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Simulation studies of a model of high-density metallic hydrogen
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Upper bounds for the ground-state energies of liquid and solid phases of metallic hydrogen and metallic
deuterium have been calculated with variational methods and Monte Carlo techniques. At four densities

(r, = 0.8, 1.2, 1.36, and 1.4&8) crystalline phases are clearly preferred in the sense that the energy difference,
when compared to the liquid, is in excess of the errors inherent in the numerical procedures. At a fifth
density r, = 1.6, the energy differences between solid and liquid phases are smaller than these errors.

The purpose of this Comment is to present the
results of simulation studies of the ground state of
a model. of metallic hydrogen. Let r, be the stan-
dard measure of density {aor,=[3/(4vn)'~3], where
n is the electron or proton density}. We seek to
answer the question: Is metallic hydrogen in the
range 0.8 & r, & 1.6 a liquid or a crystal in its
ground state? There have been a number of cal-
culations made on the equation of state of metallic
hydrogen' and also of various properties of postu-
lated crystal phases, usually monatomic Bravais
lattices. Generally metallic hydrogen has been a
subject of interest both because of its astrophysi-
cal importance and because of its theoretical nov-
elty. As far as we are aware the simulation stud-
ies to be reported below are the first such calcul-
ations of the structure-dependent part of the total
energy and pressure of a possible simple liquid
phase. At four selected densities (r, =0.8, 1.2,
1.36, and 1.488) a crystalline phase has the lower
energy whether we are dealing with metallic hy-
drogen or metallic deuterium. At a fifth density
(r, = 1.6) liquid and crystalline phases have energy
differences that are less than the estimated errors
in the numerical procedures of our method. In this
method, accurate ground-state variational calcul-
ations for both phases are carried out, and by
comparing the energies at fixed r„we may deter-
mine which is preferred. Although we cannot claim
complete accuracy for these results, based as
they are on the variational principle, there are
some arguments which strongly support our con-
clusions. These are presented below.

Within the adiabatic approximation we write our
starting Hamiltonian for protons or deuterons as

of freedom have been integrated out. In the struc-
ture-dependent part H„ the term V is represented
by a sum of density-dependent pair potentials

V= 4) ri), t', (2)
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where 4 is a screened proton-proton interaction.
At the level of linear response we take 4 to be the
potential used by Straus and Ashcroft' in the self-
consistent harmonic approximation to dynamic
crystalline metallic hydrogen. For a Lindhard-
type dielectric function' (corrected for exchange
and correlation ), the pair potential has the char-
acter shown in Fig. 1. Note in particular the lo-
cation of a typical nearest-neighbor separation
(e.g. , fcc) reflecting the influence of Z,(r,}. Be-
cause the screening is density dependent, 4 de-
pends in a fairly complex fashion' on r, .

The Hamiltonian we use is not exact, either for

I
I
I

I0 ~ I ~ I ~

0 0.5 I.O
I ~

l.5

where m is the mass of the proton (mass 1) or
deuteron (mass 2} and ED is the sum of all terms
independent of structure after the electron degrees

r (A)

FIG. 1. Effective pair potentials and their fit to the
Yukawa form for (a) &~=0.8, (b) r~=l.36, (c) x~=1.6.
Vertical dashed line shows nearest-neighbor separation
for face-centered-cubic structures, and solid lines are
the fit to the Yukawa form.
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the proton fluid or the proton crystal. There are
terms more complex (than those retained in 4) that
arise when the electronic degrees of freedom are
eliminated via perturbation theory. The effects of
some of these have been estimated in a recent pa-
per by Chakravarty and Ashcroft, s who show that
by incorporating the first nonlinear response cor-
rection to H„ the possibility arises that near r,
= 1.64 metallic hydrogen is a ground-state liquid
metal. If response to all orders is included, ' pair-
ing of the protons may still occur for r, &1.2.
These effects are not included in the present model
for H, .

We have carried out variational calculations for
a system of protons described by B„but first re-
garded as an assembly of "bosons. " The results
of these calculations permit us to construct an ar-
gument that determines the relative stability of the
liquid and solid phases of the protons when subse-
quently treated by Fermi-Dirac statistics. This
method, though indirect, is simple to carry out in
practice because of the ease in treating boson sys-
tems by variational means. Thus, in the liquid
(L) phase we use a trial Jastrow wave function:

0' =
][[[eee[~(, —ee l']] g' (4)

which is neither symmetrical nor antisymmetrical
with respect to permutation of the particles on the
lattice sites {@J.(We shall see shortly that the
matter of symmetry has only a small effect on the
energy of crystalline phases. } The parameter c
in (4) is a localization parameter and at each r, is
added to the parameters of g in a complete vari-

=exp — U r j,
j&j

where the "pseudopotential" U is chosen to have
the form

U(r„) =(A/r„}'exp(-ar„)h(r„) .
The choice of U was made for reasons of flexibility
since it was necessary for us (i) to explore a rel-
atively wide range of function shapes for the vari-
ational wave function and, (ii) to investigate effects
of the density dependence of the pair potential 4.
Note that the parameters of tf~ (i.e., A, a, n, and

P) can depend on r, . At each choice of r, (or den-
sity) the minimization procedure is carried out
within the parameter space of A, a, e, and P. To
ensure that the resulting upper bounds on energy
are rigorous, the quantity h =exp(-brI~) is so cho-
sen that U approaches zero smoothly at the edge
of the simulation cube.

For the crystal (C) phase (taken here as an fcc
lattice), we adopt the standard form (the "Boltz-
mann wave function")

ational search
Given trial states of the form (3) and (4), the

ground-state energies of the two phases take on
the forms

NE = Q d T j tp
)

—V)U(ro }
j&j 2m

and

+ 4'(r~))
~]

(liquid) (6)

2

NE = c+Q dr ~g [ V(U(r(~)
pn j&f 2m

+@~eeII fee]&

(crystal), (6)

where d&= IIdrj. The integrals in these expres-
sions have been evaluated by standard Monte Carlo
techniques', and the pressures P resulting from
those energies specifically related to structure
are determined by an application of the virial the-
orem. For the crystalline phase, the Lindemann
ratio (defined here to be the ratio of the root-
mean-square deviation of a particle from a lattice
site and the nearest neighbor s-eparation) can also
be determined directly. At r, =1.36 we find values
of 0.169 and 0.154 for mass 1 and 2, respectively
(Table I gives values computed at other densities).
These ratios are large when viewed in the context
of normal solids but are smaller by about a factor
of 2 than thoye found in He and He4. Metallic hy-
drogen is quite anomalous in this respect; there
is no other known system with this intermediate
value of Lindemann ratio.

Tables I, II, and III summarize the results for
systems of 108 and 256 particles. At four densi-
ties (r, =0.8, 1.3, 1.36, and 1.488) the crystalline
phase has the lower energy. Although the differ-
ence in energy between liquid and crystal is small
(it varies between one and three percent of the
total structurally dependent energy}, it is a rela-
tively large fraction (10% at r, =1.36) of the dy-
namic energy of the protons. At r, = 1.6 the ener-
gies are so close that we cannot draw any defini-
tive conclusion. We note at this point that at r,
=1.36 (where a crystal is preferred) the solid-
phase variational energy and Lindemann ratio are
in good agreement with the self-consistent har-
monic-approximation results of Straus and Ash-
croft. 4 "

So far as numerical accuracy is concerned, we
have carefully assessed the possible errors and
conclude that the uncertainties are about —,'% of the
structural energies or about 1.5+ of the dynamic
energies. Typically, a few hundred thousand con-
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TABLE III. Results of the variational calculations of
the Lindemann ratio for mass-1 and mass-2 systems.

Mass Lindemann's ratio (y)

1.6

1.488

1.36

1.2

0.8

0.18
0.167
0.189
0.168
0.169
0.154
0.168
0.131
0.158
0.119

figurations were used in the evaluation of the in-
tegrals. The simulation results for a 256-particle
system have errors within those of a 108-particle
system, and we can conclude that there is negligi-
ble size dependence in the results. Many of the
Monte Carlo runs were extended to 0.5 X10 con-
figurations, and in combination with careful block
averaging (up to 15 blocks), we achieved the er-
rors quoted in Tables II and III.

Table II also gives the corresponding results
for deuterium. The calculations were performed
with the same Hamiltonian except that the system
has mass 2. Again, the crystal is preferred at
r, =0.8, 1.2, 1.36, and 1.488.

We turn now to the question of quantum statis-
tics. Metallic hydrogen is a Fermi system, but
the trial states used do not reflect this. On the
other hand, it is clear from the tables that in the
crystalline phase the particles are very well lo-
calized and show no tendency to exchange positions.
Under such circumstances it must make a negligi-
ble difference to use an equally well-localized but

fully antisymmetric wave function. Since the pro-
tons are well localized, nearly all the physical
properties of the system will be independent of
statistics, and can therefore be determined using
trial states (such as ours) that are neither sym-
metrical nor antisymmetrical. The difference in
energy between fer~ion and boson mass 1 systems
is of the order of magnitude of the two-particle ex-
change energy and this, according to Guyer, ' can
be estimated as

of the pseudopotential fI(r„) in the Jastrow func-
tion. Using the optimum value of c in our varia-
tional search at r, =1.36 (c =9.0 A ), and with
4=1.3 A we find (for mass 1) I0-10 '0 for c= 1 A,
and I0-10 for o =0. Accordingly, the two-parti-
cle exchange energy is seven orders of magnitude
smaller than the localization energy (38'c/2m)
which, in turn, is only about 4/0 of the total struc-
ture-dependent energy. By way of comparison'~
the value of Io for He~ is 10 4 (here 4=3.77 A, o
=0, and c=0.65 A ').

We turn now to the energy of a ground-state
liquid phase of hydrogen. The variational energy
of the Fermi system must lie higher than the cor-
responding energy of the boson system. This fol-
lows because the imposition of the requirement of
antisymmetry on the variational wave function can
be regarded as a constraint which must raise the
variational estimate'3. Since the liquid-phase en-
ergy of the "boson" fluid is found at four densities
to be higher than the crystal phase, we may con-
clude that the energy of the true fermion system
will be even higher. But we have argued that in
the crystalline phase the choice of statistics has
negligible effect. Thus, at the four densities
(r, =0.8, 1.2, 1.36, and 1.488), the liquid phase
for the fermion system will have an energy in ex-
cess of that for a crystal.

This prediction of crystallinity (for either hy-
drogen or deuterium) is further supported by an
application of the quantum law of corresponding
states'4. We have observed that at high densities
(r, ~ 1.4) and in the vicinity of the nearest-neighbor
separation between protons (or deuterons) the pair
potentials of Fig. 1 can be quite well approximated
(to within additive constants) by a Yukawa form'

We also note that the nearest-neighbor separation
is not close to the first minimum of 4, again in
contrast to the situation commonly prevailing in
simple solids.

Now a quantum system described by a Yukawa
potential is completely characterized by the re-
duced quantities

(7)

where

I, =—(cc )' exp[-c(cr + n')] .2

Here c is the localization parameter discussed
above, and 4 is the nearest-neighbor separation.
The quantity 0 is the effective hard-sphere radius

gp-1/3

where p is the number density. The ground-state
phase diagram for these Yukawa systems has been
determined by Ceperley et al."'"over a wide range
of values for A* and K*, and for both boson and
fermion systems. We can therefore use these
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FIG. 2. Phase diagrams taken from Ref. 15 for a sys-
tem of fermions interacting with Yukawa potentials.
Points for metallic hydrogen (mass 1) are obtained from
the quantum law of corresponding states.

FIG. 3. Phase diagrams taken from Ref. 17 for a sys-
tem of bosons interacting with Yukawa potentials.
Points for metallic deuterium (mass 2) are obtained
from the quantum law of corresponding states.

results for hydrogen and deuterium by a sim-
ple application of scaling. At r, =1.36, 0.8, 0.4,
and 0.2, the potentials C map onto Yukawa func-
tions with K ~ =3.49, 2.43, 1.66, and 1.15, respec-
tively. For mass 1 the corresponding values of A*
are 0.18, 0.20, 0.23, and 0.28; for mass 2 they
are 0.12, 0.14, 0.16, and 0.20, resyectively. For
mass 1 the ground-state phase diagram of Ceperley
et al."(Fig. 2) shows that not only is the crystal
strongly preferred for the fermion system, but that
metallic hydrogen will exist in aface-centered-cubic
forxn for r, & 0.4 and in a body-centered-cubic
form for r, & 0.4. We also find that pressure-in-
duced melting has not occurred at the smallest
value of r, considered (r, =0.2). This is consistent
with the recent estimate" that pressure-induced
melting may not occur until very much higher den-
sities are reached. From the mapping for deuter-
ium and the boson phase diagram of Ceperley et
al. ,

' we again find that a crystalline phase is pre-
I

ferred, with fcc at r, & 0.4 and bcc for r, & 0.4
(Fig. 3).

We conclude with a brief analysis of the appli-
cability of the quantum law of corresponding states
to this problem. Let E be the energy of the system
calculated variationally for pair potential C. Let
E„and C „be the energy and pair potential of the
corresponding Yukawa system. Then to first order

E=z + Ep~ ,J d~
[ &

I I o,(" r) - t(r, )] fd&
(

lb

(8)

where g~ is the trial wave function for either
liquid or solid. Notice that since the short-range
repulsive part of the potential (which is well ac-
counted for by the Yukawa form) dominates the
determination of structural properties, ' it is con-
venient to separate (8) as

=DE„+d E,

f ~ ~liJ min
l'

pletely include the first coordination shell. In this
way 4E„accounts for the nearest-neighbor con-
tributions to the difference 4E arising froxn the
corresponding difference C „-C . In a similar way

r
miff

where r &, in the liquid phase is the first minimum
beyond the nearest-neighbor peak of the pair-dis-
tribution function, and in the solid phase is the
equivalent average separation so chosen to com-

d& g~ @„ri~ -C' riq + — d'~ g~ 4„r„)-C r„d~ g~
1 1
N N
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TABLE IV. First-order corrections (mass 1) to the

energy when the pair potential is approximated by a
Yukawa form. EE„represents the nearest-neighbor
contributions, EE& the long-range contributions, and
AE the total energy difference [see Eq. (9)]. .Numbers
in parentheses give fractions of total structural energy
E.

AE„(eV) EE& (eV) AE (eV)

1.36

0.8

liquid 0.117 (0.07)
solid 0.079 (0.046)
liquid 0.078 (0.007)
solid 0.099 (0.009)

0.177
0.194
0.574
0.186

0.294 (0.17)
0.273 (0.16)
0.652 (0.06)
0.285 (0.027)

~F. , accounts for the longer-ranged effects. Ta-
ble IV records these differences, and also express-
es them as a fraction of the total structural ener-
gy E. As expected, the replacement of 4 by 4, is
much more accurate at high density, but even at
~, = 1.36 the approximation is seen to be relatively
satisfactory.

In summary, our variational calculation shows
that metallic hydrogen and metallic deuterium can
both exist in high-density monatomic forms at ab-

solute zero. For densities such that r, ~ 1.488, we
find that liquid phases always have higher ener-
gies. At r, =1.6 liquid and solids have energies
that are almost indistinguishable within the accu-
racy of our calculations. It is worth noting, how-
ever, that variational calculations of this kind
usually provide better estimates of the energy of
the solid than of the fluid. This is because the
configuration space of the solid is much simpler
than that of the fluid, and as a consequence it is
possible to construct a better variational wave
function for the solid phase. It follows that by
using a wider class of variational wave functions,
it may be possible to lower the energy of the fluid
phases still further. On the other hand, the map-
ping of the problem onto the Yukawa potential sys-
tem suggests that at high densities metallic hydro-
gen and deuterium lie deep within the crystalline
phases.
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