easily be written

F(x) =2.51a' /(1.00 —I/x)

F( ) tix ~1
[I —(I —I/x')'/'x ) I

(16)

(17)

The solution proceeds as before, and we find an
instability at n =1.7 x 10 3 a.u. , or r, =17. (In two

dimensions r, is defined by vrr, '= I/n. ) Cepertey"
finds r, =33 for his two-dimensional transition, and,
again a magnetic transition near r, =17.

Electrons in surface states on liquid helium are a
very good approximation to an ideal two-dimensional
electron gas, and recent experiments indicate that at

The function g(n) is known at high densities and at-
tempts have been made to extend its use to metallic
densities, ' with, however, no striking success.

We can only comment on a constraint on the func-
tion g (n) which is implied by the point of view of
this paper. If Eqs. (2) and (15) are to describe the
transition to an inhomogeneous state and, eventually,
Wigner crystallization there is a relationship between
g(it) and a„,(n) for small n To b.e specific, in the
Wigner crystal electrons are isolated from one anoth-
er and are well described by a product of independent
wave functions. The self-electrostatic-energy term,
the self-exchange-correlation term, and the gradient
term must exactly cancel when averaged over these
wave functions. Note that we derived the limiting
forms of Eq. (10) by forcing only a„, and the electro-
static energy to cancel. We should point out that the
Iow-density form of g(n) proposed by Perdew and
Datta' is not consistent with their ~„, according to
this criterion.
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FIG. 2. Hypothetical phase diagram for electron crystalli-
zation.

low enough temperatures Wigner crystallization oc-
curs. " The transition observed is not the one we
have been discussing which corresponds to the rnelt-

ing of the crystal due to zero-point kinetic energy.
Rather, what has been observed is the melting due to
thermal effects at very low densities. The sketch of a

phase diagram in Fig. 2 should make the relationship
clear.

If we apply our theory we predict that crystallized
surface electrons on helium should melt if the densi-

ty is raised to about 4 x 10' cm . Experiments in

this system unfortunately can only be carried out at
densities below about 10 —10 cm ', it is probably
out of the question to observe the higher-density
melting transition for helium surface electrons.

Another system of great interest in this connection
is electrons in inversion layers in silicon. Our theory
must be modified in two ways to apply here: First a

trivial modification is necessary because inversion-
layer electrons within a crystal should be treated in

the effective-mass approximations with a statically
screened Coulomb interaction. This is quickly ac-
counted for by rescaling units'. now [for Si(100) sur-
faces] we take m, = e'/K=f =1, where m, is the
transverse mass in the conduction band and

t
K =

) ( 6s; + Ep) = 7.8 is the average static dielectric

constant of Si and SiOq.
A less trivial change must be made to account for

the multivalley band structure of Si. It is reasonable
to suppose that the kinetic-energy term in Eq. (2)
will be strongly affected by the valley degeneracy; in

fact Twill be reduced by the factor V ' ' where Vis
the number of valleys. However, e„, should hardly

be affected at all because, as above, we are dealing

mainly with corrections which should not depend
strongly on valley labels. In analogous cases in stud-
ies of the electron-hole liquid" it has been found that
even at high density the sum of exchange and corre-
lation energies does not depend much on the distri-
bution among valleys. Our approximation is to leave

e„, unaltered in the multivalley case.
The dielectric function calculation can now be

redone for Si(100) inversion layers. We find a tran-
sition at », =9.8 &&10 =2.1 X10' cm; i.e. , r, =18.
The reason why the multivalley structure hardly
shifts the transition in reduced units is that there is a

competition of two effects: The reduction in kinetic
energy due to the many-valley structure and the
reduction in Fermi wave vector which means that at
fixed q the argument, x, of Xo will be larger. For
V =6, we find r, = 18, again.

This transition may be difficult to observe for the
opposite reason from the one above: The range of
experimental densitites is usually higher than n, . At
low density it is believed that single-particle effects
such as localization due to the random field of impur-
ities near the interface dominate the electronic prop-
erties. ' Conceivably the problem could be overcome
by careful sample preparation.

We should note another difficulty in making an ob-
servation on this system: We require T ( T~ for the
electrons to remain degenerate. At n, we find
Tp=1.5 K.

Another candidate two-dimensional system is the
electron gas in semiconductor heterostructures such
as GaAs-GaA1As. For this case the situation is

simpler than in Si because GaAs is a direct-gap,
single-valley material. We use m'=0. 067m, and
K =12.9 to arrive at the conclusion that instability
should occur for n, = 1 x 10 cm . Note that we use
the low-frequency dielectric constant: The effects of
ionic polarization are fully taken into account in this
way. At this density T~ =0.4 K. To our knowledge
experiments at this low temperature and electron
density have not been performed.

(ii) Valley densi(y waves. For the case of Si inver-
sion layers several authors" "have suggested anoth-
er instability analogous to a spin-density wave, name-

ly, a state where the valley occupancy varies in such a

way as to leave the total density constant. In the
low-density regime, however, such theories are open
to the same objection as spin-density waves: In a re-

gime where exchange is less important than correla-
tion the interaction will not depend much on valley
labels. In that situation as in the magnetic case, the
leading instability will probably be the analog of fer-
romagnetism, i.e., the uniform piling up of electrons
in a valley, and even that will tend to be suppressed
by correlations.

The detailed calculations of Rice and Beni' on
Si(111) inversion layers tend to support this qualita-
tive argument even in a rather high-density regime.
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Kalia and Quinn22 explicitly demonstrate that the
difference between intravalley and intervalley ex-
change potentials drives the transition: We believe
both terms in this quantity to be quite small. If
correlation is included the difference remains small

though each term may be sizable.
A final comment should be made on the change in

our results which might occur due to the finite thick-
ness of the electron layers in the quasi-two-dimen-
sional systems we have discussed. As Jonson 4 and
others have pointed out, for small interelectron spac-
ing the ground-state motion normal to the layer leads
to an interaction far from 1/r, and changes in many
collective properties. However, this effect is negligi-
ble at low densities since the electrons would very
seldom be in one another's vicinity. In fact, we
would expect corrections to our theory to be propor-
tional to g= tn' ' where t is the layer thickness. For

0
example, for a heterostructure with t =100 A,

g =10 ' at the COW transition. The situation is

similar for Si inversion layers' . In this system the in-

terparticle potential approaches e /Kr if r )) tas,
we assumed above. For electrons on liquid helium n,
is so large that our approximations would be invalid

there, but in any case, there seems to be no hope of
attaining such densities in practice.

V. SUMMARY

We have applied the density-functional theory to a

variety of situations to attempt to find a case where
the ideas of Wigner on electronic instability against
crystallization might be seen to apply. For the three-
dimensional case we have no particular hope that this
sort of charge-density wave will ever be observed.
The results of Sec. III are mainly of interest as an ex-
ample of the differing results that can be derived
from different approaches to the many-electron prob-
lem.

Two-dimensional electron gases are quite a dif-
ferent case: Many of the cases we investigated are
tantalizingly close to the practical regime of density
and temperature. We believe that low-density, low

temperature experiments on inversion layers and
heterostructures are well worth pursuing.
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