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We show that a new pseudopotential recently introduced by Hamann, Schliiter, and Chiang can easily be
extended to include all relativistic corrections to order a (not Z a').

dF/dr —(«/r}F + [e —V(r)] aG = 0,
dG/dr+ («/r)G —[2/i2'+ e — V(r) ]a F= 0 .

(1)

(2)

Here h=m =8=1 and c=e '=137.04. q =E- o. ',
where F is the relativistic energy. Note that for
va. lence electrons (small q) outside of the core
region [small V(r)] one may replace F in Eq. (1)
by

Hamann, Schliiter, and Chiang' (HSC) recently
introduced a new soft-core psuedopotential for
which the real and pseudo-atomic wave functions
converge identically beyond a chosen core radius

This is a great advantage over ordinary soft-
core pseudopotentials" where the pseudo-wave-
function differs by a renormalization constant from
the real wave function, in that it allows the self-
consistent potential to be obtained directly from
the pseudo-wave-functions (the effect of the dif-
ference between the pseudo- and real wave functions
in the core region is taken account of by the
pseudopotential itself). The HSC pseudopotential
has the further advantage that it is only very
weakly energy dependent. It is the purpose of this
comment to point out that the HSC procedure may
be applied to the Dirac equation where it leads to a
Schrodinger equation containing a weak pseudo-
potential together with a weak spin-orbit pseudo-
potential. The eigenfunctions and eigenvalues of
this simple Schrodinger equation contain all rela-
tivistic corrections to order n2 (not Z2o2) and enjoy
all the advantages of the nonrelativistic HSC
pseudo-wave-functions.

We write the radial Dirac equations' in Hartree
atomic units

J+-,'=r, &&0
-(d+ 2) = —(l+ 1), «&0

and the angular wave function associated with G(r)
is' (for negative and positive «, respectively)

C J Ytn y + Ym+. 1

(0)
J=l+-, , Al =m+&

4J= ™ I
Y l~ ™

Y

('l}

For each t we introduce two preliminary pseudo-
potentials

V, ',l, /2= [1 —f(r/r„)] V(r)+C„,/, f(r/r„), (8)

where the cutoff function [f(x)-1 as x-0 and

f(x) -0 as x- ~] and cutoff radius r„are dis-
cussed by HSC. V(r) is the self-consistent po
tential obtained from a solution of the Dirac equa-
tions for the atom. Ci ]/2 and C, , /z are chosen
so that when V', p/2 and V~ p/2 are inserted in the
Schrodinger equation, one obtains nodeless wave
functions with eigenvalues equal to those obtained
for valence electrons from the Dirac equations
with «=-(1+1}and l, respectively. To distinguish
them from the Dirac eigenfuactions, we will
henceforth call the Schrodinger eigenfunctions
R„,/, Because V'„",/, —V(r) for r &r„and be-
cause Eq. (3) is correct to order o.2 [and hence
Eq. (4) is equivalent to Eqs. (1) and (2) to order
n2], we have, to order a2,

F= 2 a(dG/dr+ («/r}G] (3) y i+i /2 R I+i /2(r) i21/2(r} r r i

to obtain the Schrodinger equation

, +, G + Vr —KG=0.d 'G «(«+ 1)
dr2 r2 (4)

r 'G(r) is the positive energy radial wave function
and r 'F(r) the negative energy wave function which
is strongly admixed with G in heavy atoms, but
only in the core region. z is a nonzero integer
quantum number,

where y, z/2 is a multiplicative constant. Because
F is of order nG in the valence region, its con-
tribution to the charge density in the valence region
may be ignored to order o.'. Thus following HSC
we modify R'„",/, to

R'„",/, (r) = y„,/, (Ri i/2(r)+ 5/„, /2 g„,/, (r/r„)], (10)

where g„,/, (x) cuts off to zero for x& 1 and be-
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Vion(r) g [~4pI ) Vion (r) (@z
~

l, m

for J=I+ &, M .=m+ &, J = l —&, M =m —&. This
may be rewritten

V'-(r) = g ~
I ) [V-(r) 1. 8+ V'-(r)+ -' V-(r}]{I ~,

where (12)

2

haves as x'" for small x. 5p z/2 is the smaller
solution of the quadratic equation resulting from
the normalization condition, ' f (R,",', &,)'dr = 1.
The final pseudopotentials V', '1/2 producing nod@-

less eigenfunctions R7 1/2 with eigenvalues q f,1/2
are now found by inverting the nonrelativistic radial
Schrodinger equation. The ionic pseudopotentials
V', ;;&,(r) are obtained by subtracting from V'„",&,

the Coulomb and exchange-correlation potentials
arising from the occupied R'„",/, states.

Thus the total ionic pseudopotential to be used

in an energy band calculation is

The easiest way to verify that Eq. (12) follows
from (11) is to demonstrate' that
(4'g V'„"(r) ~4s~} (where J=I'+ p and M =m'+-,') is
independent of whether V'"{r}is obtained from
(11) or (12).

The use of Eq. (12) together with an expansion
in plane waves (or perhaps a linear combination of

Gaussian orbitals for 5f electrons in the actinides)
is a tremendous simplification over other relati-
vistic energy-band calculational techniques, espe-
cially if muffin-tin potentials are to be avoided.
%e wish to emphasize once more that because

V,', (r) and p are of order 1 hartree or less, our

procedure is accurate in its inclusion of relativis-
tic effects to order e', i.e. , one part in 10',
whereas most relativistic expansions are accu-
rate to order (Zn}', i.e. , about one part in 2 for
uranium.

&ote added in proof. If the Kohn-Sham exchange
potential is used, it is the relativistic form [dis-
cussed by A. K. Hajagopal, J. Phys. C 11, L943
(19"t8)] that must be used in the Dirac equations.
Little error is incurred by substituting the non-
relativistic form in the pseudopotential, starting
with Eq. (8).

Vion(r) [Viol (r) + Vion {r)] (14)
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